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Researchers use 2D and 3D spatial models of multivariate data of differing resolutions and formats. It can 
be challenging to work with multiple datasets, and it is time consuming to set up a robust, performant 
grid to handle such spatial models. We share ‘agrid’, a Python module which provides a framework 
for containing multidimensional data and functionality to work with those data. The module provides 
methods for defining the grid, data import, visualisation, processing capability and export. To facilitate 
reproducibility, the grid can point to original data sources and provides support for structured metadata. 
The module is written in an intelligible high level programming language, and uses well documented 
libraries as numpy, xarray, dask and rasterio.

Keywords: Spatial model; Multivariate processing; Python; Regular grid
Funding statement: This research was supported under Australian Research Council’s Special Research 
Initiative for Antarctic Gateway Partnership (Project ID SR140300001).

(1) Overview
Introduction
Spatial models are needed to enable numerical problems 
to be solved in a broad range of scientific applications. 
Representation of data and modelled properties can be 
discretizised to a grid. Each cell in the grid can contain 
a value from measurements or a modelled value, at a 
position defined in space and time. Cells can also be 
assigned a value by interpolation of nearby data points or 
by assumptions. The location of each grid cell is specified 
along the dimensions by index number or coordinates 
from e.g. a geographic coordinate system. Grids that 
represent part of Earth must also be associated with a 
geodetic datum for reference to the physical world. Cells 
in a regular grid represent the shape of parallelepipeds, 
and can be rectilinear or Cartesian. The latter is the special 
case where the cells are unit squares, or unit cubes. Some 
data, e.g. surface elevation, can be expressed in only two 
dimensions. Other parameters can vary in all spatial 
directions, and time, and need to be represented in a 
multidimensional grid. The cell size limits the resolution of 
the model, smaller cells can represent higher frequencies, 
but a denser and larger grid add exponentially to the 
computing cost [35]. To populate a grid model, data are 
generally imported from different sources and in various 
formats. Images and continuous data are often available as 
regular raster files, while some observations are provided 
as points in an irregular grid, or vector data as polygons 
and lines. Spatial data are published in different data, 

projections and coordinate systems. Given this variety of 
formats and reference conventions, it is inevitable that 
combining data from different sources often presents a 
challenge.

The computational framework
We share agrid, a framework to produce a regular grid 
for multidimensional and multivariate spatial modelling, 
processing and analysis. The extended functionality of 
the grid addresses many of the challenges in working 
with spatial 2D and 3D data noted above. Following the 
principles of Wilson et al. (2014) [39], the code is written 
in highest possible language level and made readable and 
intelligible. We use the general-purpose programming 
language Python 3. Python is equipped with libraries for 
fast array operations [23, 37], basic statistics [20], signal 
processing and other scientific tools [15], machine learning 
[24], visualisation [14, 26] and discipline specific libraries 
for e.g. seismology [3, 21], astronomy [28] and GIS [8, 10, 
16]. Python also provides interfaces for other languages 
as R, C and Fortran. All those tools and packages can be 
reached from the open structure of agrid (Figure 1).

A few related open-source projects provide useful code 
for the Earth Sciences community; GemPy [4] is a package 
that facilitates stochastic geomodeling and probabilistic 
programming. The package uses the linear algebra com
piler Theano [2] for efficient computation. Another related 
project is Verde [36] and the Fatiando tool box, which 
contains advanced methods for e.g. interpolation. There 
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are also examples of successful projects that connect 
various data sources with users. Quantarctica [30] makes 
Antarctic datasets from various sources easily accessible in 
a Geographical Information System (GIS) application, QGIS 
[25]. However, even with some 3D functionality in recent 
upgrades, GIS is predominantly a 2D frame. Another 
related project is the multidimensional DataCube [18, 
19]. DataCube pre-processes and presents remote sensing 
geographical and geophysical attributes for researchers 
and the broader public. DataCube is mainly targeted for 
changes (e.g. in Landsat raster data) over time, but has a 
broad range of possible applications. In comparison, agrid 
is relatively light, easy to modify, and the dependencies are 
kept to a minimum. Data held in the agrid environment are 
not regarded only as a set of values: each observation can 
include quantified uncertainty, probability or likelihood, 
and data can also be associated with metadata for 
provenance. It is advantageous that cells of a grid model 
can be populated with such allied information, together 
with the dataset.

agrid was initially developed for studies of the Antarctic 
lithosphere [33, 34], and pre-processing of geophysical 
data for visualisation purposes [22], but with updates as 
presented here, it can be used in any discipline, geographi
cal region, projection, dimensionality and any resolution. 
This initial release of the code is presented with tutorial 
notebooks that demonstrate its usage. The examples 
given in this paper can be reproduced from the provided 
SConstruct script [5, 6, 17].

Subsequent versions of agrid will include additional 
functionality. We plan, e.g., additional methods for conver
sion and improved visualisation, support hexagonal 2D 
grids, curvilinear grid and increased polar and spherical 
functionality. We hope that colleagues will find this 
contribution useful, and hopefully encourage scientists to 
share code and publish reproducible studies.

Implementation and architecture
agrid is structured as a Python module that imports 
dependencies and defines an agrid class object, Grid(), 
when imported. When calling Grid(), an object is 
created that represents the spatial extent of the model 
space. The grid is initiated with projection, extent and 
resolution. When the instance of the agrid class object is 
created, an xarray dataset is defined with dimensions and 
populated with coordinates. Dimensions includes, but are 
not limited to, space (X, Y, Z), time (t) and frequency 
bands (e.g. RGB). Models might also include probability or 
likelihood. Extent is defined as left, right, up and 
down, and refers to the rectangular map view. Predefined 
coordinates are the default units for the projection, e.g. x 
and y in metres, and degrees in WGS 1984, EPSG:4326. At 
setup, there is an option of the grid can represent both 
the corners or the centre points of each cell. The default 
settings gives a coarse global grid of WGS84 (EPSG:4326), 
with a resolution of 1° ≈ 111.1 km.

agrid facilitates access to array operations in the spatial 
domains, as projected grid cells. The data is stored as 

Figure 1: Components of agrid: accessory methods, the class Grid() and example-specific code (feature methods). 
A class object (brown) contains functions for e.g. import and export. It also contains the xarray dataset (gray) and 
attributes. Various data formats (left) are converted to numpy arrays and incorporated as data arrays in an xarray 
dataset. Each data array can be associated to coordinates. The dataset also contains metadata (green). Data can be 
exported or visualized (right). Accessory methods include a download function to link the Grid() class directly to 
the data source if required, e.g. for dynamic updating. A few example-specific methods are also distributed together 
with the module [22, 33, 34].
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data arrays in an xarray dataset [12, 13]. xarray is built on 
numpy [23, 37] and pandas [20], and provides high level 
functions for labelled multidimensional datasets. xarray 
has a structure similar to netCDF file format [27] and 
netCDF is also used as the native format to store grids. 
By using dask arrays, only the data used is loaded into 
memory in chunks [29]. dask also facilitates some parallel 
computing. Grid cells can be selected with the advanced 
indexing methods in xarray by geographical coordinates 
as well as index numbers in the grid.

Additional coordinates with different resolution 
can be created and added to the object at any point. 
Computations with data grids of different resolution 
are performed by generating vectors from chunks of the 
larger array so that the resulting grid sizes are identical. 
The vectors are unfolded back to the higher resolution 
grid after the computation. By using this approach, fast 
numpy operations can be applied on arrays of different 
shapes and size and there is no need to over-sample low 
resolution data.

In a research project, agrid can point directly to original 
data sources. This simplifies the workflow, as development 
can be done in low resolution or small extent, but larger 
grids can be used when required and data-sets can easily be 
swapped. Pre-processing and visualisation can be moved 

from third part software or stand-alone applications to 
a condensed workflow (Figure 1 and Listings 1 and 2). 
This provides overview and facilitates reproducibility and 
flexibility for the researcher [11].

Example of grid generation and data import
Code in Listing 1 generates a frame of Antarctica, using 
WGS 84/Antarctic Polar Stereographic projection and a 
lateral cell size of 10 km × 10 km. The Extent is defined 
in the default unit of the projection. Coordinate reference 
system (CRS), is given as an integer and therefore 
interpreted as an EPSG code. For this example, the 2D 
grid is Cartesian and quadratic, but the depths slices 
are defined by the list depths. Due to the convention 
of indexing arrays as row – column and geographical 
coordinates as lat – lon, grid coordinates are also given as 
Y – X for consistency.

The instance of Grid() class contains a number of 
functions to import data of different types, visualisation 
and export (Figure 1). Raster data, e.g. GeoTiff, can 
be imported with a method using rasterio [10] and the 
underlying gdal [38]. Rasters are warped to fit the extent, 
resolution and projection of the grid. An imported raster 
is shown in Figure 2b. Vector data are imported with 
fiona [9] and geopandas [16] with options for rasterization 

from agrid.grid import Grid
from agrid.acc import download
km = 1000

# Initiate a class object and set resolution and extent of model:
ant = Grid(res = [10*km, 10*km],

	 crs = 3031,
	 depths = [0*km, 10*km, 20*km, 50*km, 100*km],
	 left = -3100*km,
	 up = 3100*km,
	 right = 3100*km,
	 down = -3100*km)

# Download and import:
bedmap_url = 'https://link/to/bedmap2_tiff.zip'
bedmap_path = 'data/bedmap2'
download(bedmap_url, bedmap_path + '.zip')

GSFC_url = 'http://link/to//GSFC_DrainageSystems'
GSFC_files = 'data/GSFC_DrainageSystems'
for shape_ext in ['.shp','.shx','.prj', '.dbf', '.qix']:
	 download(GSFC_url + shape_ext, GSFC_files + shape_ext)

# Bulk import grid files from directory:
seis_url = 'http://link/to/AN1-S_depth_grd.tar.gz'
seis_path = 'data/an/'
download(seis_url, seis_path, bulk=True,
	 meta_dict = {'Model':'AN1-S', 'DOI': '10.1002/2014JB011332'})

# Import raster files
for data_set, label in zip(['thickness', 'bed'], ['ICE', 'DEM']):
	 ant.ds[label] = (('Y', 'X'),
	 ant.read_raster('%s /bedmap2_%s . tif' %(bedmap path , data_set),
	 no_data = 32767.))

# Import polygons, here the attribute 'ID' is used to define segments.
ant.ds['DRAINAGE'] = (('Y', 'X'), ant.assign_shape(GSFC_file + '.shp','ID'))

# Import grid files to 3D data array.
# Keyword 'bulk' imports all files in directory
ant.ds['AN1-S'] = (('Y', 'X', 'Z'), ant.read_grid('../local/an/', bulk=True))

Listing 1: Initiation of a grid object, defining extent and projection for Antarctica, in this example. The code downloads 
and assigns Bedmap [7], Antarctic drainage systems, GSFC [40] and wave speed from 3D seismic tomography [1] to 
the grid.



Stål and Reading: A Grid for Multidimensional and Multivariate Spatial 
Representation and Data Processing

Art. 2, page 4 of 7 

# Select a few polygons:
ant.ds['SEL_ICE'] = ant.ds['ICE']*ant.ds['DRAINAGE'].isin(list(range(0, 53//2)))

# Make some 3D data, using e.g. Python or numpy functions
ant.ds['RANDOM'] = (('Y', 'X', 'Z'), np.random.rand(*ant.shape3))

# Make maps:
# Fig. 2a
ant.map_grid('DRAINAGE',
	 cmap='RdBu',
	 save_name= 'fig/drainage.pdf')

# Fig. 2b
ant.map_grid('SEL_ICE',
	 cmap = 'viridis',
	 save_name = 'fig/selected.pdf')

# Fig. 2c
ant.layer_cake('AN1-S',
	 cmap = 'BrBG_r',
	 save_name = 'fig/layers.pdf')

# Fig. 2d
ant.oblique_view('DEM',
	 vmin = 0, vmax = 4200,
	 cmap = 'bone',
	 azimuth = 180, roll = -90,
	 save_name = 'fig/oblique_view.pdf')

# Analyse:
# Calculate the volume of the ice in selected segments.
volume = int(ant.ds[‘SEL_ICE’].sum()*np.prod(ant.res)/km**3)

# Export as geoTiff:
ant.grid_to_raster('SEL_ICE','selected_ice.tif')

Listing 2: Visualization, analyse and export. The code generates all figures in Figure 2.

Figure 2: Data input and visualisation examples generated by code Listings 1 and 2. (a) Vector polygon data (drainage 
systems [40]). (b) Subset of raster data (ice thickness [7]) Polygon vector data [40] is used to select a part of the 
continuous raster. (c) 3D layered plot of seismic data [1]. (d) Example of 3D rendering. Supplied tutorials and SCons 
script contain further details. The code may be used for any geographic area, at any scale.

d)

a) b)

d)c)
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of attribute data and interpolation. Grids or data points 
can be read from a number of formats and interpolated. 
A rasterized polygon dataset is shown in Figure 2a and is 
also used to crop and select data in Figure 2c–d.

Example of visualization and data export
The class also contains functions for visualisation using 
matplotlib [14] and Cartopy [41] (Figure 2a–c). Map views 
with e.g. coast lines and coordinates can be produced 
directly by agrid. Mayavi [26] and the underlying VTK [31] 
are used for 3D visualisation (Figure 2d). Data can be 
exported as netCDF, GeoTiff or ASCII formats. JSON format 
is used to import metadata and export model parameters.

Quality control
The module is published with a number of tutorials 
to demonstrate the functionality with different data 
sources, scales and extent. Known limitations exist in the 
visualization methods for less common projections and 
some warnings are not handled smoothly. Error handling 
mainly relies on used dependencies with only limited 
functionality in agrid itself. Development errors have been 
ruled out by comparing results from other GIS applications. 
2D data that have been imported, processed and exported, 
have been compared to similar processing in the GIS 
applications QGIS. Those test cases and additional test code 
are also available from the project’s github repository [32]. 
The updated issue tracker is likewise available at github.

(2) Availability
Operating system
The code is developed and tested in Ubuntu 16.04, 18.04 
and macOS High Sierra 10.13.6. It has also been tested on 
Windows 10.

Programming language
Python >= 3.6 (tested on Python 3.6 and Python 3.7).

Additional system requirements
Very low requirements for basic use, but can be scaled up 
for larger grids. The use of dask arrays relax the need for 
large RAM.

Dependencies
The class depends on a number of Python packages 
that can all be installed by package managers, e.g. 
pip3 or conda: Minimum dependencies: cartopy 
geopandas matplotlib json numpy pyproj 
rasterio scipy xarray

Additional dependencies used and imported only by 
some methods: datetime fiona imageio mayavi 
requests shapely tarfile tqdm zipfile.
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(3) Reuse potential
agrid is deliberately developed for reuse in a broad range 
of applications. The code is commented and explained to 
guide and advice modifications. The code could be useful 
for any spatial processing and analysis in areas such as 
solid Earth geophysics, geotechnical and environmental 
applications. For some uses, the complete package might 
be installed, but with the open architecture, copied 
snippets or methods can be included into other projects. 
The MIT license allows for a broad reuse. Functionality and 
issues may be discussed on the code repository. Python 
and the used libraries are also supported by large online 
communities.
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