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ABSTRACT

Feedback from radio jets associated with Active Galactic Nuclei (AGN) plays a profound role in
the evolution of galaxies. Kinetic power of these radio jets appears to show temporal variation, but
the mechanism(s) responsible for this process are not yet clear. Recently, the LOw Frequency ARray
(LOFAR) has uncovered large populations of active, remnant and restarted radio jet populations. By
focusing on LOFAR data in the Lockman Hole, in this work we use the Radio AGN in Semi-Analytic
Environments (RAiSE) dynamical model to present the first self-consistent modelling analysis of
active, remnant and restarted radio source populations. Consistent with other recent work, our
models predict that remnant radio lobes fade quickly. Any high (> 10 percent) observed fraction
of remnant and restarted sources therefore requires a dominant population of short-lived jets. We
speculate that this could plausibly be provided by feedback-regulated accretion.
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1 INTRODUCTION

By imparting large amounts of energy and momentum to
their surroundings, radio jets from Active Galactic Nuclei
(AGNs) play a crucial role in the evolution of their host
galaxies and large-scale environments. They are responsi-
ble for driving out large amounts of atomic, molecular and
ionised gas (e.g. Nesvadba et al. 2008; Dasyra & Combes
2011; Morganti et al. 2013; Emonts et al. 2014; Alatalo et al.
2015; Villar-Mart́ın et al. 2017; Kakkad et al. 2018), and can
both suppress and trigger star formation (Croft et al. 2006;
Crockett et al. 2012; Gaibler et al. 2012; Rupke & Veilleux
2013; Dugan et al. 2017; Mukherjee et al. 2018). On larger
scales, shocks driven by the global expansion of the radio
source (e.g. Worrall et al. 2012; Hardcastle & Krause 2013,
2014) and later buoyant rise of jet-inflated radio bubbles
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(Churazov et al. 2001; Yang & Reynolds 2016) quench catas-
trophic cooling which would otherwise take place in rapidly
cooling galaxy clusters (Boehringer et al. 1993; Fabian et al.
2003; Forman et al. 2005; Mittal et al. 2009). All cosmo-
logical galaxy formation models invoke this “jet mode” of
feedback to explain the suppression of star formation in mas-
sive galaxies at late times (Croton et al. 2006; Bower et al.
2006; Shabala & Alexander 2009; Vogelsberger et al. 2014;
Raouf et al. 2017; Weinberger et al. 2018; Raouf et al. 2019;
Mukherjee et al. 2019).

Implicitly assumed in all feedback models are the energies
and scales (both spatial and temporal) over which the energy
injection takes. In principle, observations of the radio galaxy
populations encode this information. Using the methodology
of Shabala & Alexander (2009), Raouf et al. (2017) showed
that requiring galaxy formation models to reproduce the ob-
served properties of both galaxy and radio jet populations at
low redshift (where observational constraints are strongest)
can rule out certain AGN feedback models. Detailed mod-
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elling is required to interpret the observed radio source prop-
erties: as shown in many analytical and numerical investi-
gations, radio lobe luminosity can evolve by more than an
order of magnitude over a jet lifetime (e.g. Kaiser et al. 1997;
Shabala & Godfrey 2013; Hardcastle & Krause 2013, 2014;
Turner & Shabala 2015; Godfrey & Shabala 2016; Hardcas-
tle 2018, see also Section 2.2); such evolution is strongly
environment-dependent (e.g. Yates et al. 2018; Krause et al.
2019b). These studies show that the intermittency of radio
AGN activity is naturally explained if jets in massive ellip-
ticals and clusters operate as thermostats (Best et al. 2005;
Shabala et al. 2008; Pope et al. 2012) - the rate of jet en-
ergy injection (as inferred from dynamical models) appears
to balance out the cooling of the hot gas (Kaiser & Best
2007; Shabala et al. 2008). Most of the energy is supplied by
the relatively rare, powerful radio sources (Turner & Sha-
bala 2015; Hardcastle et al. 2019) associated with massive
galaxies - precisely the objects in which feedback is needed.
The picture in which every massive elliptical at the centre of
a moderate or strong cooling flow (Mittal et al. 2009) goes
through a similar duty cycle is also qualitatively consistent
with observations of double-double radio sources (Schoen-
makers et al. 2000; Saripalli et al. 2005; Konar & Hardcastle
2013), where multiple episodes of radio jet activity are seen
in the same radio galaxy.

The details of the AGN intermittency are important for both
understanding the mechanisms responsible for jet triggering,
and inferring the efficiency with which the jets couple to the
ambient gas. For example, rapid re-triggering of jet activity
allows later bursts of jet plasma to expand rapidly into chan-
nels evacuated by previous jet episodes (Konar & Hardcastle
2013; Walg et al. 2013), changing both lobe morphology and
feedback efficiency (Yates et al. 2018). Empirical constraints
on the jet duty cycle are therefore crucial to robust inter-
pretation of feedback mechanisms.

The combination of excellent surface brightness sensitivity
(30-100µJy/beam) and high (6 arcsec) resolution at low
(∼ 150 MHz) frequencies by the LOw Frequency ARray
(LOFAR) have recently revolutionised studies of the ra-
dio galaxy duty cycle. Detailed studies of individual objects
(e.g. Shulevski et al. 2012; Orrù et al. 2015; Shulevski et al.
2015; Brienza et al. 2016, 2018) have been complemented by
large surveys (Mahony et al. 2016; Hardcastle et al. 2016;
Williams et al. 2018; Shimwell et al. 2019). These observa-
tions have uncovered large populations of active (Mahony
et al. 2016; Hardcastle et al. 2019; Sabater et al. 2019;
Mingo et al. 2019; Dabhade et al. 2019), remnant (Brienza
et al. 2017; Mahatma et al. 2018) and re-started (Mahatma
et al. 2019; Jurlin et al. 2020) radio galaxies. Cross match-
ing with multi-wavelength catalogues (Williams et al. 2019)
has yielded large samples with redshifts and host galaxy in-
formation. These samples have, for the first time, begun to
tackle in a statistically meaningful way the nature of the
relationship between active and quiescent phases of jet ac-
tivity. Mahatma et al. (2018) found that the remnant frac-
tion corresponds to ≤ 9 percent of the total radio galaxy
population. Godfrey et al. (2017) and Brienza et al. (2017)
found that most of their remnants do not have ultra-steep
spectra, implying that the remnants fade below the detec-
tion limit faster than their spectra age. Low fractions of

double-double radio galaxies (∼ 4 percent; Mahatma et al.
2019) again suggest that the remnant phase may only be
detectable for a relatively short time after the jets switch
off. Complementing and expanding that work, Jurlin et al.
(2020) recently reported a high (13 − 15 percent) fraction
of radio sources in a low-frequency selected sample to be
candidates for restarted activity; in these objects a compact
new core would co-exist with remnant lobes. Jurlin et al.’s
definition of candidate restarted sources encompasses the
double-doubles studied by Mahatma et al. (2019)1, while
also including sources with younger (and hence more com-
pact) innermost pairs of jets.

In this paper, we explore the implications of the observed
active, remnant and restarted radio source populations by
combining detailed radio source dynamical models which
comprehensively treat relevant loss processes with complete
samples of active, remnant and restarted radio galaxies, such
as those recently presented by Jurlin et al. (2020). We show
that such complete samples constrain the (otherwise un-
certain) parameters of remnant and restarted progenitors.
The key result of our work is that selecting the active, rem-
nant and restarted sources using a consistent approach (i.e.
from the same observations) provides strong constraints on
the plausible range of parameter space for remnant and
restarted progenitors, and generates robust predictions for
the expected remnant and restarted fraction.

We briefly describe our models and data in Section 2. Sec-
tion 3 constrains the distributions in physical properties (jet
powers and ages) of the active population. In Section 5 we
make predictions for the remnant and restarted fraction, and
discuss our findings in Section 6. We conclude in Section 7.

2 DYNAMICAL MODELLING OF RADIO
SOURCES

2.1 General considerations

A major difficulty in interpreting the statistics of observed
remnant and restarted radio sources relates to the poorly
known properties of their progenitor populations. In this
work, we address this issue by using a well-defined sample of
“normal” active radio sources with host galaxy information
(Section 2.4), selected in the same way as the remnant and
restarted sources. We employ forward modelling with the
Radio AGN in Semi-analytic Environments (RAiSE) code
(Sections 2.2 and 2.3) to constrain the distributions of life-
times and jet kinetic powers of these active radio galaxies
(Section 3.2), and then use these constrained models to make

1 Using visual inspection, Jurlin et al. find 5 out of 158 sources (3

percent) to have an extended inner core, and clear remnant lobes,

in their LOFAR 150 MHz observations. This fraction is consistent
with the 4 percent double-double fraction reported by Mahatma

et al. (2019) using similar LOFAR observations of the outer lobes,

and higher resolution VLA observations of the inner lobes, noting
that those authors did not have strictly enforced cuts in size and

flux density.
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predictions for the remnant and restarted populations (Sec-
tion 5). LOFAR samples of active, remnant and restarted
sources in the Lockman Hole are described in more detail
by Brienza et al. (2017); Jurlin et al. (2020), and the RAiSE
model by Turner & Shabala (2015); Shabala et al. (2017);
Turner et al. (2018a,b); Turner & Shabala (2019); we refer
the interested reader to these papers for further details.

2.2 Radio AGN in Semi-analytic Environments

Starting with the seminal work of Scheuer (1974), analyti-
cal models of radio galaxies have been used to describe the
expansion of jet-inflated cocoons of synchrotron-emitting
plasma, and make predictions for the temporal evolution of
size, synchrotron luminosity, and radio continuum spectrum
for a given set of jet and environment parameters. The radio
lobes expand due to overpressure of the lobes with respect
to the ambient medium; in lobed Fanaroff-Riley Type I and
II (FR-I/II Fanaroff & Riley 1974) sources the jets also pro-
vide ram pressure along the jet axis. For both FR-II and
FR-I sources, the temporal evolution of cocoon dynamics
are solved using conservation equations. The radio luminos-
ity is then determined by assuming a scaling between lobe
pressure and magnetic field (see Section 2.3 below), and cal-
culating the aged spectra of electrons initially shock acceler-
ated by first-order Fermi processes at either the hotspots (for
FR-IIs) or flare points (for FR-Is), accounting for losses due
to adiabatic expansion, synchrotron radiation, and Inverse
Compton upscattering of Cosmic Microwave Background
photons. Contribution to integrated synchrotron emissivity
in extended radio sources from cores, jets and hotspots is
typically no more than a few percent (Mullin et al. 2008),
and is usually ignored in such models.

A well-known challenge in radio source modelling (e.g.
Kaiser et al. 1997; Hardcastle & Krause 2013; Yates et al.
2018; Krause et al. 2019b) is the sensitivity of observable
radio source parameters (such as size and radio luminos-
ity) on the atmosphere into which the jets are expanding.
First generations of radio source models used either constant
(Begelman & Cioffi 1989) or simple power-law environments
(Kaiser et al. 1997; Heinz et al. 1998) to describe such at-
mospheres; these models produced self-similar radio sources
which are inconsistent with observations (Mullin et al. 2008;
Hardcastle & Krause 2013), and had limited use in inter-
pretation of observations. More sophisticated treatment of
radio source atmospheres naturally reproduces the observed
narrowing of FR-II sources due to a rapidly declining atmo-
sphere at large radii (Turner et al. 2018b; Hardcastle 2018).

In this work, we employ the RAiSE model (Turner & Sha-
bala 2015; Turner et al. 2018a,b). Unlike previous models,
RAiSE uses outputs of galaxy formation models (primarily
dark matter halo mass) to quantify jet environments. While
X-ray observations (e.g. Ineson et al. 2017) provide an excel-
lent probe of jet atmospheres, these are time-consuming and
are not possible for large samples. On the other hand, it has
recently been shown (Rodman et al. 2019) that halo masses
derived through optical galaxy clustering provides an ex-
cellent measure of jet environments. The RAiSE model has
been shown to reproduce the observed relationship (Led-

low & Owen 1996; Best 2009) between radio luminosity,
morphology, and host galaxy properties (Turner & Shabala
2015); recover sub-equipartition lobe magnetic fields consis-
tent with independent Inverse Compton measurements (In-
eson et al. 2017; Turner et al. 2018b); and in combination
with hydrodynamic simulations, reconcile the observed dis-
crepancy between spectral and dynamical ages in powerful
radio galaxies (Turner et al. 2018a). RAiSE has subsequently
been used to test jet production models (Turner & Shabala
2015), quantify the observability of low-power jets in poor
environments (Shabala et al. 2017), model remnant lobes
(Turner 2018), and determine cosmological parameters from
radio source observations (Turner & Shabala 2019).

2.3 Model parameters

The RAiSE model predicts the temporal evolution of size,
radio luminosity, and the radio spectrum, for each assumed
combination of jet kinetic power and environment. We fix
several model parameters, as detailed below. As discussed
in Section 3.2, our findings are relatively insensitive to the
choice of most model parameters, as these are only used to
inform the input distribution of the jet power and lifetime
distributions of the progenitor (active) populations; choos-
ing a different set of parameters will change the inferred jet
powers and ages of the active sample, but not substantially
affect the predicted remnant and restarted fractions.

Our assumed model parameters are as follows. We set the
initial axial ratio (length divided by width) of the sources
to 2.5, consistent with observations of 3CRR FR-II sources
(Turner et al. 2018b); and the lower cutoff in Lorentz fac-
tor of the electron energy distribution γmin = 500 (e.g.
Godfrey et al. 2009). We adopt a power-law injection in-
dex of electrons s = 2.04, which gives a spectral index of
α = (s− 1)/2 = 0.52; we find that our adopted injection in-
dex produces lobe spectral indices consistent with observed
populations of LOFAR active sources (Mahony et al. 2016).
We note that, with the exception of the lobe spectral index,
our results below depend very weakly on this parameter.

Below, we use these models to infer jet powers and lifetimes
of active sources (Section 4), and make predictions for the
remnant and restarted source populations (Section 5).

2.4 Data

We combine our models with visually identified samples of
extended (> 60 arcsec) radio sources in the Lockman Hole,
described in Brienza et al. (2017) and Jurlin et al. (2020).
That work found 158 extended sources, consisting of 117
active, 18 candidate remnant and 23 candidate restarted ra-
dio galaxies. Jurlin et al. (2020) also provided robust host
galaxy (and hence redshift) identifications for approximately
two thirds of the sample, and radio morphologies for all
sources. In the present work, we restrict our samples to radio
sources with identified hosts and redshifts z < 1. Our final
samples consist of 74 active (mostly straight FR-I and FR-
II morphology, with some Wide-Angle Tails), 15 candidate
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Figure 2 shows some representative evolutionary tracks for
our models. Lobe luminosity and surface brightness decrease
rapidly once the jet is switched off (at 100 Myr in Fig-
ure 2), particularly in the case of the more powerful FR-
II jet. The spectra, which begin steepening around 50 Myr
while the jets are still active, steepen very quickly once the
jet is switched off in both models; this behaviour is consis-
tent with previous work (e.g. Kaiser & Cotter 2002; Turner
2018; English et al. 2019).

3.2 Physical properties of the active sample

Following the approach of Turner & Shabala (2015), a grid
of RAiSE models is run for each source to a maximum age
of 10 Gyr, and a chi-squared minimization procedure is used
to recover the best-fitting intrinsic source properties, namely
age and jet kinetic power. Our model grids cover jet powers
in the range Q = 1035 − 1040 W with spacing ∆ logQ = 0.1
dex; redshift range z = 0.02− 1.00 in steps ∆z = 0.02, and
ages in the range t = 103 − 1010 years, with 512 time steps
uniformly spaced in log t; this corresponds to a 3 percent
age difference between adjacent time steps. The derived jet
properties are shown in Figure 3. The apparent peak in jet
power distribution is a selection effect: weaker jets are un-
detectable at large distances over the bulk of their lifetime,
and convolving a power-law distribution in jet power (e.g.
Brienza et al. 2017) with a radio detection limit naturally
results in such a peaked distribution, as median detectable
jet power increases with redshift. On the other hand, the
dearth of old (> 400 Myr) sources is likely to be real: the
observed jets are powerful enough to be visible to LOFAR
for substantially longer than this time (typically by a fac-
tor 2-5), and hence the absence of a population of large,
low-surface brightness lobes suggests the rarity of very old
sources. We return to this point when discussing the rem-
nant and restarted fraction of sources in Section 4.3.

We use the parameters derived in Figure 3 to guide the
forward modelling in the following sections.

4 ACTIVE RADIO GALAXY POPULATION

4.1 Distribution in input parameters

In this section, we use forward modelling of radio source pop-
ulations to constrain the intrinsic physical properties (i.e. jet
powers and ages) of the active radio source populations in
our Lockman Hole sample, and then use these as inputs to
remnant and restarted source modelling.

Jet power

Following the approach of Brienza et al. (2017), and moti-
vated by the observed decrease in the number of high-power
sources (Figure 3), we assume a power-law distribution in
the logarithm of jet power, prob(logQ) d logQ ∝ Q−a. To
first order, jet power is correlated with radio luminosity
(but see e.g. Shabala & Godfrey 2013; Hardcastle & Krause
2013), and hence the slope of the AGN Radio Luminosity

Function (RLF) allows an estimate of a to be made. Kaiser
& Best (2007) used this approach to infer a ∼ 0.6 for the
low-luminosity slope of the RLF; this ignores selection effects
against low-power sources, and hence the real distribution is
likely to be steeper. Most recently, Hardcastle et al. (2019)
found that a = 1.0 reproduces well the observed statistics
of all but the most luminous radio AGN. Below, we explore
a broad range of values a = 0.2− 1.4.

Source age

For source age distributions, we adopt two models. In our
first model (Section 4.2), we assume that all sources live to a
constant age ton. In their analysis of the LOFAR HETDEX
field, Hardcastle et al. (2019) employed forward dynamical
modeling to infer a median age ton ∼ 500 Myr for the bright
end of their radio AGN sample. Below, we explore models
for three values of ton = 0.1, 0.3 and 1 Gyr, covering the
range of observed ages for active sources (Figure 3).

In our second model (Section 4.3), we assume a power-
law distribution in age. This is motivated by high observed
fractions of compact (on arcsecond scales), low-luminosity
sources (e.g. Shabala et al. 2008; Hardcastle et al. 2019).
Allowed ages in our models are as above, but we note that
there are implicit cutoffs imposed by our sample selection
function: very young sources will be too compact to satisfy
the > 60 arcsec observational cut, while lobe surface bright-
ness will be too low for very old sources to make it into
our sample; a similar implicit constraint applies to low jet
powers. In Section 4.3 we show that complete samples of ac-
tive, remnant and restarted sources can potentially provide
excellent constraints on the age distribution function.

Redshift evolution

Finally, we assume no cosmological evolution in radio source
populations across the redshift range of interest (z = 0.2 −
0.9). This is likely to be a reasonable assumption for at least
the low-excitation population (Pracy et al. 2016), and we
do not expect this to be a major limitation even for High-
Excitation sources given the median redshift of our sample is
“only” z ∼ 0.5. In the absence of selection effects, the num-
ber of sources detected in a given redshift slice ∆z should in-
crease with volume as DL(z)2(DL(z+∆z)−DL(z))(1+z)−4.
For concordance cosmology, this corresponds to a flattening
in the number counts at z ∼ 0.4 − 0.5, followed by approx-
imately constant counts between z ∼ 0.5 − 1. Within the
assumptions, any turnover in the redshift distribution, as
seen in Figures 4 and 5, is a manifestation of selection ef-
fects.

4.2 Constant age models

Figure 4 shows the predicted observable population proper-
ties for a range of maximum source ages ton and jet power
distribution slopes a. A grid of RAiSE models in (Q, z) is
run to a maximum source age of ton, and output recorded
every 1 Myr. At each timestep, we evaluate whether the
expected angular size and surface brightness of the source
would satisfy our sample selection criteria (> 60 arcsec and
> 200µJy/beam, respectively). The fraction of time during
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5 PREDICTED REMNANT AND RESTARTED
FRACTIONS

We use the above models to make predictions for the rem-
nant and restarted populations. In our models, we evolve
radio sources in their active phase until they switch off; af-
ter this point we evolve the lobes as remnants (e.g. Figure 2)
until they fade below the detection limit. During the rem-
nant phase, the black hole activity may re-start again; if the
lobes are still visible above the LOFAR surface brightness
detection limit, we expect to detect a restarted source. In
our models, radio emission from the second (young) radio
burst is not explicitly modelled; this assumption is justified
by Jurlin et al. (2020)’s finding that these second bursts are
overwhelmingly compact, and the overall luminosity at LO-
FAR frequencies is dominated by the diffuse lobe emission.
In our analysis below, we combine the remnant and restarted
source populations when comparing with model predictions.

5.1 Constant age models

Figure 6 shows the predicted remnant and restarted frac-
tions as a function of observable parameters, for constant
age models. Shaded regions in Figure 6 show observational
constraints from the LOFAR Lockman Hole sample of can-
didate remnant and restarted sources. As discussed in Jurlin
et al. (2020), confirming candidate restarted sources is chal-
lenging: these are selected based on a combination of core
prominence, steep core spectral index, and/or visual mor-
phology characteristic of double-double radio sources; still,
some candidate restarted sources may in fact be “normal”
active radio galaxies with bright cores. We therefore calcu-
late two constraints from observations: the upper limit on
the remnant and restarted fraction is obtained by assuming
all candidate restarted sources are classified correctly; and
the lower limit by assuming none of them is (i.e. all can-
didate restarted sources are in fact normal radio galaxies)
except for the two double-double radio galaxies. This ap-
proach implicitly assumes that our remnant classification is
robust.

Once integrated over the observables (flux densities, sizes
and redshifts), all plausible single age models (ton =
300 Myr, a = 0.8− 1.2) predict remnant plus restarted frac-
tions of only between 2 and 5 percent. Observationally, the
lower limit on the remnant plus restarted fraction (obtained
from remnants alone) is ≥ 9 percent percent Mahatma et al.
(2018) or ≥ 11 Jurlin et al. (2020). This alone does not
rule out single-age models. However, single-age models fail
to explain the observed statistics of restarted sources: the
fraction of double-double radio sources alone is ≥ 4 percent
(Mahatma et al. 2019); and the total restarted fraction is
likely much higher than this (e.g. 13-15 percent reported
by Jurlin et al. 2020). Hence, single-age models appear in
tension with these data.

5.2 Power-law age models

We plot model predictions for power-law age distributions
in Figure 7. These are clearly in better agreement with ob-
servations of candidate restarted sources than constant age
models. In particular, a model with p(log ton)d log ton ∝ t−1

on

and p(logQjet)d logQjet ∝ Q−1
jet is in excellent agreement

with observations of both active (Figure 5) and remnant
plus restarted (Figure 7) radio source populations.

6 DISCUSSION

6.1 Comparison with previous work

Our constant age models can be compared with related work
by Godfrey et al. (2017), Brienza et al. (2017) and Hardcas-
tle (2018). The constant age models presented here predict
that remnant lobes fade quickly below the detection limit
once the radio jets switch off, similar to the findings of God-
frey et al. (2017) and Brienza et al. (2017). In line with
predictions by Godfrey et al. (2017); Brienza et al. (2017);
Hardcastle (2018), the expected remnant plus restarted frac-
tion decreases with redshift. We note that the (calibrated
with active source populations) FR-I and FR-II models in
fact make very similar predictions, suggesting once again
that uncertainties in adopted modelling parameters should
not greatly influence our results.

The remnant plus restarted fractions predicted by our single
age models are consistently lower than Hardcastle (2018)’s
values of ≥ 0.3. This comes directly from the constraint on
the power spectrum of the jet kinetic power: to reproduce the
observed properties of the active (progenitor) radio galaxy
population we required a ∼ 1.0; on the other hand, Hard-
castle (2018) used a uniform distribution in logQ, i.e. a = 0.
With such a power-law slope, our single age model predicts
remnant fractions of up to 0.35 at z = 0, however such a
distribution in jet kinetic power is inconsistent with obser-
vations. [We note that this model of Hardcastle (2018) was
presented for illustrative purposes only; detailed dynami-
cal modelling of sources in the LOFAR HETDEX field by
Hardcastle et al. (2019) suggests a value a ∼ 1.0 is more ap-
propriate for the bulk of the observed radio AGN population
(see their Figure A5), consistent with the results presented
here.]

Similarly, the high predicted remnant fractions by Godfrey
et al. (2017) and Brienza et al. (2017) are due to their model
assumptions about the progenitor population, most impor-
tantly the short t ∼ 30 − 40 Myr median active lifetime:
as pointed out by these authors (see Section 4.4.3 of God-
frey et al. 2017), the predicted remnant fraction scales ap-
proximately inversely with this parameter, as sources which
“switch off” while still young are detectable as remnants for
a larger fraction of their total visible lifetime. We obtain
similarly high predicted remnant plus restarted fractions in
our short-lifetime models (e.g. ton = 100 Myr, a = 0.4).
However, such models fail to reproduce the observed prop-
erties of the active source populations (Figure 4), selected
from the same field as the remnant and restarted sources.







12 Shabala et al.

6.2.3 Jet triggering mechanisms

Dynamical modeling of LOFAR radio source populations in
the HETDEX field by Hardcastle et al. (2019) found some
tentative evidence for a higher fraction of short-lived sources
at low luminosities, potentially reflecting different jet trig-
gering mechanisms for different radio source populations, as
previously suggested by numerous authors (e.g. Pimbblet
et al. 2013; Kaviraj et al. 2015; Marshall et al. 2018; Krause
et al. 2019a).

Why are most radio sources short-lived? A clue may lie
in simulations of black hole – galaxy co-evolution, which
consistently predict that black hole accretion rates vary
with time, and are regulated by the feedback (either me-
chanical or radiative) from the AGN. The power spectrum
predicted in such feedback-regulated scenarios approaches
pink noise (Novak et al. 2011; Gabor & Bournaud 2013;
Gaspari et al. 2017), apparently consistent with the best-
fitting power law age distribution derived in this work,
p(log ton)d log ton ∝ t−1

on .

It is tempting to suggest that low-power jets, which dom-
inate complete samples, are more likely to be affected by
the feedback-regulated gas cooling cycle through jet mass-
loading and subsequent disruption (Bicknell 1995; Laing
& Bridle 2002; Croston & Hardcastle 2014). The cooling-
regulated disruption of the jet, perhaps mediated by a mech-
anism similar to the Chaotic Cold Accretion proposed by
Gaspari et al. (2017), would then naturally lead to shorter
duty cycles in these objects, and hence a higher fraction of
restarted sources3.

One potential caveat is that large (old) sources must have
higher luminosities to exceed the surface brightness detec-
tion limit, and the apparent difference between high and
low-luminosity populations may simply be a selection effect;
environment (e.g. Hardcastle & Krause 2013; Shabala et al.
2017; Shabala 2018; Krause et al. 2019b) would be a further
complicating factor. We defer a more detailed analysis to
future work.

As discussed in Jurlin et al. (2020), larger samples, more
sensitive observations and broader frequency coverage are
needed to identify with confidence compact, restarted jets
in LOFAR data. Figures 6 and 7 show that constant and
power-law age models predict different distributions of rem-
nant plus restarted fraction as a function of flux density,
source size and redshift. Combining robust source classifica-
tions with dynamical models holds much promise for yield-
ing deeper insights into the radio source duty cycles, and
ultimately mechanisms responsible for the modulation of jet
activity.

3 Stronger entrainment in low-power sources will also result
in their jet kinetic powers being systematically underestimated

(Godfrey & Shabala 2013; Hardcastle et al. 2019), and hence feed-

back from these objects may be more important than current en-
ergetics estimates (e.g. Turner & Shabala 2015; Hardcastle et al.

2019) suggest.

7 CONCLUSIONS

We have used dynamical radio source models to study the
radio jet duty cycle in the Lockman Hole. Unlike previous
work, we use observations of active radio galaxy populations
to constrain the progenitors of radio remnants in our models.
For our sample of moderately powerful radio sources we find
the following results.

• Active radio galaxy populations are equally well fitted
by two different sets of models: (i) models in which all ra-
dio jets have a maximum lifetime (∼ 300 Myr using our
assumed jet and environment parameters); and (ii) models
with a distribution of source ages, p(ton) ∝ t−1. For both
sets of models, we require a power-law distribution of jet
powers, p(Q) ∝ Q−1. FR-I and FR-II models make very
similar predictions, due to the competing effects of particle
content (more radiating particles for the same jet kinetic
power in FR-IIs) and environment (lower external pressure
and hence radio luminosity in FR-IIs).
• Degeneracy between constant age and power-law age

models can be broken by observations of remnant and
restarted sources. Constant age models predict a short-lived
detectable remnant phase. All models which match the ob-
served properties of the progenitor population predict rem-
nant plus restarted fractions . 5 percent. Predicted remnant
/ restarted fractions show a strong dependence on redshift,
flux density and angular size.
• Power-law age models predict much higher remnant /

restarted fractions than constant age models. The predicted
remnant / restarted fraction in power-law age models does
not depend strongly on observables.
• A high (> 10 percent) fraction of genuine re-started

sources would imply an appreciable fraction of short-lived
and/or low power sources, qualitatively consistent with ex-
pectations from simulations of feedback-regulated black hole
accretion.

Model predictions of remnant fraction as a function of red-
shift, flux density and source size (as in Figure 7) provide a
theoretical reference for ongoing, sensitive searches for low-
luminosity remnant AGN with LOFAR and other telescopes.
The combination of environment-sensitive radio source mod-
els and multi-wavelength data should constrain the physical
properties of the radio jet populations, and ultimately quan-
tify the role these objects play in galaxy evolution.
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lot S., Ivezić Ž., White S. D. M., 2005, MNRAS, 362, 25

Bicknell G. V., 1995, ApJS, 101, 29

Boehringer H., Voges W., Fabian A. C., Edge A. C., Neumann
D. M., 1993, MNRAS, 264, L25

Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S.,

Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645

Brienza M., et al., 2016, A&A, 585, A29

Brienza M., et al., 2017, A&A, 606, A98

Brienza M., et al., 2018, A&A, 618, A45

Bruni G., et al., 2019, ApJ, 875, 88
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