This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 1

Scheduling Algorithms for Efficient Execution of
Stream Workflow Applications in Multicloud
Environments

Mutaz Barika, Saurabh Garg, Andrew Chan and Rodrigo N. Calheiros

Abstract—Big data processing applications are becoming more and more complex. They are no more monolithic in nature but instead
they are composed of decoupled analytical processes in the form of a workflow. One type of such workflow applications is stream
workflow application, which integrates multiple streaming big data applications to support decision making. Each analytical component
of these applications runs continuously and processes data streams whose velocity will depend on several factors such as network
bandwidth and processing rate of parent analytical component. As a consequence, the execution of these applications on cloud
environments requires advanced scheduling techniques that adhere to end user’s requirements in terms of data processing and
deadline for decision making. In this paper, we propose two Multicloud scheduling and resource allocation techniques for efficient
execution of stream workflow applications on Multicloud environments while adhering to workflow application and user performance
requirements and reducing execution cost. Results showed that the proposed genetic algorithm is an adequate and effective for all

experiments.

Index Terms—Big data, Stream workflow, Scheduling, Greedy algorithm, Genetic algorithm.

1 INTRODUCTION

he continuous evolution of Internet of Things (IoT) and
its fast adoption are driving change in data ecosystems.
Beyond the hype and in near reality, i.e. by 2020, there will
be tens of billions of IoT devices [1] and all of these devices
generate data, leading to exponential data growth. On the
one hand, this imposes new data processing challenges, but
on the other hand, it opens up opportunities for designing
and developing applications and services that utilize IoT
data to facilitate real-time data analysis for online insights.
Recently, a number of streaming data processing plat-
forms have been developed to transact with data streams
being generated with great velocity, which allows designing
and building streaming big data applications to ingest, pro-
cess, and analyse data streams. However, the need of com-
posing these applications into data pipelines to make better
decisions in real-time is increasingly required. Following
this need, many IoT applications and services such as smart
traffic control, smart irrigation and forest fire detection, are
evolving to cope with the demand of improving the quality
of our lives [2] [3] [4]. These applications are not monolithic
application but they reys on the technology of workflow to
model different analytical components, where each compon-
ent can be a simple analytical step or a workflow itself, to
make better decisions. An example of this workflow is smart

e Mutaz Barika and Saurabh Garg are with the School of Technology,
Environments and Design (TED), University of Tasmania, Australia.
E-mail: [mutaz.barika, saurabh.garg]@utas.edu.au

o Andrew Chan is with the School of Engineering, University of Tasmania,
Australia.

E-mail: andrew.chan@utas.edu.au

e Rodrigo N. Calheiros is with the School of Computing, Engineering and
Mathematics, Western Sydney University, Australia.

E-mail: R.Calheiros@uwesternsydney.edu.au

Manuscript received December 5, 2017; revised xxxx x, XXX

road traffic monitoring as a service of smart city services that
utilizes processing power of connected vehicles in addition
of roadside infrastructure (e.g. traffic lights, cameras) to
create real-time view of road traffic conditions [3]. This type
of workflow is also called stream workflow.

In contrast to business and scientific workflows [?]
[6] which are static workflows, stream workflow supports
composition of analytics components into a holistic data
processing pipeline to perform complex and continuous
data computation operations over infinite data streams with
great velocity. Stream workflows are very different from
traditional business and scientific workflows as these work-
flows have to continuously process an infinite stream of
data with each analytical component always in an active
state. Moreover, each component has heterogeneous plat-
form and infrastructure requirements. Furthermore, stream
workflow differ from streaming operator graphs (generated
by streaming data platforms) as there is a single source of
data for the whole operator graph and one end operator,
while stream workflow has multiple input data sources
and multiple output streams. Therefore, the complexity and
heterogeneity of stream workflow applications and cloud
compute resources, the distribution of external data sources
for these applications, and user-defined quality of service
(QoS) requirements, all impose the need for a new class
of application orchestration workflow. This orchestration
process of such application in the cloud includes managing
pipeline execution dependencies, scheduling and concur-
rency based on application data flow.

Unfortunately, existing research works for big data pro-
cessing have focused on supporting batch-oriented work-
flows, providing streaming operators graph for continuous
processing or developing big data orchestrators that do not
need to guarantee real-time data processing requirements.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 2

Research works like [7] and [8] use a batch processing
model to provide architectures to compose batch processing
applications into a pipeline to process static data at once and
get final analytical insights by extending the capability of
scientific workflow management systems such as Kepler [9]
and Pegasus [10]. Systems like Apache Storm ! and Flink 2
employ continuous operator model to process data streams.
However, these systems form stream operators graph with
one feeding data source and one sink operator to output
the result of graph execution, while stream workflow has
multiple input data sources and multiple output streams.
Moreover, they concentrate on minimizing the latency and
fail to maintain high throughput. Big data orchestrators
(Apache YARN, Apache Mesos) provides script-based com-
position of analytical steps over cloud datacentres. How-
ever, these orchestrators assume either monolithic applica-
tions that do not need to meet real-time decision support
requirements defined by workflow owner or are intended
for workflows that have predictable performance [11].

As stream workflow is different from the models dis-
cussed above, research works and systems in the literature
looked at the composition of streaming applications from
different perspectives of scheduling problem. Moreover, the
execution of stream workflow on resources provisioned
from single cloud may not meet user requirements due to
the distribution of external data sources. Multicloud envir-
onment consolidates multiple clouds, allowing to orches-
trate the execution of multiple analytical components over
different clouds to utilize data locality. However, the com-
position needs of stream workflows and the dynamic nature
of cloud computing poses a challenge in the problem of ex-
ecuting such workflow over different cloud infrastructures
efficiently while meeting user real-time user requirements.

In this paper, we address the challenge of determining
near-optimal resource allocation and scheduling of stream
workflow applications to meet user requirements while re-
ducing the total cost of execution with the use of Multicloud
architecture. To this end, we design and implement two
efficient scheduling algorithms using Greedy and Genetic
heuristics. We evaluate their efficiency by comparing them
using commonly types of real workflow structures in differ-
ent experiment scenarios and present experimental results.
Our contributions are as follows:

e Problem modelling of stream workflow application.

e A greedy resource provisioning and scheduling al-
gorithm for efficient execution of stream workflow.

e A genetic resource provisioning and scheduling al-
gorithm for efficient execution of stream workflow.

e A comprehensive analysis of the two proposed al-
gorithms (greedy and genetic algorithms) using vari-
ous structures of workflow with different sizes.

2 RELATED WORK

Given the complexity and heterogeneity of stream work-
flows and the compute resources in addition to user-defined
quality of service (QoS) requirements, it represents a new
class of scheduling problem. The orchestration process of

1. https:/ /storm.apache.org/
2. https:/ /flink.apache.org/

stream workflow application over cloud infrastructures is
not a trivial task. However, most of research works focused
on big data batch computing and thus big data stream com-
puting is still receiving little attention. Thus, few scheduling
methods found in the literature that are related to our work.

Looking at the streaming operator graphs that used with
stream processing systems, it is important to determine the
differences between these graphs and stream workflows that
we consider in this paper, and therefore how our scheduling
problem is different. Stream-oriented big data platforms and
services such as Apache Storm and Azure Stream Analytics
provide the ability to design streaming operator graphs
to process streams and produce final output stream. First
of all, streaming operator graphs that generated by those
systems differ from stream workflows as the source of
data for the whole operator graph is one and there is one
end operator, while stream workflow has multiple input
data sources and multiple output streams. Moreover, each
component in stream workflow has heterogeneous platform
and infrastructure requirements. Furthermore, the goal of
these systems is to attain low stream latency without taking
into consideration other optimisation goals such as network
usage, execution performance and cost.

In regards to the most related research works [12], [13]
and [14], these works also addressed the placement problem
for those operator graphs in distributed large-scale environ-
ments with various limitations. Pietzuch et al. [12] proposed
operator placement algorithm (called SBON) that optimizes
operator placement to enhance network utilization by using
the continuous knowledge of network and node conditions
(i.e. network usage metric), aiming at providing low latency.
This research work lacks the consideration of the location of
data stream sources in making placement decisions. In the
same context, Cardellini et al. [13] proposed optimal place-
ment model and prototype scheduler for operator graphs
that optimised user-oriented QoS attributes. This work only
presented the modelling of network-related QoS attributes
(elastic energy, network usage and inter-node traffic), and
made the consideration of other constraints such as execu-
tion cost or performance as future research directions. It
also ignores the user-defined performance constraints on
the operator graph. Venkataraman et al. [14] focused on
optimizing the scheduling of operator graph and presented
techniques that are implemented in Drizzle to enable high
throughput and adaptability, and low latency. This work
ignores the consideration of data source location, relies
on micro-batch processing system (i.e. Apache Spark) to
provide stream processing at scale. It also lacks the consider-
ation of user-oriented QoS attributes. Accordingly, the place-
ment problem of operator graph is related to a different type
of stream graph application as well as has different assump-
tion and optimization goals in comparison to the stream
workflow and the scheduling problem that we consider in
this paper. With stream workflow, the scheduling problem
considers the mapping of each analytical component to one
or more compute resources as well as the optimization goals
are minimizing execution cost and improving performance
without violating real-time user requirements.

In regards to big data orchestration, existing big data
orchestrators that can be extended for big data management
are Apache YARN [15] and Apache Mesos [16]. Each of

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 3

these systems uses a different scheduling technique to map
applications on cloud resources.

Apache YARN uses a monolithic scheduler (single cent-
ralized scheduler) to map compute resources among com-
peting applications in the cluster. Apache YARN was de-
signed for optimizing the scheduling of Hadoop jobs (i.e.
batch jobs), but not for services with long runtimes, such
as Service Oriented Architecture (SOA) applications, nor for
short-lived interactive queries (real-time workloads), such
as stream jobs, and “while its possible to have it schedule
other kinds of workloads, this is not an ideal model” [17]. It
also was not designed for stateful services, instead it is
appropriate for stateless batch jobs that can be restarted
easily in case of failures [17]. Furthermore, it is designed to
support homogeneous clusters of IaaS resources [18], and
does not support workflows or dynamic composition of
data-intensive activities.

Apache Mesos uses a dual-level scheduling mechanism
called “resource efforts”, which makes offer of resources
(a list of available resources on multiple slave nodes) to a
framework and let this framework either accept the offer, or
reject it if the offered resources do not meet its constraints
and then waits for ones they do [16]. Therefore, the respons-
ibility of the master is to decide how many resources to offer
each framework according to an allocation policy (such as
fair sharing or priority) defined by the system administrator
via a pluggable allocation module, while frameworks take
the responsibility for deciding which offered resources to ac-
cept as well as which workloads to run on them [16]. Mesos
is designed for homogeneous clusters of IaaS resource [18],
and it does not deal with the complexity and dynamism of
big data workflows.

The aforementioned big data orchestrators assume either
that they do not need to meet real-time decision support
requirements [11] or are intended for big data workflows
that have predictable performance [11]. Thus, the schedul-
ing techniques in those orchestrators are considered the big
data workflow application as a static structure, so that they
neglect the dynamic nature of this application and its ana-
lytical components, the unpredictable performance of this
workflow application, real-time performance requirements
defined by the owners of these workflows, the runtime
changes and the powerful capability of ‘cloud of clouds’ as
an dynamic execution environment. Accordingly, these or-
chestrators do not fit the composition needs of complex big
data workflows. They also do not leverage the capability of
Multicloud environment to cope with the dynamic aspects
of these workflows.

In accordance to the above overall discussion and for
stream workflow application as a one type of big data
workflow application, scheduling and resource allocation
technique is needed to execute this application efficiently in
multiple cloud infrastructures while meeting user real-time
requirements and reducing the execution cost.

3 MuLTiIcLOUD EXECUTION ENVIRONMENT AND
STREAM WORKFLOW APPLICATION
3.1 Overview of Multicloud Environments

When targeting distributed data sources that inject their
data streams into a workflow pipeline, it is necessary to

utilize data locality by leverage Multicloud architecture. If
all resources are provisioned from a single cloud and not all
data sources are near this cloud, transfer of large amounts
of data to the corresponding resources not only leads to
the difficulty of achieving the requirements of real-time
data analysis, but also is expensive and incurs high latency.
Moreover, if the location of the data source changes at any
time, the flexibility provided by a multicloud architecture
allows the corresponding analytical component to be moved
to the new data location. Furthermore, if the amount of data
produced by a data source decreases overtime and reaches
low data rate, the opportunity to move the corresponding
analytical component to another cloud helps to improve
performance and reduce the cost without violating user real-
time requirements. A single cloud cannot deal with all of the
aforementioned points, and thus a multicloud architecture
should be preferred in these scenarios.

A global view of a multicloud environment is depicted in
Figure 1. Each cloud is independent from other clouds and
offers different levels of compute capacity at different costs.
The network bandwidth between compute resources in one
cloud is mostly unchanged, while between various clouds is
different and variable. Similarly, the latency between com-
pute resources in one cloud is mostly low, while between
various clouds can be comparatively high.

3.2 Stream Workflow Applications and their Require-
ments

Stream workflow applications comprise multiple stream-
ing analytical components, which can be seen as services,
as they can independently execute over any virtual re-
sources, although data dependencies among them should
be maintained. With this workflow application, we deal
with continuous inputs from internal sources (i.e. output
data of parent services) as well as from external sources
(such as sensors), continuous data processing that is carried
out by running services for incoming data and continuous
outputs that are results of processing data at services, which
routed towards one or more child services. The end services
generate the continuous output results for the execution of
this workflow. Figure 2 shows an example of stream work-
flow application with its requirements. With this workflow
application, the two types of services are:

e Unmovable service: It is a service with unmovable
data, which means the data volume coming from
data stream sources is large and we need to process
such data locally to avoid the cost and time of trans-
fer data such as vehicle detection service. Thus, data
locality approach is applied with this service; or

e Moveable service: It is a service with movable data,
which means the working stream is small and can
be transferred with low communication overhead
of data transmission. Thus, placement optimization
approach is applied to exploit deployment flexibility.

As noted in Figure 2, each service has its own data
processing requirements, which is the number of instruc-
tions required to process one MB of stream data, and data
processing rate, which is the measure of the amount of data
that can be processed in a given time by a service (in MB/s).

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 4
Network
Bandwidth (C3, C1)
Latency (C3,C1)
Bandwidth (C1, C3) v
Latency (C1,C3)
Bandwidth (C1, C2) Bandwidth (C2, C3)
Cloud 1 Latency (C1, C2) Cloud 2 Latency (C2, C3) Cloud 3
(1) « ’ (C2) (C3)
Bandwidth (C2, C1) Bandwidth (C3, C2)
Latency (C2, C1) Latency (C3, C2)
Bandwidth Latency Bandwidth Latency Bandwidth Latency
(v1,v3) (v1,v3) (v1,v3) (v1,v3) (v1,v3) (v1,v3)
v Bandwidth zlaznd\;v;dm v v Bandwidth (Baznd\;v]\dth v v Bandwidth :Z:Zn:;l;/)idth v
1,v2) V4V V2 VoV (v1,v2) .
wm BRVIVE wmy L < VM3 wme < VM3
L VM2 . VM2 . VM2 .
Latency Latency Latency Latency Latency Latency
(v1,v2) (v2,v3) (v1,v2) (v2,v3) (v1,v2) (v2,v3)

Figure 1: Multicloud environment: network.

DPReq(S2) DPReq(S5)
DPR(S2) DPR(S5) DPReq(S8)
>) ™\ Partition (20%) / Replica DPR (S8)
al) _ /
Partition (40%) P -
iti 9 14 A Replica
Partition (40%) DPReq(s4)) S S6
Replica N L .
DPR(S4) Replica
Partition (40%) y DPReq(S6)
v ([s4 DPR(S6) X
" > .
7 ¥ s10
) - Replica g \ P)
Partition (60%) A s7) Replica
DPReq(S1) > / P DPReq(S10)
DPR (S10
DPR(S1) DPReq(S7) (510
X ¥ DPR(S7) Replica
Y s3) » s9
N Replica
DPReq(S3) DPReq(S9)
DPR (S3) DPR (S9)

Movable service . Unmovable service

DPReq Data Processing Requirement DPR Data Processing Rate DP Data Producer

Figure 2: Stream workflow application example.

In term of the mode of data that being routed towards one
or more child services, there are two data modes:

e Replica mode: The child service receives replica copy
of the output stream of a parent service.

o Partition mode: The child service receives a portion
of the output stream of a parent service according to
the specified partition percentage.

The owner of stream workflow application allows to
specify maximum performance constraints in terms of data
processing rate of services targeting the maximum desired
processing performance that she/he is willing to pay for
achieving it during the whole execution, and letting the cost
minimization carried-out at initial scheduling plan. If no
performance constraints are specified, the initial input data
rates of services are considered as the maximum perform-
ance constraints (representing maximum desired processing
performance for those services). Of course, the input data
rate is varying overtime, so that a strategy is needed to
handle the increase in data rate. We assume that the exceed
incoming data rate will be dropped, thus the increase of
load above the pre-specified maximum throughputs will
have no effect. Of course, if the speed of incoming data
streams decreases, the throughput of service still has the

full capability to handle the increase in the speed of data
upto the pre specified processing performance. In addition
to achieving user specific performance constraints in term
of throughputs of services, the end-to-end latency (response
time) is crucial in stream workflow application. It is the
time between receiving a data stream at a service and
generating output stream that regards this stream. Ensuring
the low latency is required during the whole execution of
stream workflow. It should be kept as low as possible or be
bounded when it starts to increase whilst maintaining user
specific throughput.

Accordingly, the variables of stream workflow are ser-
vice type, its data processing requirement, its data pro-
cessing rate and the dynamism of execution environment.
The latter includes network bandwidth and latency between
different clouds. As a result, both user performance require-
ments and workflow application requirements need to be
considered and achieved in addition to maintaining low
latency during the execution of this workflow.

4 PROBLEM MODELLING

Prior to introduce the problem modelling of stream work-
flow application, we list all the terminologies that will be
used in this model in Table 1.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 5

Table 1: Problem Modelling Notation

Symbol / Term | Description

G Workflow graph

S Set of all graph services

E Set of all graph edges

¥m Percentage of data that is routed from parent service to
child service (100% in replica mode or any percent in
partition mode)

S Particular service in workflow graph

MI5n Number of floating-point operations required to process
one MB of input data (MI/MB)

A Amount of data produced by a given external source and
being consumed by a service (MB/s)

A Proportion of output data to input data for S,,

C Set of all clouds in Multicloud environment

cg Particular Cloud in Multicloud environment

L Network latency matrix

B Network bandwidth matrix

DTCOST Data transfer cost matrix

VMY Set of all VM in cloud g

VM Particular VM k in cloud g

T Set of all internal network links between VMs in cloud g

7 Particular internal link between vmJ,. and vm7__,

MIPS, omf Rating of the capacity of VM k in cloud g

Com g Provisioning cost of VM k in cloud g (cents/s)

uon user-defined maximum performance constraint (MB/s)

as, Data processing rate of .S,

unitDUnit Minimum stream unit for the whole application (MB)

unitDPRate Minimum stream unit per second for the whole applica-
tion (MB/s)

4.1 Application Model

We model a stream workflow application as a Direct Acyclic
Graph (DAG) G = (S, E). S represents a set of N services
S = s1, 82, ...,5n and E represents a set of M edges/links
between services denoted as ' = ey, ea, ..., eps. Each edge,
em is represented as a tuple (sy;,, Sive s ¥'), Where sy
denotes origin service, s};; ., denotes destination service and
¥™ denotes the percentage of data generated by sl that is

org
m
routed towards s} ;.

Each particular service S,, is represented as a tuple
Sp = (MI% A% ~%), where MI% denotes the number
of floating-point operations required to process one MB
of incoming data (service data processing requirement)
in MI/MB, A5 denotes the arrival rate of data streams
generated by sources outside the application in MB/s (such
as data streams generated by sensors) to be consumed
by the service, and °» denotes the proportion of data
generated by a service based on input streams.

Notice that, given the nature of stream workflow ap-
plications, it is possible that data generated by one service
can be sent to one or more services, or can be split among
different services. Thus, for service .S,,, both parameters
5 and ¥™ (in edges where such service is origin service)
are necessary to define the whole application. In addition,
to process streams that coming at different speeds, the
minimum stream unit per second (denoted as unitDPRate)
is needed to be specified for the whole application, so that
each provisioned compute resource must process at least
one unit per second and of course it can process multiple
units per second according to its computing capacity per
second (in term of MIPS). By specifying minimum stream
unit per second for the whole workflow application, the
data processing rate (MB/s) for processing this unit can

be determined to ensure that each provisioned compute
resource at least processes one unit per second.

4.2 System Model

The cloud system is modelled as a tuple W = (C, L, B,
DTCOST). A set of G clouds in the Multicloud environment
is denoted as C' = c¢q, ¢a,...,cg. L, B, and DTCOST denote
matrices containing respectively the latency (in seconds),
the bandwidth (in MB/s), and the data transfer cost (in
cents/MB or ¢/MB) between each of the pair of clouds in C.

Each cloud, ¢, is represented as a tuple (VM9I,T9),
where VM9 = vm{,omj,...,umJ. is a set of K virtual
machines (compute resources) with different resource con-
figurations deployed in ¢y, and 79 = t{,t3,...,t9,,t] =
(vm§,.,,vmf,,), a set of H links that are part of the data
center network topology.

Each VM deployed in the cloud, vmj, is represented
as a tuple (MIPSU7rLZ7¢vmz)/ where MIPSW,L.]Z denotes
floating-point operations computed by this VM according
to its compute capacity per second and ¢,,,s denotes the
cost of provisioning such VM (in cents per second).

The data processing rate for S, if it is mapped to vmy is
denoted as ¢ and is calculated as:

[MIPSymg /x] * X
MI5n
Where x = unitDPRate x MI°"and MIPS, s = x

©(Sn, ’Umi) = MB/s 1)

The workflow application owner can specify maximum
performance constraint for service S,, (denoted as o) as
a part of request (in MB/s) as a value for data processing
rate of service S, (denoted as a s,), targeting the maximum
desired processing performance that she/he is willing to
pay for achieving it during the whole execution. If no per-
formance constraint for service S, is specified, the system
will calculate this rate based on input stream(s) of service
Sp. In that case, each service .S, is capable to handle upto the
specified data processing rate (throughput) and when the
speed of input streams increases this maximum throughput
wSn, the dropping mechanism is applied. Of course, if the
speed of incoming data streams decreases, S, still has the
full capability to handle the increase in the speed of data
upto 1%, Let pro(S,,) be a set of VMs that are provisioned
from one cloud for service S, and inStream(S,,) denote the
input stream of .5,,.

The inStream(Sy,) is calculated as follows:

inStream(S,) = A5+

Sy T
Zem€E|s§est:Sn (’y e Zvepro(sm) SO(SJ“ U)) *¥" MB/s
)
The following constraint of data processing should be
maintained:

Zva'ro(Sn) @(Sn; ’U) 2 ags, (3)

S . .

~ if maximum throughput
Where g, = s f &P
inStream(Sy,), otherwise

Additionally, we assume that every data stream should
be processed, as unprocessed data streams lead to incorrect

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 6

results. We also assume that the order of stream portions
should be maintained during the distribution among cor-
responding compute resources. Based on these assumptions,
we maintain user specific throughputs for all services, and
end-to-end latency (response time) as low as possible or
even bounded when it is being increased, because if the
input data rate of a service exceeded the data rate specified
in processing performance constraint, the exceeded streams
will be dropped. Thus, the incoming data streams upto
throughput of a service are processed as they arrive, and
the latency from the time of stream being added to input
queue until its emission from the service as output stream is
maintained. Of course, in case of a child service receives two
or more dependency streams from its parents services, the
latency is from the time of the last dependency stream being
added to input queue until its emission from child service.

Each service S,, in workflow application produces out-
put stream as a result of computation. Let outStream(S,,)
denote the output data stream for a service S, and is
calculated as follows:

Sn % inStream(S,)

outStream(S,) = MB/s (4)

The total cost of running all provisioned VMs for all ser-
vices to process incoming data streams during the period of
time T (which represents a set of I seconds T = ¢y, 2, ...,t1),

is denoted as execCost(S,T) and is calculated as:

execCost(S,T) =T * an Zvepm(s") ¢y cents (5)
The data transfer cost is based on the amount of data
being moved, the cost of data transfer charged by cloud
provider, and network performance. In a workflow applica-
tion, both input and output data are moved among different
clouds. As the speed of data may vary during workflow
execution either decreases below service throughput or
increases upto service throughput (as exceed load will be
dropped), the calculation of data transfer cost needs to
be carried-out per second. Let cts(S,,) denotes the cost of
transferring streams for S, (including input streams from
other services) per second, and CT'Stream(S,T) denotes
the total data transfer cost for the amount of data being
moved for all services during the period of time T. The
CTStream(S,T) is calculated as follows:

CTStream(S,T) = ZT ZS cts(S,) cents (6)

cts(Sn) = ZSiepamm(S") ¢(S;) cents

0, if Cy(S;) = Cy(Sy)
/ .
(81 = outStream’(S;)
*DTCOST(Cy(S;),
Cy(Sn)), otherwise
tSt Si), ifo<l1
ot Stream(5) | ‘msmeamsy s L
— otherwise

outStream(S;) * ¥*
B(C!J (5i); Cy (Sn))

, and parent(Sy,)is the set of parent services for service Sy,

Where o =

+ L(Cg(Si)a Cg(Sn))

Thus, the objective function is to minimize the cost of
execution of the workflow without compromising the accur-
acy of the application and user performance requirements in
term of maximum throughputs:

minf(S,T) = execCost(S,T) + ctStream(S,T) (7)

5 PROPOSED ALGORITHMS

The problem of selecting the right resources for executing
stream workflow applications in Multicloud environments
to meet user requirements and to achieve efficient perform-
ance (in term of throughput and latency) while minimizing
the costs of resource provisioning and data transfer is an
optimization problem, where resource selection problem
is generally NP-complete problem. Our research problem
is to find near-optimal resource selection solution with
minimal execution cost at deployment time for executing
stream workflow application in Multicloud environment,
where the required resources are provisioned based on user-
defined performance requirements and then services are
being scheduled on these resources before the execution
begins. For that, we propose two resource provisioning and
scheduling algorithms using Greedy and Genetic heuristics.

5.1 Greedy Scheduling Algorithm

A greedy algorithm is a heuristic algorithm that finds the
best solution at each stage (local optimum) without consid-
eration of future results, hoping to find global optimum.
For our resource provisioning and scheduling problem for
executing stream workflow application in Multicloud envir-
onment, we propose a greedy algorithm that finds the best
resource selection solution for a given workflow applica-
tion at deployment time. The pseudocode of this proposed
algorithm is shown in Algorithm 1. This algorithm takes
O(SCUYV) with S the number of services, C the number of
clouds, U the number of required minimum data processing
units for a service and V the number of VM offers in the
placement cloud.

5.2 Genetic Scheduling Algorithm

For the research problem discussed in this paper, search
spaces are large and complex, with many cloud offerings
available and several problem-dependent constraints to be
satisfied. The search space will rapidly grow when looking
for efficient schedules of increasing problem size. To deal
with scheduling problem of stream workflow at deployment
time, the goal is to find near-optimal solution by rapidly
traversing large search spaces and generate scheduling plan
for starting the execution of this workflow.

Genetic Algorithm (GA) is a useful algorithm to this
problem because of its effectiveness at searching large and
complex spaces to enables the practical implementation

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 7

Algorithm 1 Greedy Scheduling

Algorithm 2 Genetic Resource Scheduling

1: procedure GREEDYSELECTION(VMOffers, unitDPRate)

g

2 for each service S, from S do

3 selectedVMList < ¢

4: cost +— oo

5: unitMIPS <— unit DP Rate * MI5n

6: reqMIPS < get MIPS based on as,, and unitMIPS

7 for each cloudcy from Cdo

8: if Sy, is unmovable & cqg # placement cloud of S, then
9: continue

10: end if

11: selectedVM <« 0

12: reqUnits = reqMIPS/unitMIPS

13: workingVMList < ¢

14: V M9 « list of VM offers for ¢,

15: VM9 « VMY — {x € VM9 | MIPS, < unitMIPS}
16: if VMY is empty then

17: if Sy, is unmovable ||.S,, is movable & ¢, is last cloud then
18: exit

19: else

20: continue

21: end if

22: end if

23: while reqUnits > 0 do

24: maxVMValue <+ 0

25: for each VM from VMY do

26: achievedPortionsByVM <« |MIPS g /(unitMIPS)]
27: vmValue < (achieuedPartionsBy\&M/reqUnits)/¢vm
28: vmValue <~ vmValue + |[MIPS, g /(unitMIPS x

vmy

#0O fServiceDependencies)| /¢, g

29: if vmValue > maxV MV alue then

30: maxVMValue +— vmV alue

31: selectedVM <« k

32: end if

33: end for

34: workingVMList <— workingV M List U{V M _}
35: acheivedPortions < | MIPS, g Leetodv AL JunitMIPS
36: reqUnits < reqUnits — acheived Portions

37: end while

38: newCost < EveworkingV}\lList ¢1)

39: if newCost < cost then

40: cost «+— newCostv

41: selectedVMList < workingV M List

42: end if

43: if S,, is unmovable & cg = placement cloud of Sy, then

44: break

45: end if

46 end for

47: add selectedVMList of S,, to ServiceVMsMap

48: end for

49: end procedure

of optimizing scheduling. It is capable to provide sev-
eral satisfying candidate solutions (i.e. resource selection
solutions) to choice from by evolving over generations of
candidate solutions. Algorithm 2 shows the pseudocode of
the proposed genetic resource provisioning and scheduling
algorithm. This algorithm takes O(GPS?D) with G the
number of generations (as termination condition), P the size
of population, S the length of candidate solution (number
of services) and D is number of stream dependencies for
services. Our proposed GA is implemented using the Watch-
maker framework for evolutionary computation [19].

The details of the proposed GA (encoding, initial pop-
ulation, fitness function, selection, crossover, mutation and
replacement) are presented in Appendix A.

6 PERFORMANCE EVALUATION
6.1 Experiment Methodology
6.1.1 Configuration of Workflow Application

Common workflow structures from different application
domains, such as Montage in Astronomy, Inspiral in As-
trophysics, Epigenomics in Bioinformatics and Cybershake

1: P <« empty initial population

2: call greedy algorithm and add its solution to P

3: generate N-1 candidates randomly and add them to P

4: calculate fitness values for candidates in P

5: sort candidates in P in ascending order of fitness

6: while condition not satisfied do

7. perform elitist selection

8: select candidates using selection operator for evolving

9: create new offsprings using crossover operator

10: create new offsprings using mutation operator

11: replace weakest candidates using replacement opoerator

12 add elite candidates to the evovled population

13: calculate fitness values for candidates of the evovled population
14: sort candidates of the evolved population in the ascending order of fitness
15: end while

16: return best candidate (candidate with minimum cost)

Table 2: Workflow structures with their different sizes
Size Montage Inspiral Epigenomics CyberShake
Small 25 node | 30 node (In- | 24 node Epi- | 30 node

(Montage_25) spiral_30) genomics_24 (Cyber-
Shake_30)
Medium | 50 node | 50 node (In- | 46 node Epi- | 50 node
(Montage_50) | spiral_50) genomics_46 (Cyber-
Shake_50)
Large 100 node | 100 node | 100 node | 100 node
(Mont- (In- (Epigenom- (Cyber-
age_100) spiral_100) ics_100) Shake_100)

in Earthquake science, operate on static data inputs and
produce outputs. The structures of these workflows and
their characteristics are explained in details in [20]. Never-
theless these structures can be used as applications models
to simulate different stream workflow applications after
extending their XML structures. Moreover, these structures
come with different sizes, so that we can conduct small
to medium to large experiments with different simulated
workflow structures (i.e. stream workflows).

Each of these workflow structures can be used to sim-
ulate a stream workflow application, where each job is
considered a service and the data flow becomes streams of
data. The inputs of a job that comes from static files (not
outputs of previous jobs) become the continuous inputs of
a service from data producers (i.e. external sources). The
service continuously processes incoming data streams and
continuously produce output streams. The output of a job,
which is sent to one or more jobs, becomes the continuous
output of a service that is sent to one or more services.
Moreover, additional parameter configurations should be
added to the simulated workflow structure to make them
stream workflow such as including data processing re-
quirements, input and output data rates; these parameter
configurations will be discussed in subsequent subsections.
Hence, we can have workflow application with continuous
inputs continuous processing and continuous outputs.

Accordingly, different stream workflow applications can
be modelled using the above mentioned workflow struc-
tures for our experiments. For each workflow structure,
three different sizes of such structure are used (small, me-
dium and large) as listed in Table 2.

6.1.2 Multicloud Environment

We model three cloud infrastructures (Amazon EC2 [21],
Google Cloud Engine [22], and Microsoft Azure [23]) with
different VM configurations chosen from pre-defined ma-
chine types offered by those clouds. These VM configur-

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 8

Table 3: VM configurations of modelled clouds

vCPUs|

Cloud VM Type ECUs Total MIPS Memory (GB) Price
Provider cores (¢/second)
‘ma.large 2 65(7) 7000 8 0.0054
mé.xlarge 4 13 13000 16 0.0107
md4.2xlarge 8 26 26000 32 0.0214
Amazon mé.dxlarge 16 53.5 (54) 54000 64
EC2 m4.10xlarge 40 124.5 (125) 125000 160 0.1067
(Win- m4.16xlarge 64 188 188000 256 0.1707
dows cdlarge 2 8 8000 375 0.0054
instances) cd.xlarge 4 16 16000 75 0.0107
c4.2xlarge 8 31 31000 15 0.0213
cddxlarge 16 62 62000 30 0.0426
c4.8xlarge 36 132 132000 60 0.0859
nl-standard-1 1 275 2750 375 0.0014
nl-standard-2 2 55 5500 75 0.0027
nl-standard-4 4 11 11000 15 0.0053
nl-standard-8 8 22 22000 30 0.0106
Google nl-standard-16 16 44 44000 60 0.0212
Compute | nlstandard-32 | 32 88 88000 120 0.0423
Engine nl-standard-64 | 64 176 176000 240 0.0845
(nl- nl-highcpu-2 2 5.5 5500 1.8 0.002
series) nl-highcpu-4 4 11 11000 3.6 0.004
nl-highcpu-8 8 22 22000 72 0.0079
nl-highcpu-16 16 44 44000 144 0.0158
nl-highcpu-32 32 88 88000 28.8 0.0316
nl-highcpu-64 64 176 176000 57.8 0.0631
DIv2 1 25 2500 358 0.0035
D2 v2 2 5 5000 7 0.0069
D3 v2 4 10 10000 14 0.0137
D4 v2 8 20 20000 28 0.0274
_ D5 v2 16 40 40000 56 0.052
Microsoft D2v3 2 5 5000 8 0.0054
Azure D4 v3 4 10 10000 16 0.0107
(Win- D8 v3 8 20 20000 32 0.0214
dows D16 v3 16 40 40000 64 0.0427
D and D32v3 32 80 80000 128 0.0854
F-Series) D64 v3 64 160 160000 256 0.1707
F1 1 25 2500 2 0.0027
F2 2 5 5000 4 0.0054
F4 4 10 10000 8 0.0107
F8 8 20 20000 16 0.0213
F16 16 40 40000 32 0.0426

ations are provided in Table 3. We used our simulator
(IoTSim-Stream) [24] that is built on top of CloudSim to
simulate these infrastructures as a Multicloud environment.
In CloudSim [25], MIPS rating is used to represent CPU
unit, where the capacity of a VM instance is represented
by the total MIPS assigned to such instance according to
the assigned value of MIPS rating multiplied by the num-
ber of assigned CPU cores (Processing Elements (PEs) in
CloudSim term). Hence, the processing power of each VM
instance offered by the modelled cloud is converted to the
corresponding MIPS value.

To convert the capacity of each VM instance offered by
modelled clouds to corresponding MIPS value, we use the
following approach: for Amazon EC2, CPU core provides
the equivalent CPU capacity of 1000 MIPS ? (1 ECU), for
Google Compute Engine, CPU core provides the equival-
ent CPU capacity with 2750 MIPS * (2.75 ECUs), and for
Microsoft Azure, CPU core provides the equivalent CPU
capacity with 2500 MIPS ° (2.5 ECUs).

6.1.3 Network Configuration

To model network performance (i.e. bandwidth and latency)
of modelled clouds, we have conducted TCP bandwidth and

3. For Amazon EC2, one ECU provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, approximately
1000 MIPS [26].

4. For Google Cloud Engine, the Google Compute Engine Unit
(GCEU) is defined as a minimum processing unit, which is the equival-
ent one ECU [27]. The CPU core in Google Compute Engine provides
minimum processing power equivalent to 2.75 GCEUs (2.75 ECUs),
approximately 2750 MIPS [27].

5. For the D1-5 v2, D2-64 v3 and F series of machine types in
Microsoft Azure, these instances are based 2.4 GHz Intel Xeon E5-2673
v3 (Haswell) processor, the 2.3 GHz Intel Xeon E5-2673 v4 (Broadwell)
processor and the 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
respectively [23]. Based on that, we can assume a CPU core is roughly
equivalent to 2.5 ECUs, approximately 2500 MIPS.

latency tests between different zones of Nectar Cloud using
IPerf (a cross-platform network performance measurement
tool for both TCP and UDP) to collect the results for network
bandwidth (in MB/s) and PING tool to collect the results for
network latency (in second). From the obtained results, we
create three ranges for bandwidth and latency for ingress
and egress traffic as listed in Table 4 and 5 respectively.

Table 4: Ranges of ingress network bandwidth and latency.

Range Minimum Bandwidth | Maximum Bandwidth
(MB/s) / Latency (seconds) (MB/s) / Latency (seconds)

Low 302 / 0.0004 614 / 0.00063

Medium 615 / 0.00064 926 / 0.00086

High 927 / 0.00087 1238 / 0.0011

Table 5: Ranges of egress network bandwidth and latency.

Range Minimum Bandwidth | Maximum Bandwidth
(MB/s) / Latency (seconds) (MB/s) / Latency (seconds)

Low 24 / 0.009 121 / 0.020

Medium 122 / 0.021 218 / 0.031

High 219 / 0.032 314 / 0.040

6.1.4 Data Transfer Cost

For Internet egress traffic, the cost/rate of data transfer for
each modelled cloud is based on the monthly usage tier and
the destination zone. To model the costs of data transfer (in
cents/MB) for our experiments, we find the minimum and
maximum data transfer costs between modelled clouds, and
then use them to create three ranges (low, medium and high)
as listed in Table 6. For ingress traffic, the cost is 0.

Table 6: Ranges of outbound data transfer cost for clouds

Range Minimum (cents/MB) Maximum (cents/MB)
Low 0.005 0.012
Medium 0.013 0.019
High 0.020 0.025

6.1.5 Data Rate of External Source

To model data rate of external sources (IoT devices such as
sensor), we choose minimum and maximum data rate based
on different data rates of various technologies/standards of
IoT defined in [28], where the minimum is 0.0013 MB/s and
maximum is 12.5 MB/s. From the chosen minimum and
maximum, we create three different data rate ranges for our
experiment, as listed in Table 7.

Table 7: Ranges of external source data rate

Range Minimum (MB/s) Maximum (MB/s)
Low 0.0013 (10.7 Kbps) 4.2 (33.6 Mbps)
Medium 4.3 (34.4 Mbps) 8.4 (67.2 Mbps)
High 8.5 (68Mbps) 12.5 (100Mbps)

6.1.6 Types of Service

Since each service of workflow application can be either
movable or unmovable, there is a need to determine how
many of those services are movable and how many of those
services are unmovable. For unmovable services, we need
to specify the placement cloud for each one of them. By
considering workflow application as strict application, the
number of movable services are low compared with the
number of unmovable services. With more flexible and per-
vasive workflows, the number of movable services are high

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 9

compared with low number of unmovable services, where
there is a possibility for this type of workflow application to
be all of its services are movable. Thus, by considering the
different natures of strict workflow applications and highly
flexible and pervasive workflow applications, we create
three percentages ranges of movable services in workflow
application and listed them in Table 8.

application, the data processing rate (MB/s) for processing
this unit can be determined to ensure that each provisioned
compute resource at least processes one unit per second. For
our experiment, we create three ranges for data processing
rate of minimum stream unit as listed in Table 11.

Table 11: Ranges of data processing rate of minimum unit

6.1.7 Data Processing Requirement of Services

To model data processing requirement for services (simple
or/and complex services), we create different ranges for
data processing requirement as listed in Table 9, based on
the following specified minimum and maximum values: the
minimum value for data processing requirement for a ser-
vice is 20 MI/MB (representing data processing requirement
for simple aggregation functions) and the maximum value
for data processing requirement for a service is 4000 MI/MB
(representing data processing requirement for complex ag-
gregation functions).

Table 9: Ranges of service data processing requirement

Range Minimum (MI/MB) Maximum (MI/MB)
Low 20 1347
Medium 1348 2674
High 2675 4000

6.1.8 Output Data Rate of Service

As the output data rate of a service is calculated using Equa-
tion 4, specification of the proportion of data generated by a
service based on input streams can be used to model output
data rates for services in workflow applications. For model-
ling different ranges of service output data rate, we define
the minimum and maximum output proportion/percentage
generated by service based on input streams to be 0.01/1%
and 1.5/150% respectively, and use them to create three
ranges for service output data rate as listed in Table 10.

Table 10: Percentage ranges of service output data rate

Range Minimum (proportion / %) Maximum (proportion / %)
Low 0.01 / 1% 0.50 / 50%
Medium 0.51 / 51% 1.0 / 100%
High 1.01 / 101% 1.5 / 150%

6.1.9 Data Processing Rate for Minimum Stream Unit

In workflow applications, the data rates streaming from dif-
ferent sources (either external sources or other services) as
inputs to service are varied. Thus, to process these streams
using compute resources of such service, these streams
should be divided into portions and then be scheduled on
those resources for processing. To achieve that, we need
to determine the smallest stream unit per second that will
be processed by each provisioned compute resource, where
compute resource can process multiple units per second
according to its computing capacity per second (MIPS). By
specifying minimum stream unit for the whole workflow

Range Minimum (MB/s) Maximum (MB/s)
Table 8: Percentage ranges of movable services Tow 0.2 (=1.6Mbps) 10
Medium 1.1 2.0
Range Minimum (%) Maximum (%) High 2.1 2.9
Low 0% 34%
Medium 35% 68%
High 69% 100% 6.1.10 Genetic Algorithm Configuration

To produce results in GA, we configure its parameters as
follows: population size and generation limit are 50, elitism
is 1, and the probability for crossover, mutation and replace-
ment operations are 0.8, 0.3 and 0.2 respectively.

6.1.11 Other Simulation Parameters

The other parameters including data processing rate (s,)
and incoming data mode towards a service from its parent
service(s) as inputs are fixed for all scenarios, and their
values are system-calculated rate and replica respectively.
The simulation time for all experiments is 3 minutes (180s).

6.1.12 Experiments and Scenarios

To evaluate the efficiency of the proposed algorithms
(Greedy and GA) in term of execution costs, and study their
behaviours in term of computational time and end-to-end
latency, two sets of experiments are conducted

First set of experiments (execution cost comparison
with lower bound and fair-share method): We compare
the results of execution costs obtained from the proposed
algorithms (Greedy and GA) for executing the 12 modelled
workflow applications with lower bound under varying
of seven parameters. These parameters are data rate of
external source (P1), data processing requirement of service
(P2), output data rate of service (P3), type of service (P4),
network bandwidth and latency (P5), cost of data transfer
(P6) and data processing rate of minimum stream unit
(P7). Thus, seven experimental scenarios are considered
in this evaluation as shown in Table 12, where in each
scenario, the low, medium and high ranges of the variable
parameter will be studied. In regards to lower bound, we
have relaxed many constraints including services datacenter
placement constraint, VM provisioning constraint (selecting
the cheapest VM across all datacenter VM offers), data
transfer cost (using a lower cost value from the studied
range) and network bandwidth constraint (using a lower
bandwidth from the studied range which leads to reduction
in data transfer cost by transferring less data). Then for each
service, the cheapest VM from the placement cloud of this
service is provisioned as many as is required to achieve the
specified data processing rate. After that, the total execution
cost (provisioning cost + data transfer cost) is calculated
using Equation 7 during the period of time T. In addition, we
compare the proposed algorithms with default scheduling
method used in Apache YARN and Mesos. Apache YARN
uses default Fair scheduling method to equal share cluster
resources between applications over time. Apache Mesos is
a cluster manager, where the default scheduling decision

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 10

Table 12: Scenarios of our experimental study

Scenario Fixed Parameters* Variable Parameter
Scenario 1 P2—P7 P1
Scenario 2 P1 and P3—P7 P2
Scenario 3 P1—P2 and P4—P7 P3
Scenario 4 P1—P3 and P5—P7 P4
Scenario 5 P1—P4 and P6—P7 P5
Scenario 6 P1—P5 and P7 P6
Scenario 7 P1-P6 P7
*The values of fixed parameters are obtained from their medium ranges

used by the master process to determine how resources
will be assigned to each framework is Dominant Resource
Fairness algorithm; this algorithm is a fair sharing model to
multiple resource types. Therefore, we have implemented
fair-share scheduler (which provisions the same VM as
many as is required to achieve the specified data processing
rate for all services in a workflow). Then, we compare the
results produced by this scheduler with the results from the
proposed algorithms. In the aforementioned comparisons,
we consider the results obtained from lower bound as the
base values.

Second set of experiments (proposed algorithms compar-
ison): We use the computational time and average end-to-
end latency recorded from the aforementioned scenarios to
study and compare behaviours of the proposed algorithms
for executing different stream workflow applications.

6.2 Experimental Results and Discussion

For our experiments, we designed and implemented
IoTSim-Stream, our extended version of CloudSim [25] that
enables the execution of stream workflow applications in
Multicloud environments. The experimental scenarios are
simulated to evaluate and compare the proposed algorithms
with lower bound as well as with each others. In regard
to the experimental results of average end-to-end latency,
these results are collected after the system warmed-up (i.e.
at second 120) to study the delay when simulation system is
under highest pressure. For GA, we run each experimental
scenario ten times, and average results are obtained and
used in representation of experimental results.

For space reasons, we have examined the results of all
scenarios looking for those results that have little difference
or have similar behaviour, and those with different beha-
viours. In regards to experimental results for execution cost
comparison, we found that the results of Scenario 1 and 2
can be represented by the result of Scenario 2 as it expresses
the highest values. Similarly, the results of Scenario 5 and 6
can be represented by the result of Scenario 6 as it expresses
the highest vales. Therefore, the execution cost results of
Scenario 2, 3, 4, 6 and 7 will be presented. Moreover and for
the algorithm comparison using average end-toend latency,
we found that the end-to-end latency results of Scenario 1
& 2 & 5 & 6 have somewhat close behaviour with slight
difference, therefore the result of Scenario 2 can be used
to represent their behaviours as it represents the highest
values. Therefore, the average latency results of Scenario 2,
3,4 and 7 will be presented.

Figure 3 to Figure 7 depict the experimental results for
the relative difference (in percentage) that achieved by the
proposed algorithms in comparison to lower bound in term

of execution cost. From the experimental results shown in
these figures, our analysis and findings are summarized into
three discussion points (DPs).

DP1: As we expected, the presented results in these
figures showed that the proposed GA achieved lowest rel-
ative differences of execution cost in comparison to greedy
algorithm and fair-share method. This is clear due to GA
being efficient at searching large and complex spaces by
rapidly traversing these spaces and finding several satis-
fying candidate solutions (i.e. resource selection solutions)
to choose from by evolving over generations of candidate
solutions. GA surpasses the greedy algorithm in term of
cost reduction by finding the best resource provisioning
and scheduling solution with minimal execution cost (from
those satisfying solutions) for different modelled workflow
applications. Moreover, the relative differences of execution
cost obtained by the proposed GA are low in most cases,
which makes this algorithm produces total execution cost
results that are close to the results of the most relaxed lower
bound. Of course, in some cases, there is still a difference
because of the lower bound produced unachievable results.
The reason for that is the proposed GA considers both
costs of resource provisioning and data transfer for each
candidate solution that being generated in comparison to
greedy algorithm which finds a solution that reduces only
resource provisioning cost and ignoring the contribution of
data transfer cost and then based on that solution, the data
transfer cost is calculated and added to provisioning cost
making the execution cost.

DP2: In very few cases (such as high range in Scen-
ario 2 with Inspiral_100 and low range in Scenario 4 with
Inspiral_50) where the relative difference of execution cost
between the proposed greedy and GA is slight, this little
cost reduction is still reasonable and can be considered as
an extra cost-saving when workflow application runs for
several minutes, hours or even longer. For instance, high
range in Scenario 2 with Inspiral 100, the cost-saving of
running this application for just a hour is ~ ($10.44).

DP3: By observing Figures 5 and 6, in some cases
with low range, the relative difference of execution cost
achieved by the proposed GA is not so close to unachievable
lower bound. In relation to Scenario 4, the low percent-
age range of movable services means that there are high
placement restrictions as most of services in workflow ap-
plications are unmovable, so that the opportunity of cost
reduction is narrow and mainly based on the small number
of movable services, leading to GA may not be able to
find near-optimal solution for executing given workflow
application. Whereas with high range, GA has an ample op-
portunity to find near-optimal provisioning and scheduling
solution that leading to total execution cost results are closer
to lower bound. In relation to Scenario 6, the reason behind
that is when the cost of transferring data is low, GA may face
a local optimality problem since changing the provisioning
plan will not adjust the contribution of data transfer cost to
the total cost as it is very low in origin.

For proposed algorithms comparison, the computa-
tional time results expressed the straightforward conclusion,
which is the greedy algorithm takes less time to generate a
scheduling plan compared with genetic algorithm, but we
found that genetic algorithm needs relatively low time to

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 11

Relative Difference of Execution Cost vs. Modelled Workflow Applications
for Scenario 2 (Ranges of Service Data Processing Requirement) - Lower value is better

B Greedy (Low Range) BIGA (Low Range) M Fair-share (Low Range) B Greedy (Medium Range) & GA (Medium Range) [Fair-share (Medium Range) [Greedy (High Range) [GA (High Range) [Fair-share (High Range)

250

200

150

100

Epigenomics_24 CyberShake_30

1]

Montage_25 Inspiral_30 Montage_50

Modelled kfl

Relative Difference of Execution Cost (Percent)

1

ki

Inspiral_50

Inspiral_100

| IEEEHHH 1!

Epigenomics_46 CyberShake_50 Montage_100

Epigenomics_100 CyberShake_100

Applications (

Structures)

Figure 3: Execution Cost Comparison for Scenario 2.

Relative Difference of Execution Cost vs. Modelled Workflow Applications
for Scenario 3 (Percentage Ranges of Service Output Data Rate) - Lower value is bette

B Greedy (Low Range) @ GA (Low Range) @ Fair-share (Low Range) @ Greedy (Medium Range) & GA (Medium Range) & Fair-share (Medium Range) (1 Greedy (High Range) E] GA (High Range) £l Fair-share (High Range)

160

140 A
120
100
80 -
60
40
20 :
o ; P—— || - - =__NR

1NN}

Epigenomics_24 CyberShake_30

Montage_25

Inspiral_30 Montage_50

Inspiral_50

L i

Epigenomics_46 CyberShake_50

J@I&H

Montage_100

Inspiral_100 Epigenomics_100 CyberShake_100

Relative Difference of Execution Cost (Percent)

Applications (

Structures)

Figure 4: Execution Cost Comparison for Scenario 3.

Relative Difference of Execution Cost vs. Modelled Workflow Applications
for Scenario 4 (Percentage Ranges of Movable Services) - Lower value is better

W Greedy (Low Range) M GA (Low Range) @ Fair-share (Low Range) @ Greedy (Medium Range) &2 GA (Medium Range) E Fair-share (Medium Range) £ Greedy (High Range) £1 GA (High Range) E1 Fair-share (High Range)

350
300
250
200
150

100

50] I
el P W
o

Montage_25

AN

Epigenomics_24 CyberShake_30

Illm,]

Inspiral_30 Montage_50

ol I.I

Inspiral_50

Inspiral_100

oLl

Epigenomics_46 Montage_100

CyberShake_50 Epigenomics_100 CyberShake_100

Relative Difference of Execution Cost (Percent)

Applications (

Structures)

Figure 5: Execution Cost Comparison for Scenario 4.

compute and find such plan (at most across all scenarios).
Therefore, we do not need to present these results and we
only present the minimum and maximum computational
time (in milliseconds) for each proposed algorithm with
each scenario (see Table 13). In relation to average end-to-
end latency, Figure 8 to Figure 11 show the average latency
results achieved by these algorithms. Our analysis from
these figures are summarized into three DPs:

DP4: It is clear that both algorithms are able to
achieve sub-second average latency for 12 modelled work-
flow applications with all scenarios. The proposed greedy
algorithm in most cases achieved lower average latency
compared with GA. The reason behind that greedy al-

gorithm is more oriented to provision each VM that not
only achieve processing the minimum stream unit based on
service data processing requirement but also has compute
power to process the number of minimum units that being
received as input stream portions to the service. However,
as mentioned earlier, GA maintains sub-second average
latency across all scenarios. It even achieved lower average
latency in some cases compared to greedy algorithm such
as in Scenario 3 with Montage_50, Inspiral 50 and Cyber-
Shake_50.

DP5: In most cases, the end-to-end latency of GA
is lower than that of Greedy algorithm such as Inspiral_50
in Figure 12 and 14, and Cybershark_50 in Figure 12 and

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 12

Relative Difference of Execution Cost vs. Modelled Workflow Applications
for Scenario 6 (Ranges of Data Transfer Cost) - Lower value is better

B Greedy (Low Range) l GA (Low Range) M Fair-share (Low Range) B Greedy (Medium Range) £ GA (Medium Range) [Fair-share (Medium Range) E1 Greedy (High Range) £1 GA (High Range) (I Fair-share (High Range)
250

200

150

=

£

]

4

]

&

%

3

5]

s

£ .

o :

2 100 i

> 7 :

o B [i]l
N | H l E] ﬂ I | E‘ i | H
<

o g s & 2 S : 5 E : g
] 8 : 1 H |-] E : g
- = . & : 5 : E :

£, Il - ..,H gad_ i H EE - II .LELE BBl | - II gm H_ A I %,E:,E II E_EH,E _BH I Bin |l =a H
.% Montage_25 Inspiral_30 i ics_24 CyberShake_30 50 Inspiral_50 i ics_46 CyberShake_50 100 Inspiral_100 Epigenomics_100 CyberShake_100
T“; delled icati (Structures)

&«

Figure 6: Execution Cost Comparison for Scenario 6.

Relative Difference of Execution Cost vs. Modelled Workflow Applications
for Scenario 7 (Ranges of Data Processing Rate of Minimum Unit) - Lower value is better

B Greedy (Low Range) BIGA (Low Range) M Fair-share (Low Range) B Greedy (Medium Range) B GA (Medium Range) [Fair-share (Medium Range) & Greedy (High Range) £ GA (High Range) £ Fair-share (High Range)

il

Inspiral_50

180
160
140
120
100
80
60
40

20

EH 11

Epigenomics_24 CyberShake_30

Eor l E

£ Ij E]EJ_H I.ia :

&

Relative Difference of Execution Cost (Percent)

Montage_25 Inspiral_30 Montage_50 Epigenomics_46 CyberShake_50 Montage_100 Inspiral_100 Epigenomics_100 CyberShake_100
Modelled kflow Applications (! kflow Structures)
Figure 7: Execution Cost Comparison for Scenario 7.
Average Latency vs. Modelled Workflow Applications
for Scenario 2 (Ranges of Service Data Processing Requirement) - Lower value is better
M Greedy (Low Range) HGA (Low Range) E Greedy (Medium Range) B GA (Medium Range) ElGreedy (High Range) = GA (High Range)
0.9
0.8
Tor
S
2 06
Zos
H
§ o4
03
g 02 5
< 2
0.1 5
o]

Montage_25

Inspiral_30 Epigenomics_24 CyberShake_30 Montage_50

delled Workflow

Inspiral_!

50

_46 Inspiral_100 Epigenomics_100 CyberShake_100

(Structures)

Figure 8: Proposed algorithms comparison using average end-to-end latency for Scenario 2.

13. The reason behind that is the GA is designed to utilize
data locality for all services within stream workflow. This
minimizes end-to-end latency by reducing data movement
across multiple clouds and trying to avoid data transfer cost
and time. For some cases, it is not applicable to achieve data
locality due to several constrains such as huge number of
data sources and their fixed placements.

DP6: The proposed algorithms are able to achieve the
maximum throughputs that defined by the owner of work-
flow without affecting end-to-end latency and keeping av-
erage latency in sub-second since every data stream arrives
is processed as soon as the dependency is achieved. The
variations in the measured average latency occur because of

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the structure of workflow and the data dependency relations
among services that are presented in this structure.

From the overall discussion in both comparisons, we
found that GA achieved the best execution cost reduction,
inexpensive computational time and good average latency
while greedy algorithm achieved expensive execution cost,
very low computation time and low average latency. For
real-time data processing applications, end users are mainly
concerned about the latency, but the expensive execution
cost for the application is believed to be a barrier because of
this application processes big data that need also large com-
putational power. By considering the trade-off between the
benefits of reduction in total execution cost and maintaining

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 13

Average Latency vs. Modelled Workflow Applications
for Scenario 3 (Percentage Ranges of Service Output Data Rate) - Lower value is bette

H Greedy (Low Range) B GA (Low Range) B Greedy (Medium Range) B GA (Medium Range) ElGreedy (High Range) EGA (High Range)
03

II Hml IE HlI i E

Montage_25 Inspiral_30 Epigenomics_24 CyberShake_30 Montage_50 Inspiral_50 i ics_46 Cy 50 100 Inspiral_100 Epigenomics_100 CyberShake_100
Modelled Workflow Applications (Workflow Structures)

Average Latency (Second)

Figure 9: Proposed algorithms comparison using average end-to-end latency for Scenario 3.

Average Latency vs. Modelled Workflow Applications
for Scenario 4 (Percentage Ranges of Movable Services) - Lower value is better

B Greedy (LowRange) B GA (Low Range) E Greedy (Medium Range) E1GA (Medium Range) El1Greedy (High Range) [GA (High Range)

05
T 04
8
3
=03
5
s.\: 0.2
¥
2o; H
o i
Montage_25 Inspiral_30 Epigenomics_24 CyberShake_30 Montage_50 Inspiral_50 _46 Cy _50 ge_100 Inspiral_100 Epigenomics_100 CyberShake_100
delled Workflow Applications (Structures)
Figure 10: Proposed algorithms comparison using average end-to-end latency for Scenario 4.
Average Latency vs. Modelled Workflow Applications
for Scenario 7 (Ranges of Data Processing Rate of Minimum Unit) - Lower value is better
@ Greedy (Low Range) B GA (Low Range) E Greedy (Medium Range) E GA (Medium Range) @ Greedy (High Range) O GA (High Range)
0.6
= 05
&
& o4
3
03
Bo02
g
<01
0
Montage_25 Inspiral_30 Epigenomics_24 CyberShake_30 Montage_50 Inspiral_50 i ics_46 Cy _50 »_100 Inspiral_100 Epigenomics_100 CyberShake_100
delled Workflow icati (Structures)
Figure 11: Proposed algorithms comparison using average end-to-end latency for Scenario 7.
low computational time and end-to-end latency, we think Table 13: Computational Time Results (in Milliseconds)
that it is reasonable and practical to have low execution cost Greedy CA
with little defer in average latency (bounded by a second) Min Max Min Max
and computational time (bounded by several seconds). 2222:22; } géci’ zg'g ig?g'g
Thus, we can claim that GA is the best choice for meeting Scenario 3 T 5453 | 501279
user performance requirements at deployment time while Scenario 4 1 219 65.8 2383.9
. I . . : Scenario 5 1 219 65.8 2653.9
maintaining efficient perf(.)rmar.lcg (max1murp throughput Scerario & T 5 =5 T804
and sub-second latency) with minimal execution cost. Scenario 7 1 219 655 2383.9
Median i 219 65.8 2653.9

7 CONCLUSION

In this paper, we modelled stream workflow applications
and proposed two resource provisioning and scheduling al- workflows in Multicloud environments. We also simulated
gorithms (greedy and genetic) for efficient execution of such different stream workflows using common workflow struc-

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2963382, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, DECEMBER 2017 14

tures to examine the efficiency of the proposed algorithms
in simulation environment using IoTSim-Stream. The ex-
perimental results obtained from our experiments showed
that the proposed algorithms reduce the execution cost with
modelled workflow applications, maintain throughputs and
achieve sub-second latency, where the proposed GA is out-
performed greedy algorithm for all experiment scenarios.

Our work reveals new two directions for future study.
The first direction is supporting the execution of dynamic
stream workflow application in Multicloud environment by
either improving these techniques or proposing a new tech-
nique to dynamically adapt the scheduling and provisioning
plan at runtime. The second direction is improving the pro-
posed greedy to achieve high cost reduction, and GA with
advanced operators such as global and local competition
operators to further enhance its efficiency.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Rajkumar Buyya
for the insightful comments and suggestions in improving
paper quality. This research is supported by an Australian
Government Research Training Program (RTP) Scholarship.

REFERENCES

[1] Q. Hassan et al., Internet of Things: Challenges, Advances, and Applic-
ations. Chapman and Hall/CRC, 2017.

[2] A.Zanella et al., “Internet of things for smart cities,” IEEE Internet
of Things journal, vol. 1, no. 1, pp. 22-32, 2014.

[3] Y. Mehmood et al., “Internet-of-things-based smart cities: Recent
advances and challenges,” IEEE Communications Magazine, vol. 55,
no. 9, pp- 16-24, 2017.

[4] A.Bahga and V. Madisetti, Internet of Things: A hands-on approach.
Vpt, 2014.

[5] D.Redlich et al., “Research challenges for business process models
at run-time,” in Models@ run. time. Springer, 2014, pp. 208-236.

[6] J.Liu et al., “A survey of data-intensive scientific workflow man-
agement,” Journal of Grid Computing, vol. 13, no. 4, pp. 457493,
2015.

[7] J. Wang et al., “Kepler+ hadoop: a general architecture facilitating
data-intensive applications in scientific workflow systems,” in
Proceedings of the 4th Workshop on Workflows in Support of Large-
Scale Science. ACM, 2009, p. 12.

[8] ——, “Big data applications using workflows for data parallel
computing,” Computing in Science & Engineering, vol. 16, no. 4.

[9] L Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and
S. Mock, “Kepler: an extensible system for design and execution of
scientific workflows,” in Proceedings. 16th International Conference
on Scientific and Statistical Database Management, 2004. 1EEE, 2004,
pp. 423-424.

[10] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.]. Maech-
ling, R. Mayani, W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus,
a workflow management system for science automation,” Future
Generation Computer Systems, vol. 46, pp. 17-35, 2015.

[11] R. Ranjan ef al., “Orchestrating bigdata analysis workflows,” IEEE
Cloud Computing, vol. 4, no. 3, pp. 20-28, 2017.

[12] P. Pietzuch et al., “Network-aware operator placement for stream-
processing systems,” in Data Engineering, 2006. ICDE’06. Proceed-
ings of the 22nd International Conference on. IEEE, 2006, pp. 49-49.

[13] V. Cardellini et al., “Optimal operator placement for distributed
stream processing applications,” in Proceedings of the 10th ACM In-
ternational Conference on Distributed and Event-based Systems. ACM,
2016, pp. 69-80.

[14] S. Venkataraman et al., “Drizzle: Fast and adaptable stream pro-
cessing at scale,” in Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017, pp. 374-389.

[15] V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013, p. 5.

[16] B. Hindman et al., “Mesos: A platform for fine-grained resource
sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp.
22-22.

[17] J. Scott. (2015) A tale of two clusterss Mesos and
yarn. [Online]. Available: https://www.oreilly.com/ideas/
a-tale-of-two-clusters-mesos-and-yarn

[18] R.Ranjan et al., “Cross-layer cloud resource configuration selection
in the big data era,” IEEE Cloud Computing, vol. 2, no. 3, pp. 16-22,
2015.

[19] D. Dyer. (2010) Watchmaker framework for evolutionary compu-
tation. [Online]. Available: https://watchmaker.uncommons.org/

[20] S. Bharathi et al., “Characterization of scientific workflows,” in
Workflows in Support of Large-Scale Science, 2008. WORKS 2008.
Third Workshop on. 1EEE, 2008, pp. 1-10.

[21] Amazon. (2017) Amazon ec2 pricing. [Online]. Available:
https:/ /aws.amazon.com/ec2/pricing/
[22] Google. (2017) Google compute engine pricing. [Online].

Available: https:/ /cloud.google.com/compute/pricing

[23] Microsoft. (2017) Windows virtual machines pricing. [Online].
Available: https://azure.microsoft.com/en-au/pricing/details/
virtual-machines/windows/

[24] M. Barika et al., “Iotsim-stream: Modelling stream graph applic-
ation in cloud simulation,” Future Generation Computer Systems,
vol. 99, pp. 86-105, 2019.

[25] R. Calheiros et al., “Cloudsim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and experience, vol. 41,
no. 1, pp. 23-50, 2011.

[26] B. Javadi et al., “Statistical modeling of spot instance prices in
public cloud environments,” in Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on. IEEE, 2011, pp. 219-
228.

[27] S.P. Ahuja and B. Kaza, “Performance evaluation of data intensive
computing in the cloud,” in Cloud Technology: Concepts, Methodolo-
gies, Tools, and Applications. 1GI Global, 2015, pp. 1901-1914.

[28] Postscapes. (2017) Iot standards and protocols. [Online]. Available:
https:/ /www.postscapes.com/internet-of-things-protocols/

Mutaz Barika has obtained his BSc. and MSc. in
Computer Science from University of Petra and
King Saud University respectively. He is currently
a PhD Candidate in the School of TED at Univer-
sity of Tasmania, Australia. His current research
interests include Big Data Analytics, Big Data
Workflow, Cloud Computing, Cloud Security and
Data Security.

T —

Saurabh Garg is a Lecturer at the University of
Tasmania, Tasmania. He is one of the few Ph.D.
students who completed in less than three years
from the University of Melbourne in 2010. He
has gained about three years of experience in
the Industrial Research while working at IBM Re-
search Australia and India. His area of interests
are Distributed Computing, Cloud Computing,
HPC, loT, BigData analytics, and education ana-
lytics.

Andrew Chan is the Professor and Head,
School of Engineering at the University of Tas-
mania. He is one of the world leading experts in
the use of the finite element method of static and
dynamic fully coupled soil and pore-fluid interac-
tion. He also works in Discrete Element Method,
Scaled Boundary Finite Element Method and
Lattice Boltzmann. He worked in the use of vari-
ous SIMD and MIMD strategies to speed up
analyses with high computational requirement.

Rodrigo N. Calheiros is a Lecturer in the School
of Computing, Engineering and Mathematics,
Western Sydney University, Australia. He works
in the field of Cloud computing and related areas
since 2008, and since them he carried out R&D
supporting research in the area. His research in-
terests also include Big Data, Internet of Things,
Fog Computing, and their application.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Tasmania. Downloaded on May 15,2020 at 03:20:56 UTC from IEEE Xplore. Restrictions apply.

