
  

Symmetry 2020, 12, 645; doi:10.3390/sym12040645 www.mdpi.com/journal/symmetry 

Article 

The Generalized Gielis Geometric Equation and Its 
Application 
Peijian Shi 1, David A. Ratkowsky 2 and Johan Gielis 3,* 

1 Bamboo Research Institute, College of Biology and the Environment, Nanjing Forestry University,  
Nanjing 210037, China; peijianshi@gmail.com 

2 Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart 7001, Australia; 
d.ratkowsky@utas.edu.au 

3 Department of Biosciences Engineering, University of Antwerp, B-2020 Antwerp, Belgium 
* Correspondence:  johan.gielis@uantwerpen.be 

Received: 28 March 2020; Accepted: 15 April 2020; Published: 17 April 2020 

Abstract: Many natural shapes exhibit surprising symmetry and can be described by the Gielis 
equation, which has several classical geometric equations (for example, the circle, ellipse and 
superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse 
shapes due to limitations of its power-law hypothesis. In the present study, we propose a 
generalized version by introducing a link function. Thus, the original Gielis equation can be deemed 
to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The 
link function can be based on the morphological features of different objects so that the GGE is more 
flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in 
depicting the shapes of some starfish and plant leaves. 

Keywords: data fitting; hyperbolic functions; leaf shape; polar coordinates; power-law functions; 
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1. Introduction 

In geometry, the equation of a circle in the Euclidean plane is usually expressed as ቀ𝑥𝑟ቁଶ + ቀ𝑦𝑟ቁଶ = 1 (1) 

where x and y are the coordinates of the circle on the x- and y-axes, respectively, with r the radius. 
The circle is a special case of that of an ellipse: ቀ𝑥𝐴ቁଶ + ቀ𝑦𝐵ቁଶ = 1 (2) 

where A and B (A ≥ B > 0) represent the major and minor axis semi-diameters, respectively. 
Interestingly, circles and ellipses, as well as squares and rectangles, can be regarded as special cases 
of Lamé curves [1,2], whose mathematical expression is listed as ቚ𝑥𝐴ቚ௡ + ቚ𝑦𝐵ቚ௡ = 1 (3) 

where n is a real number. This equation has been shown to be valid for describing the actual cross-
sections of tree rings and bamboo shoots [2–5]. Equation (3) in polar coordinates can be rewritten as 

𝑟(𝜑) = ቆฬ1𝐴 cos (𝜑)ฬ௡ + ฬ1𝐵 sin (𝜑)ฬ௡ቇିଵ ௡⁄
 (4) 
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where r and ϕ are the polar radius and the angle between the straight line where the polar radius lies 
and the x-axis, respectively. 

Gielis proposed a more general polar equation that can reflect more complex natural shapes 
[1,2]: 

𝑟(𝜑) = ቆฬ1𝐴 cos ቀ𝑚4 𝜑ቁฬ௡మ + ฬ1𝐵 sin ቀ𝑚4 𝜑ቁฬ௡యቇିଵ ௡భ⁄
 (5) 

where n1, n2 and n3 are constants (both ∈ ℝ); positive integer m was introduced to make the curve 
generate arbitrary polygons (with m angles) consequently enhancing the flexibility of Lamé curves. 
We refer to Equation (5) as the original Gielis equation (OGE) in the following text for simplicity. 
OGE has been used to simulate many natural shapes, e.g., diatoms, eggs, cross sections of plants, 
snowflakes and starfish [1,2]. OGE also has shown its validity in describing several actual natural 
shapes, e.g., leaf shapes of Hydrocotyle vulgaris L., Polygonum perfoliatum L. and seed planar projections 
of Ginkgo biloba L. [6,7]. Furthermore, OGE can produce regular, or at least very approximately 
regular polygons [8,9]. When m = 1, A = B, n1 = n, and n2 = n3 = 1, OGE has a special case: 𝑟(𝜑) = 𝑙 ൬ฬcos ൬14 𝜑൰ฬ + ฬsin ൬14 𝜑൰ฬ൰ିଵ ௡⁄

 (6) 

where 𝑙 = 𝐴ଵ ௡⁄ . This simplified version has been used to describe the actual leaf shapes of 46 bamboo 
species [2,10,11]. 

Although OGE is rather flexible in fitting the edge data of many natural shapes, it sometimes 
fails to describe accurately some symmetrical natural shapes. To further strengthen its flexibility of 
data fitting, we attempt to build a more generalized equation based on OGE, motivated by the study 
of starfish, which display a wide diversity of shapes, not only the archetypical shapes. In the Plateau 
problem of minimal surfaces, one of the constant mean curvature solutions for a soap film is a sphere, 
but these solutions are for isotropic energy distributions only. 

In crystallography, Wulff shapes describe anisotropic distributions of energy, and can take many 
forms, with their corresponding constant anisotropic mean curvature surfaces [12]. Extending this 
principle to biological species, starfish can be considered as spheres for specific anisotropic energy 
distributions. Remarkably, pincushion starfish of the genus Culcita are close to spherical, intermediate 
between classical spheres and the archetypical shapes of five-armed starfish. Another notable group 
of starfish are biscuit starfish, almost pentagonal and flat. They belong to the genus Tosia. In order to 
apply the above methods to these groups, a modification of the original Gielis equation is necessary. 

2. The Generalized Gielis Equation (GGE) and Its Two New Special Cases 

OGE can be rewritten as [6] 

𝑟(𝜑) = 𝛼 ቌ 1ቚcos ቀ𝑚4 𝜑ቁቚ௡మ + 𝑘 ቚsin ቀ𝑚4 𝜑ቁቚ௡యቍఉ
 (7) 

where 𝛼 = 𝐴௡మ ௡భ⁄ , 𝑘 = 𝐴௡మ 𝐵௡య⁄  and 𝛽 = 1 𝑛ଵ⁄ . Consider the formula inside the parentheses of 
Equation (7), which we define as follows: 𝑟௘(𝜑) = 1ቚcos ቀ𝑚4 𝜑ቁቚ௡మ + 𝑘 ቚsin ቀ𝑚4 𝜑ቁቚ௡య (8) 

We refer to this as the elementary Gielis equation (EGE) for convenience. OGE hypothesizes the 
existence of a power-law relationship between r and re. We refer to this relationship as the link 
function, f. As this link function can take on other forms, we use the following more general 
expression to replace OGE: 𝑟(𝜑) = 𝑓ሾ𝑟௘(𝜑)ሿ (9) 
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which we refer to as the generalized Gielis equation (GGE). In actuality, re is the polar radius of the 
elementary Gielis curve generated by EGE, and r is the polar radius of the generalized Gielis curve 
generated by GGE. Therefore, OGE is actually a special case of GGE with a power-law link function. 

In the current study, we propose the following two candidate forms of the link function: 𝑟 = exp ൤ 1𝑎 + 𝑏 ln(𝑟௘ ) + 𝑐 ൨ (10) 

and 𝑟 = expሾ𝛿଴ + 𝛿ଵ ln(𝑟௘) + 𝛿ଶ(ln(𝑟௘))ଶ ሿ (11) 

If we use the log transformation for the left-and right-hand sides of the above two equations, we 
obtain, respectively: 𝑌 = 1𝑎 + 𝑏 𝑋 + 𝑐 (12) 

and 𝑌 = 𝛿଴ + 𝛿ଵ 𝑋 + 𝛿ଶ𝑋ଶ (13) 

where 𝑌 = ln(𝑟) and 𝑋 = ln(𝑟௘). The first equation is actually a hyperbolic equation, and the second 
one is a quadratic equation. If we also use the log transformation for both sides of the power-law link 
function in OGE, a linear equation is obtained. We can express that by letting the coefficient δ2 in 
Equation (13) be zero. Of course, in nature, there are forms other than the above link functions; 
however, these other forms also belong to the scope of GGE if there exists a clear functional 
expression between r and re. Figure 1 provides a simulation example for Equation (10). 

 
Figure 1. A simulation example of the generalized Gielis curve. In panel (a), the red curve represents 
the elementary Gielis curve, and the black curve represents the generalized Gielis curve (m = 5, k = 1, 
n2 = n3 = 5, a = 2.0, b = 1.5 and c = 0.2); in panel (b), the red curve represents the link function between 
r and re according to Equation (10); in panel (c), the red curve represents the link function on the log–
log plot according to Equation (12). 

3. Application of the Generalized Gielis Equation 

In this section, we mainly illustrate the application of GGE to several starfish species of the 
families Goniasteridae and Oreasteridae. Culcita and Tosia are the target genera, and Anthenoides 
tenuis and Stellaster equestris are used as long-armed reference species. Furthermore, we test this on 
the leaves of four plant species; in particular, we test whether this extension is applicable to elliptical 
leaves with a broad basis. Table A1 in Appendix A shows the source of the material and species 
information. 

Considering that the five arms of the starfish in Goniasteridae and Oreasteridae are 
approximately equal, we further simplify Equation (8) to 
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𝑟௘(𝜑) = 1ቚcos ቀ𝑚4 𝜑ቁቚ௡ + ቚsin ቀ𝑚4 𝜑ቁቚ௡ (14) 

For starfish, we fix m to be 5; for leaves, we fix m to be 1. To measure the goodness of fit, root-
mean-square error (RMSE) is used: 

RMSE = ඨ∑ (𝑟௜ − 𝑟̂௜)ଶே௜ୀଵ 𝑁  (15) 

where 𝑟௜ and 𝑟̂௜ represent the observed and predicted polar radii of a starfish or a leaf described by 
GGE; N represents the number of data points on the edge of that starfish or that leaf. In fact, ∑ (𝑟௜ − 𝑟̂௜)ଶே௜ୀଵ = RSS, where RSS is the residual sum of squares. However, RMSE is not suitable for 
comparing the goodness of fit among different samples. The reason is that a large object usually has 
a larger RMSE than a small object even when the fit to the former is just as good. Thus, we use the 
following adjusted RMSE (RMSEadj) that can reduce the influence of the object’s size [13]: RMSEୟୢ୨ = RMSEඥ𝐴 π⁄  (16) 

where A represents the area of an object of interest. We do not use the coefficient of determination 
(i.e., r2) as an indicator because it has been considered to be problematic for reflecting the goodness 
of fit of a nonlinear regression [14,15]. 

We developed a group of R scripts for extracting planar coordinates of shapes of interests and 
fit GGE based on R (version 3.62) [16] (see Appendices S1 and S2 in the online supplementary 
materials). In Appendix S2, we minimize the residual sum of squares (RSS) between the observed 
and predicted polar radii of a starfish or a leaf described by GGE to estimate the parameters in GGE. 
The number of data points on an image edge ranged between 1200 and 2700 depending on the 
original image size and resolution, which is sufficient for describing the profile of the image.  

Figure 2 shows the original images and the fitted results for the edge data of eight starfish using 
GGE, and Figure 3 shows the fitted functional relationships (i.e., link functions) between r and re of 
the eight starfish on a log–log plot. Figure 4 exhibits the fitted leaf shapes and corresponding link 
functions for the four leaves on a log–log plot. Table A2 in Appendix A tabulates the estimated 
parameters and indicators of goodness of fit. 
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Figure 2. Original images of eight starfish (codes 1−8 in Table A1) and fitted generalized Gielis curves. 
The number in the upper left corner for each black background image panel represents its sample 
code. The panel below each black background image panel shows the scanned edge (represented by 
a gray curve) and the fitted edge using GGE (represented by a red curve). The intersection between 
the blue vertical and horizontal dashed lines represents the polar point; the black inclined dashed line 
represents the previously used horizontal line of a standard GGE without an angle transformation. 
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Figure 3. The scatter plots of ln(r) vs. ln(re) and the fitted link functions for each of the eight starfish. 
In each panel, the small open circles represent the actual values, and the red curve represents the 
fitted link function based on Equation (12). RMSE values shown here were calculated based on the 
log-transformed data, while RMSE values in Table A1 were based on the untransformed data of r vs. 
re. 

 
Figure 4. Original images, scanned and predicted leaf edges, and fitted link functions on a log–log 
plot for four plant species (codes 9–12 in Table A1). The number in the upper left corner for each green 
image panel represents its sample code. The panel below each green image panel shows the scanned 
edge (represented by a gray curve) and the fitted edge using GGE (represented by a red curve). In 
each panel in the bottom row, the small open circles represent the actual values of ln(r) vs. ln(re), and 
the red curve represents the fitted link function based on Equation (13). 

From Table A2, we can see most of the fitted results are satisfactory, with 10 out of the 12 RMSE 
values smaller than 0.1. Samples 1, 5 and 12 have RMSE values > 0.10. Overall, the adjusted RMSE 
values are significantly correlated with the RMSE values (r = 0.93, where r denotes the correlation 
coefficient; p < 0.05) for the 12 samples. This means that the influence of the object’s size on the 
goodness of fit (represented by RMSE) is not large for most of the investigated samples. For samples 
2 and 4, the RMSE values are approximate (0.0510 vs. 0.0562); however, the adjusted RMSE of sample 
2 is larger than that of sample 4 (0.0249 vs. 0.0151) because of the influence of size difference (13.16 
cm2 vs. 43.22 cm2). It proves that the adjusted RMSE is more valid than RMSE in comparing the 
goodness of fit when there is a large difference in size between any two objects. 

4. Discussion 

In Table A1, samples 1, 5 and 12 have larger RMSE values (> 0.10) than the others. For the first 
two samples, the two starfish have relatively longer arms than the other 7 starfish. RMSE =ඥ∑ (𝑟௜ − 𝑟̂௜)ଶே௜ୀଵ 𝑁⁄  can be considered to be an “average absolute deviation”, that is, an average 
difference, ignoring sign, between the observed and predicted radii. According to Taylor’s power 
law, there is a power-law relationship with an exponent > 0 (usually falling within a range of 1 to 3) 
between the variance and mean of a non-negative random variable [17,18]. In other words, the 
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variance (and its square root) is an increasing function of the mean. Similarly, the RMSE of radii is 
positively related to the size of the object and the extent of variation in polar radii. The bigger the 
object is or the larger the extent of variation in polar radii is, the larger is its RMSE value. That is why 
samples 1 and 5 have large RMSE values. However, for sample 12, the main reason for its large RMSE 
value is as a result of the fitting approach. We minimized RSS as the target function of convergence. 
For the generalized Gielis curve that we used to depict the blade with a power-law function, the polar 
point was very close to the leaf base (i.e., the connection point of the blade and the petiole) if the leaf 
is narrow [10,11; also see Figure 5 below]. The ratio of leaf width to length has a big effect on the 
goodness of fit. A broad leaf shape ensures that the radii for the data points on the edge of a leaf close 
to the polar point are not too small, which enhances the goodness of fit when RSS is minimized as 
the target function. However, a narrow leaf shape gives rise to many small radii for the data points 
on the edge of the leaf near to the polar point, and that results in a large deviation between the actual 
and predicted radii (Figure 5). There are many data points that are far away from the polar point for 
a narrow leaf shape. Minimizing RSS will tend to reduce the deviations for these data points because 
the radii are larger than those of the data points close to the polar point. Unfortunately, most bamboo 
leaves are narrow [19]. Thus, the minimization of RSS has resulted in a large deviation for the data 
points close to the polar point. That is why sample 12 fits the data worse than the other samples. The 
quadratic function given by Equation (13) with δ2 ≠ 0 did not improve the goodness of fit. 

 
Figure 5. Illustration for the comparison between a broad blade (a) and a narrow blade (b). In each 
panel, the red point represents the polar point; the blue points represent the data points on the edge 
of the blade; the gray curve represents the blade edge; the segments between the polar point and the 
data points on the edge represent radii. Each leaf shape was generated by GGE with a power-law 
relationship (which is equation [13] when δ2 = 0). The horizontal axis of the generalized Gielis curve 
is rotated counterclockwise by π/4 to conveniently show the image. Here, when δ1 decreases towards 
0, the curve approximates a circle with radius exp(δ0) and the polar point becomes the center of this 
circle at the point (0, 0). In contrast, when δ1 increases towards a large value, the curve approximates 
a line segment with length exp(δ0) and the polar point approaches the left endpoint of the segment. 

For leaves which are flat, the 2D representations are of immediate value to quantify shape and 
area. For starfish, the 2D representations can serve as one of the two sections to build a 3D starfish. 
Whether the proposed two functions (i.e., the hyperbolic and quadratic equations) can apply to more 
shapes is still unknown, meriting further investigation. We believe that other forms of link functions 
can be found for shapes that cannot be adequately fitted by Equations (12) and (13).  

5. Conclusions 

In the present study, we propose a generalized Gielis equation (GGE) by introducing a link 
function for the polar radius of the elementary Gielis equation (EGE). The original Gielis equation 
(OGE) can then be regarded as a special case of GGE with a power-law link function between the 
polar radius of EGE and that of GGE. Although OGE can produce a lot of shapes, the power-law link 
function has limited validity for describing shapes such as the planar projection of starfish. In that 
case, we put forward two candidate link functions (a log-hyperbolic function and a log-quadratic 
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function) to make OGE applicable to these shapes. We found that these two functions describe the 
shapes of the investigated starfish and leaves well, showing that in nature, not all ontogenetic radial 
growth follows the power-law relationship. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-8994/12/4/645/s1, 
Appendix S1: R script for extracting the planar coordinates of an image, Appendix S2: R script for fitting the 
edge data using the generalized Gielis equation. 
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the data; P.S., D.A.R. and J.G. wrote the manuscript. All authors have read and agreed to the published version 
of the manuscript. 

Funding: This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: 
JS-2018-038). 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

There are two tables for tabulating the sample collection information and the fitted results using the 
generalized Gielis equation, respectively. 

Table A1. Sample collection information. 

Sample Code Scientific Name Family Locality Sampling Time 
1 Anthenoides tenuis Liao & A.M. Clark Goniasteridae Philippines, Siquijor 2019 
2 Culcita schmideliana Bruzelius Oreasteridae Philippines, Bohol. Cabulan Island  2018 
3 Culcita schmideliana Bruzelius Oreasteridae Philippines, Bohol. Cabulan Island  2018 
4 Culcita schmideliana Bruzelius Oreasteridae Philippines, Bohol. Cabulan Island  2018 
5 Stellaster equestris Bruzelius Goniasteridae Philippines, Surigao 2018 
6 Tosia australis Gray Goniasteridae Edithburgh, Australia 1980 
7 Tosia magnifica Müller & Troschel Goniasteridae Edithburgh, Australia 1980 
8 Tosia magnifica Müller & Troschel Goniasteridae Edithburgh, Australia 1980 
9 Trachelospermum jasminoides (Lindl.) Lem. Apocynaceae Nanjing, China 2019 

10 Vinca major L. Apocynaceae Nanjing, China 2018 
11 Chimonanthus praecox (L.) Link Calycanthaceae Nanjing, China 2017 
12 Phyllostachys incarnata T.H. Wen Poaceae Nanjing, China 2016 

Table A2. Estimated parameters and indicators for goodness of fit. 

Code 𝒙ෝ𝟎 𝒚ෝ𝟎 𝜽෡ 𝒏ෝ 𝒂ෝ 𝒃෡ 𝒄ො Sample Size Area (cm2) RSS RMSE RMSEadj 
1 18.67  18.05  1.56  2006.90  1.1362  0.0599 0.8742  2488 32.00  235.22  0.3075  0.0963  
2 7.75  7.47  2.85  8.39  2.0738  4.2943 0.4556  1482 13.16  3.8561  0.0510  0.0249  
3 8.08  7.74  1.58  4.83  1.5802  3.7025  0.3311  1617 13.52  1.2516  0.0278  0.0134  
4 14.51  13.94  0.30  139.04  2.8784  0.6546  1.1619  2684 43.22  8.4710  0.0562  0.0151  
5 9.34  8.83  0.31  543.36  0.8644  0.1151  −0.1390  2282 6.09  34.53  0.1230  0.0883  
6 5.66  5.42  0.29  7.73  2.7866  6.8694  0.2415  1526 7.37  0.4804  0.0177  0.0116  
7 5.11  4.85  0.29  4.28  2.3100  5.4630  0.0503  1263 6.07  0.5415  0.0207  0.0149  
8 5.88  5.66  2.79  5.95  2.6437  7.5884  0.2371  1267 7.58  0.3502  0.0166  0.0107  

Code 𝒙ෝ𝟎 𝒚ෝ𝟎 𝜽෡ 𝒏ෝ 𝜹෡𝟎 𝜹෡𝟏 𝜹෡𝟐 Sample Size Area (cm2) RSS RMSE RMSEadj 
9 4.98  5.06  0.76  1.32  1.3485  18.8344  48.2690  1653 5.40  2.7591  0.0409  0.0312  
10 7.16  6.73  0.76  1.14  1.1925  7.2615  18.3014  1379 11.65  1.1927  0.0294  0.0153  
11 7.84  8.12  0.81  0.73  1.9303  1.9169  −5.7404  1985 22.25  8.9448  0.0671  0.0252  
12 14.67  15.22  0.81  1.23  2.8179  38.5217  0 2476 33.22  350.16  0.3761  0.1156  

In this table, Code represents the sample code (see Table A1 for details); (𝒙ො𝟎 , 𝒚ො𝟎) represents the 
estimated planar coordinates of the polar point; 𝜽෠  represents the estimated angle by which the 
horizontal line (i.e., the original x-axis) of the generalized Gielis curve was rotated; 𝒏ෝ, 𝒂ො , 𝒃෠ , 𝒄ො, 𝜹෠𝟎, 𝜹෠𝟏 
and 𝜹෠𝟐 are estimated parameters in Equations (12) and (13); Sample size represents the number of 
data points on the edge of an image; Area represents the scanned (actual) area of a starfish or leaf 
image; RSS is the residual sum of squares; RMSE is the root-mean-square error; RMSEadj is the 
adjusted root-mean-square error. 
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