
Stål, T and Reading, A M 2020 A Grid for Multidimensional and Multivariate
Spatial Representation and Data Processing. Journal of Open Research
Software, 8: 2. DOI: https://doi.org/10.5334/jors.287

Journal of
open research software

SOFTWARE METAPAPER

A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing
Tobias Stål and Anya M. Reading
School of Natural Sciences and Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, AU
Corresponding author: Tobias Stål (tobias.staal@utas.edu.au)

Researchers use 2D and 3D spatial models of multivariate data of differing resolutions and formats. It can
be challenging to work with multiple datasets, and it is time consuming to set up a robust, performant
grid to handle such spatial models. We share ‘agrid’, a Python module which provides a framework
for containing multidimensional data and functionality to work with those data. The module provides
methods for defining the grid, data import, visualisation, processing capability and export. To facilitate
reproducibility, the grid can point to original data sources and provides support for structured metadata.
The module is written in an intelligible high level programming language, and uses well documented
libraries as numpy, xarray, dask and rasterio.

Keywords: Spatial model; Multivariate processing; Python; Regular grid
Funding statement: This research was supported under Australian Research Council’s Special Research
Initiative for Antarctic Gateway Partnership (Project ID SR140300001).

(1) Overview
Introduction
Spatial models are needed to enable numerical problems
to be solved in a broad range of scientific applications.
Representation of data and modelled properties can be
discretizised to a grid. Each cell in the grid can contain
a value from measurements or a modelled value, at a
position defined in space and time. Cells can also be
assigned a value by interpolation of nearby data points or
by assumptions. The location of each grid cell is specified
along the dimensions by index number or coordinates
from e.g. a geographic coordinate system. Grids that
represent part of Earth must also be associated with a
geodetic datum for reference to the physical world. Cells
in a regular grid represent the shape of parallelepipeds,
and can be rectilinear or Cartesian. The latter is the special
case where the cells are unit squares, or unit cubes. Some
data, e.g. surface elevation, can be expressed in only two
dimensions. Other parameters can vary in all spatial
directions, and time, and need to be represented in a
multidimensional grid. The cell size limits the resolution of
the model, smaller cells can represent higher frequencies,
but a denser and larger grid add exponentially to the
computing cost [35]. To populate a grid model, data are
generally imported from different sources and in various
formats. Images and continuous data are often available as
regular raster files, while some observations are provided
as points in an irregular grid, or vector data as polygons
and lines. Spatial data are published in different data,

projections and coordinate systems. Given this variety of
formats and reference conventions, it is inevitable that
combining data from different sources often presents a
challenge.

The computational framework
We share agrid, a framework to produce a regular grid
for multidimensional and multivariate spatial modelling,
processing and analysis. The extended functionality of
the grid addresses many of the challenges in working
with spatial 2D and 3D data noted above. Following the
principles of Wilson et al. (2014) [39], the code is written
in highest possible language level and made readable and
intelligible. We use the general-purpose programming
language Python 3. Python is equipped with libraries for
fast array operations [23, 37], basic statistics [20], signal
processing and other scientific tools [15], machine learning
[24], visualisation [14, 26] and discipline specific libraries
for e.g. seismology [3, 21], astronomy [28] and GIS [8, 10,
16]. Python also provides interfaces for other languages
as R, C and Fortran. All those tools and packages can be
reached from the open structure of agrid (Figure 1).

A few related open-source projects provide useful code
for the Earth Sciences community; GemPy [4] is a package
that facilitates stochastic geomodeling and probabilistic
programming. The package uses the linear algebra com
piler Theano [2] for efficient computation. Another related
project is Verde [36] and the Fatiando tool box, which
contains advanced methods for e.g. interpolation. There

https://doi.org/10.5334/jors.287
mailto:tobias.staal@utas.edu.au

Stål and Reading: A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing

Art. 2, page 2 of 7

are also examples of successful projects that connect
various data sources with users. Quantarctica [30] makes
Antarctic datasets from various sources easily accessible in
a Geographical Information System (GIS) application, QGIS
[25]. However, even with some 3D functionality in recent
upgrades, GIS is predominantly a 2D frame. Another
related project is the multidimensional DataCube [18,
19]. DataCube pre-processes and presents remote sensing
geographical and geophysical attributes for researchers
and the broader public. DataCube is mainly targeted for
changes (e.g. in Landsat raster data) over time, but has a
broad range of possible applications. In comparison, agrid
is relatively light, easy to modify, and the dependencies are
kept to a minimum. Data held in the agrid environment are
not regarded only as a set of values: each observation can
include quantified uncertainty, probability or likelihood,
and data can also be associated with metadata for
provenance. It is advantageous that cells of a grid model
can be populated with such allied information, together
with the dataset.

agrid was initially developed for studies of the Antarctic
lithosphere [33, 34], and pre-processing of geophysical
data for visualisation purposes [22], but with updates as
presented here, it can be used in any discipline, geographi
cal region, projection, dimensionality and any resolution.
This initial release of the code is presented with tutorial
notebooks that demonstrate its usage. The examples
given in this paper can be reproduced from the provided
SConstruct script [5, 6, 17].

Subsequent versions of agrid will include additional
functionality. We plan, e.g., additional methods for conver
sion and improved visualisation, support hexagonal 2D
grids, curvilinear grid and increased polar and spherical
functionality. We hope that colleagues will find this
contribution useful, and hopefully encourage scientists to
share code and publish reproducible studies.

Implementation and architecture
agrid is structured as a Python module that imports
dependencies and defines an agrid class object, Grid(),
when imported. When calling Grid(), an object is
created that represents the spatial extent of the model
space. The grid is initiated with projection, extent and
resolution. When the instance of the agrid class object is
created, an xarray dataset is defined with dimensions and
populated with coordinates. Dimensions includes, but are
not limited to, space (X, Y, Z), time (t) and frequency
bands (e.g. RGB). Models might also include probability or
likelihood. Extent is defined as left, right, up and
down, and refers to the rectangular map view. Predefined
coordinates are the default units for the projection, e.g. x
and y in metres, and degrees in WGS 1984, EPSG:4326. At
setup, there is an option of the grid can represent both
the corners or the centre points of each cell. The default
settings gives a coarse global grid of WGS84 (EPSG:4326),
with a resolution of 1° ≈ 111.1 km.

agrid facilitates access to array operations in the spatial
domains, as projected grid cells. The data is stored as

Figure 1: Components of agrid: accessory methods, the class Grid() and example-specific code (feature methods).
A class object (brown) contains functions for e.g. import and export. It also contains the xarray dataset (gray) and
attributes. Various data formats (left) are converted to numpy arrays and incorporated as data arrays in an xarray
dataset. Each data array can be associated to coordinates. The dataset also contains metadata (green). Data can be
exported or visualized (right). Accessory methods include a download function to link the Grid() class directly to
the data source if required, e.g. for dynamic updating. A few example-specific methods are also distributed together
with the module [22, 33, 34].

xarray
Dataset

dims

DataArray

meta
data

coords

Download

Accessory methods

Staal et al

Morse et al

Feature methods

Global png

Raster data Affine trans-
formation

geoTiff numpy

Vector data Rasterization
shape file numpy

Grid data Interpolation
netCDF numpy

ASCII data Interpolation
ascii numpy

rasterio Raster
numpy geoTiff

matplotlib Map
numpy pdf

mayavi 3D viz
numpy screen / pdf

xarray Grid export
xarray netCDF

Python

Python api

instance
attributes

class
attributes

Python class Grid()

Statistical
methods:
binning

Spatial
methods:

re-interpolate
folding

Stål and Reading: A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing

Art. 2, page 3 of 7

data arrays in an xarray dataset [12, 13]. xarray is built on
numpy [23, 37] and pandas [20], and provides high level
functions for labelled multidimensional datasets. xarray
has a structure similar to netCDF file format [27] and
netCDF is also used as the native format to store grids.
By using dask arrays, only the data used is loaded into
memory in chunks [29]. dask also facilitates some parallel
computing. Grid cells can be selected with the advanced
indexing methods in xarray by geographical coordinates
as well as index numbers in the grid.

Additional coordinates with different resolution
can be created and added to the object at any point.
Computations with data grids of different resolution
are performed by generating vectors from chunks of the
larger array so that the resulting grid sizes are identical.
The vectors are unfolded back to the higher resolution
grid after the computation. By using this approach, fast
numpy operations can be applied on arrays of different
shapes and size and there is no need to over-sample low
resolution data.

In a research project, agrid can point directly to original
data sources. This simplifies the workflow, as development
can be done in low resolution or small extent, but larger
grids can be used when required and data-sets can easily be
swapped. Pre-processing and visualisation can be moved

from third part software or stand-alone applications to
a condensed workflow (Figure 1 and Listings 1 and 2).
This provides overview and facilitates reproducibility and
flexibility for the researcher [11].

Example of grid generation and data import
Code in Listing 1 generates a frame of Antarctica, using
WGS 84/Antarctic Polar Stereographic projection and a
lateral cell size of 10 km × 10 km. The Extent is defined
in the default unit of the projection. Coordinate reference
system (CRS), is given as an integer and therefore
interpreted as an EPSG code. For this example, the 2D
grid is Cartesian and quadratic, but the depths slices
are defined by the list depths. Due to the convention
of indexing arrays as row – column and geographical
coordinates as lat – lon, grid coordinates are also given as
Y – X for consistency.

The instance of Grid() class contains a number of
functions to import data of different types, visualisation
and export (Figure 1). Raster data, e.g. GeoTiff, can
be imported with a method using rasterio [10] and the
underlying gdal [38]. Rasters are warped to fit the extent,
resolution and projection of the grid. An imported raster
is shown in Figure 2b. Vector data are imported with
fiona [9] and geopandas [16] with options for rasterization

from agrid.grid import Grid
from agrid.acc import download
km = 1000

Initiate a class object and set resolution and extent of model:
ant = Grid(res = [10*km, 10*km],

	 crs = 3031,
	 depths = [0*km, 10*km, 20*km, 50*km, 100*km],
	 left = -3100*km,
	 up = 3100*km,
	 right = 3100*km,
	 down = -3100*km)

Download and import:
bedmap_url = 'https://link/to/bedmap2_tiff.zip'
bedmap_path = 'data/bedmap2'
download(bedmap_url, bedmap_path + '.zip')

GSFC_url = 'http://link/to//GSFC_DrainageSystems'
GSFC_files = 'data/GSFC_DrainageSystems'
for shape_ext in ['.shp','.shx','.prj', '.dbf', '.qix']:
	 download(GSFC_url + shape_ext, GSFC_files + shape_ext)

Bulk import grid files from directory:
seis_url = 'http://link/to/AN1-S_depth_grd.tar.gz'
seis_path = 'data/an/'
download(seis_url, seis_path, bulk=True,
	 meta_dict = {'Model':'AN1-S', 'DOI': '10.1002/2014JB011332'})

Import raster files
for data_set, label in zip(['thickness', 'bed'], ['ICE', 'DEM']):
	 ant.ds[label] = (('Y', 'X'),
	 ant.read_raster('%s /bedmap2_%s . tif' %(bedmap path , data_set),
	 no_data = 32767.))

Import polygons, here the attribute 'ID' is used to define segments.
ant.ds['DRAINAGE'] = (('Y', 'X'), ant.assign_shape(GSFC_file + '.shp','ID'))

Import grid files to 3D data array.
Keyword 'bulk' imports all files in directory
ant.ds['AN1-S'] = (('Y', 'X', 'Z'), ant.read_grid('../local/an/', bulk=True))

Listing 1: Initiation of a grid object, defining extent and projection for Antarctica, in this example. The code downloads
and assigns Bedmap [7], Antarctic drainage systems, GSFC [40] and wave speed from 3D seismic tomography [1] to
the grid.

Stål and Reading: A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing

Art. 2, page 4 of 7

Select a few polygons:
ant.ds['SEL_ICE'] = ant.ds['ICE']*ant.ds['DRAINAGE'].isin(list(range(0, 53//2)))

Make some 3D data, using e.g. Python or numpy functions
ant.ds['RANDOM'] = (('Y', 'X', 'Z'), np.random.rand(*ant.shape3))

Make maps:
Fig. 2a
ant.map_grid('DRAINAGE',
	 cmap='RdBu',
	 save_name= 'fig/drainage.pdf')

Fig. 2b
ant.map_grid('SEL_ICE',
	 cmap = 'viridis',
	 save_name = 'fig/selected.pdf')

Fig. 2c
ant.layer_cake('AN1-S',
	 cmap = 'BrBG_r',
	 save_name = 'fig/layers.pdf')

Fig. 2d
ant.oblique_view('DEM',
	 vmin = 0, vmax = 4200,
	 cmap = 'bone',
	 azimuth = 180, roll = -90,
	 save_name = 'fig/oblique_view.pdf')

Analyse:
Calculate the volume of the ice in selected segments.
volume = int(ant.ds[‘SEL_ICE’].sum()*np.prod(ant.res)/km**3)

Export as geoTiff:
ant.grid_to_raster('SEL_ICE','selected_ice.tif')

Listing 2: Visualization, analyse and export. The code generates all figures in Figure 2.

Figure 2: Data input and visualisation examples generated by code Listings 1 and 2. (a) Vector polygon data (drainage
systems [40]). (b) Subset of raster data (ice thickness [7]) Polygon vector data [40] is used to select a part of the
continuous raster. (c) 3D layered plot of seismic data [1]. (d) Example of 3D rendering. Supplied tutorials and SCons
script contain further details. The code may be used for any geographic area, at any scale.

d)

a) b)

d)c)

Stål and Reading: A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing

Art. 2, page 5 of 7

of attribute data and interpolation. Grids or data points
can be read from a number of formats and interpolated.
A rasterized polygon dataset is shown in Figure 2a and is
also used to crop and select data in Figure 2c–d.

Example of visualization and data export
The class also contains functions for visualisation using
matplotlib [14] and Cartopy [41] (Figure 2a–c). Map views
with e.g. coast lines and coordinates can be produced
directly by agrid. Mayavi [26] and the underlying VTK [31]
are used for 3D visualisation (Figure 2d). Data can be
exported as netCDF, GeoTiff or ASCII formats. JSON format
is used to import metadata and export model parameters.

Quality control
The module is published with a number of tutorials
to demonstrate the functionality with different data
sources, scales and extent. Known limitations exist in the
visualization methods for less common projections and
some warnings are not handled smoothly. Error handling
mainly relies on used dependencies with only limited
functionality in agrid itself. Development errors have been
ruled out by comparing results from other GIS applications.
2D data that have been imported, processed and exported,
have been compared to similar processing in the GIS
applications QGIS. Those test cases and additional test code
are also available from the project’s github repository [32].
The updated issue tracker is likewise available at github.

(2) Availability
Operating system
The code is developed and tested in Ubuntu 16.04, 18.04
and macOS High Sierra 10.13.6. It has also been tested on
Windows 10.

Programming language
Python >= 3.6 (tested on Python 3.6 and Python 3.7).

Additional system requirements
Very low requirements for basic use, but can be scaled up
for larger grids. The use of dask arrays relax the need for
large RAM.

Dependencies
The class depends on a number of Python packages
that can all be installed by package managers, e.g.
pip3 or conda: Minimum dependencies: cartopy
geopandas matplotlib json numpy pyproj
rasterio scipy xarray

Additional dependencies used and imported only by
some methods: datetime fiona imageio mayavi
requests shapely tarfile tqdm zipfile.

List of contributors
Tobias Stål, Anya M. Reading

Software location
Name: agrid
�Persistent identifier: https://doi.org/10.5281/zenodo.​
2553965
Licence: MIT License

Publisher: Tobias Stål
Version published: 0.4.0
Date published: January 25, 2020

Code repository
Name: GitHub
�Persistent identifier: https://github.com/TobbeTripitaka/
agrid.git
Licence: MIT License
Date published: January 25, 2020

Language
agrid was developed in English.

(3) Reuse potential
agrid is deliberately developed for reuse in a broad range
of applications. The code is commented and explained to
guide and advice modifications. The code could be useful
for any spatial processing and analysis in areas such as
solid Earth geophysics, geotechnical and environmental
applications. For some uses, the complete package might
be installed, but with the open architecture, copied
snippets or methods can be included into other projects.
The MIT license allows for a broad reuse. Functionality and
issues may be discussed on the code repository. Python
and the used libraries are also supported by large online
communities.

Acknowledgements
We are grateful for discussions and test cases with Eleri
Evans, Jacqueline Halpin, Shawn Hood, Peter E Morse and
Joanne Whittaker. We also wish to thank two anonymous
reviewers.

Competing Interests
The authors have no competing interests to declare.

References
1.	 An, M, Wiens, D A, Zhao, Y, Feng, M, Nyblade,

A A, Kanao, M, Li, Y, Maggi, A and Lévêque,
J-J 2015 S-velocity model and inferred Moho
topography beneath the Antarctic Plate from
Rayleigh waves. Journal of Geophysical Research,
Solid Earth, 120: 2007–2010. DOI: https://doi.
org/10.1002/2014JB011332

2.	 Bergstra, J, Breuleux, O, Bastien, F, Lamblin, P,
Pascanu, R, Desjardins, G, Turian, J, Warde-Farley,
D and Bengio, Y 2010 Theano: A cpu and gpu math
compiler in python. In Proc. 9th Python in Science
Conf, 1.

3.	 Beyreuther, M, Barsch, R, Krischer, L, Megies, T,
Behr, Y and Wassermann, J 2010 ObsPy: A Python
toolbox for seismology. Seismological Research Letters,
81(3): 530–533. ISSN 0895-0695. DOI: https://doi.
org/10.1785/gssrl.81.3.530

4.	 de la Varga, M, Schaaf, A and Wellmann, F 2019
Gempy 1.0: Open-source stochastic geological modeling
and inversion. Geoscientific Model Development. DOI:
https://doi.org/10.5194/gmd-2018-61

5.	 Fomel, S 2013 Tour with Madagascar, Revisiting s. e. p.
and SCons. Journal of Open research software.

https://doi.org/10.5281/zenodo.2553965
https://doi.org/10.5281/zenodo.2553965
https://github.com/TobbeTripitaka/agrid.git
https://github.com/TobbeTripitaka/agrid.git
https://doi.org/10.1002/2014JB011332
https://doi.org/10.1002/2014JB011332
https://doi.org/10.1785/gssrl.81.3.530
https://doi.org/10.1785/gssrl.81.3.530
https://doi.org/10.5194/gmd-2018-61

Stål and Reading: A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing

Art. 2, page 6 of 7

6.	 Fomel, S and Hennenfent, G 2007 Computational
experiments using SCons, reproducible. ICASSP, 2007,
1257–1260. DOI: https://doi.org/10.1109/ICASSP.​
2007.367305

7.	 Fretwell, P, Pritchard, H D, Vaughan, D G, Bamber,
J L N, Barrand, E, Bell, R, Bianchi, C, Bingham, R G,
Blankenship, D D, Casassa, G, Catania, G, Callens,
D, Conway, H, Cook, A J, Corr, H F J, Damaske,
D, Damm, V, Ferraccioli, F, Forsberg, R, Fujita, S,
Gim, Y, Gogineni, P, Griggs, J A, Hindmarsh, R C
A, Holmlund, P, Holt, J W, Jacobel, R W, Jenkins,
A, Jokat, W, Jordan, T, King, E C, Kohler, J, Krabill,
W, Riger-Kusk, M, Langley, K A, Leitchenkov,
G, Leuschen, C, Luyendyk, B P, Matsuoka, K,
Mouginot, J, Nitsche, F O, Nogi, Y, Nost, O A, Popov,
S V, Rignot, E, Rippin, D M, Rivera, A, Roberts,
J, Ross, N M, Siegert, J, Smith, A M, Steinhage,
D, Studinger, M, Sun, B, Tinto, B K, Welch, B C,
Wilson, D, Young, D A, Xiangbin, C and Zirizzotti,
A 2013 Bedmap2: Improved ice bed, surface and
thickness datasets for Antarctica. The Cryosphere, 7(1):
375–393. DOI: https://doi.org/10.5194/tcd-6-4305-
2012

8.	 Gillies, S 2013 The Shapely user manual. URL https://
pypi.org/project/Shapely/.

9.	 Gillies, S 2014 The Fiona user manual. URL https://
fiona.readthedocs.io/en/latest/manual.html.

10.	Gillies, S 2018 Rasterio: Geospatial raster I/O for
Python programmers. URL https://github.com/
mapbox/rasterio.

11.	Hinsen, K 2011 A data and code model for reproducible
research and executable papers. Procedia Computer
Science, 4: 579–588. ISSN 1877-0509. DOI: https://
doi.org/10.1016/j.procs.2011.04.061

12.	Hoyer, S and Hamman, J 2017 xarray: N-D labeled
arrays and datasets in Python. Journal of Open Research
Software, 5(1). DOI: https://doi.org/10.5334/jors.148

13.	Hoyer, S, Fitzgerald, C, Hamman, J, Kleeman, A,
Kluyver, T, Roos, M, Helmus, J J, Markel, M, Cable,
P, Maussion, F, Miles, A, Kanmae, T, Wolfram,
P, Sinclair, S, Bovy, B, Ebrevdo, R, Guedes, R,
Abernathey, R, Filipe, S, Hill, N, Richards, A,
Lee, N, Koldunov, M, Maciekswat, G, Gerard, J,
Babuschkin, I, Deil, C, Welch, E and Hilboll, A 2019
Xarray:. http://xarray.pydata.org/en/stable/.

14.	Hunter, J D May 2007 Matplotlib: A 2D graphics
environment. Computing In Science & Engineering,
9(3): 90–95. ISSN 1521-9615. DOI: https://doi.org/10.​
1109/MCSE.2007.55

15.	Jones, E, Oliphant, T, Peterson, P, et al. 2001 SciPy:
Open Source scientific tools for Python. URL http://
www.scipy.org/. [Online; accessed 13 Dec 2018].

16.	Jordahl, K 2014 GeoPandas: Python tools for geo
graphic data. URL https://github.com/geopandas/
geopandas.

17.	Knight, S 2010 Scons user guide. Python Software
Foundation.

18.	Lewis, A, Lymburner, L, Purss, M B J, Brooke, B,
Evans, B, Ip, A, Dekker, A G, Irons, J R, Minchin,
S, Mueller, N, et al. 2016 Rapid, high-resolution

detection of environmental change over continental
scales from satellite data-the Earth Observation Data
Cube. International Journal of Digital Earth, 9(1):
106–111. DOI: https://doi.org/10.1080/17538947.2
015.1111952

19.	Lewis, A, Oliver, S, Lymburner, L, Evans, B, Wyborn,
L, Mueller, N, Raevksi, G, Hooke, J, Woodcock,
R, Sixsmith, J, Wu, W, Tan, P, Li, F, Killough, B,
Minchin, S, Roberts, D, Ayers, D, Bala, B, Dwyer,
J, Dekker, A, Dhu, T, Hicks, A, Ip, A, Purss, M,
Richards, C, Sagar, S, Trenham, C, Wang, P and
Wang, L-W December 2017 The Australian geoscience
data cube-Foundations and lessons learned. Remote
Sensing of Environment, 202: 276–292. DOI: https://
doi.org/10.1016/j.rse.2017.03.015

20.	McKinney, W 2015 Pandas: A Python data analysis
library. URL http://pandas.pydata.org.

21.	Megies, T, Beyreuther, M, Barsch, R, Krischer, L
and Wassermann, J 2011 ObsPy – what can it do for
data centers and observatories? Annals of Geophysics,
54(1): 47–58. ISSN 1593-5213. DOI: https://doi.org/​
10.4401/ag-4838

22.	Morse, P, Reading, A M and Stål, T 2019 Well-posed
geoscientific visualization through interactive and
color mapping. Frontiers in Earth Science. DOI: https://
doi.org/10.3389/feart.2019.00274

23.	Oliphant, T E 2006 A guide to NumPy, 1. Trelgol
Publishing USA.

24.	Pedregosa, F, Varoquaux, G, Gramfort, A, Michel,
V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer,
P, Weiss, R, Dubourg, V, et al. 2011 Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct): 2825–2830.

25.	QGIS. 2015 QGIS geographic information system.
Open Source Geospatial Foundation Project. By
development team and community.

26.	Ramachandran, P and Varoquaux, G 2011 Mayavi:
3D visualization of scientific data. Computing in Science
and Engineering, 13(2): 40–51. ISSN 1521-9615. DOI:
https://doi.org/10.1109/MCSE.2011.35

27.	Rew, R and Davis, G 1990 NetCDF: An Interface for
Scientific Data Access. IEEE Computer Graphics and
Applications, 10(4): 76–82. ISSN 0272-1716. DOI:
https://doi.org/10.1109/38.56302

28.	Robitaille, T P, Tollerud, E J, Greenfield, P,
Droettboom, M, Bray, E, Aldcroft, T, Davis, M,
Ginsburg, A, Price-Whelan, A M, Kerzendorf,
W E, et al. 2013 Astropy: A community python
package for astronomy. Astronomy & Astrophysics,
558: A33. DOI: https://doi.org/10.1051/0004-
6361/201322068

29.	Rocklin, M 2015 Dask: Parallel computation with
blocked algorithms and task scheduling. In Proceedings
of the 14th Python in Science Conference, number 130–
136. Citeseer. DOI: https://doi.org/10.25080/Majora-
7b98e3ed-013

30.	Roth, G, Matsuoka, K, Skoglund, A, Melvær, Y and
Tronstad, S February 2018 Quantarctica: A unique,
open, standalone GIS package for Antarctic research
and education. URL http://quantarctica.npolar.no.

https://doi.org/10.1109/ICASSP.2007.367305
https://doi.org/10.1109/ICASSP.2007.367305
https://doi.org/10.5194/tcd-6-4305-2012
https://doi.org/10.5194/tcd-6-4305-2012
https://pypi.org/project/Shapely/
https://pypi.org/project/Shapely/
https://fiona.readthedocs.io/en/latest/manual.html
https://fiona.readthedocs.io/en/latest/manual.html
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio
https://doi.org/10.1016/j.procs.2011.04.061
https://doi.org/10.1016/j.procs.2011.04.061
https://doi.org/10.5334/jors.148
http://xarray.pydata.org/en/stable/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
http://www.scipy.org/
http://www.scipy.org/
https://github.com/geopandas/geopandas
https://github.com/geopandas/geopandas
https://doi.org/10.1080/17538947.2015.1111952
https://doi.org/10.1080/17538947.2015.1111952
https://doi.org/10.1016/j.rse.2017.03.015
https://doi.org/10.1016/j.rse.2017.03.015
http://pandas.pydata.org
https://doi.org/10.4401/ag-4838
https://doi.org/10.4401/ag-4838
https://doi.org/10.3389/feart.2019.00274
https://doi.org/10.3389/feart.2019.00274
https://doi.org/10.1109/MCSE.2011.35
https://doi.org/10.1109/38.56302
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
http://quantarctica.npolar.no

Stål and Reading: A Grid for Multidimensional and Multivariate Spatial
Representation and Data Processing

Art. 2, page 7 of 7

31.	Schöberl, J, Martin, K and Lorensen, B 2006 Kitware,
The Visualization Toolkit. Technical report. (VTK).

32.	Stål, T January 2020 Agrid code and tests v. 0.4.0.
Zenodo. DOI: https://doi.org/10.5281/zenodo.2553966

33.	Stål, T, Reading, A M, Halpin, J A and Whittaker, J
M August 2019 A multivariate approach for mapping
lithospheric domain boundaries in east Antarctica.
Geophysical Research Letters. DOI: https://doi.org/​
10.1029/2019GL083453

34.	Stål, T, Reading, A M, Halpin, J and Whittaker,
J 2020 The Antarctic crust and upper mantle: A 3D
model and framework for interdisciplinary research.
Manuscript in preparation.

35.	Thompson, J F, Soni, B K and Weatherill, N P 1998
Handbook of grid generation. CRC press.

36.	Uieda, L October 2018 Verde: Processing and gridding
spatial data using green’s functions. Journal of
Open Source Software, 3(30): 957. DOI: https://doi.
org/10.21105/joss.00957

37.	van der Walt, S, Colbert, S C and Varoquaux, G 2011
The NumPy array: A structure for efficient numerical

computation. Computing in Science & Engineering,
13(2): 22–30. DOI: https://doi.org/10.1109/MCSE.​
2011.37

38.	Warmerdam, F and GDAL/O. G. R. contributors.
software Library, GDAL/OGR Geospatial Data
Abstraction. Foundation, Open Source Geospatial,
2018. URL http://gdal.org.

39.	Wilson, G, Aruliah, D A, Brown, C T, Chue Hong,
N P, Davis, M, Guy, R T, Haddock, S H D, Huff, K D,
Mitchell, I M, Plumbley, M D and Others 2014 Best
practices for scientific computing. PLoS biology, 12(1):
e1001745. DOI: https://doi.org/10.1371/journal.pbio.​
1001745

40.	Zwally, H J, Giovinetto, M B, Beckley, M A and Saba,
J L 2012 Antarctic and Greenland drainage systems,
gsfc cryospheric sciences laboratory. Available at
icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_
systems.php. Accessed March 1, 2015.

41.	Met Office 2019 Cartopy: A cartographic python
library with a matplotlib interface. Exeter, Devon. URL
http://scitools.org.uk/cartopy.

How to cite this article: Stål, T and Reading, A M 2020 A Grid for Multidimensional and Multivariate Spatial Representation and
Data Processing. Journal of Open Research Software, 8: 2. DOI: https://doi.org/10.5334/jors.287

Submitted: 28 July 2019 Accepted: 09 January 2020 Published: 30 January 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.5281/zenodo.2553966
https://doi.org/10.1029/2019GL083453
https://doi.org/10.1029/2019GL083453
https://doi.org/10.21105/joss.00957
https://doi.org/10.21105/joss.00957
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
http://gdal.org
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php
http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php
http://scitools.org.uk/cartopy

	(1) Overview
	Introduction
	The computational framework
	Implementation and architecture
	Example of grid generation and data import
	Example of visualization and data export
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Listing 1
	Listing 2

