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ABSTRACT

TheAustralianCommunityClimate andEarth-SystemSimulator-Global (ACCESS-G) features an atmosphere-

only numerical weather prediction (NWP) suite used operationally by the Australian Bureau of Meteorology to

forecast weather conditions for theAntarctic. The current operational version of the forecastmodel, theAustralian

Parallel Suite v2 (APS2), has been used operationally since early 2016. To date, the performance of the model has

been largely unverified for the Antarctic and anecdotal reports suggest challenges for model performance in the

region. This study investigates the performance of ACCESS-G south of 508S over 2017 and finds that model

performance degrades toward the poles and in proportion to forecast horizon against a range of performance

metrics. Themodel exhibits persistent negative surface andmean sea level pressure biases around theAdelie Land

coast, which is linked to the underrepresentation of model winds to the west, and driven by positive screen tem-

perature biases that inhibit modeled katabatic outflow. These results suggest that an improved representation of

boundary layer parameterization could be implemented to improve model performance in the region.

1. Introduction

Research and logistical activities on and around the

Antarctic continent are critically dependent on the pro-

vision of reliable weather forecasts. Base operations, in-

cluding research expeditions, are highly dependent on

forecast guidance, as hazardous conditions can develop

quickly, limiting accessibility to field sites and potentially

threatening the safety of researchers (Powers et al. 2003).

Aviation and shipping endeavors require forecasting

services for situational awareness hours or even days in

advance, and decisions made as a result of these forecasts

have substantial financial and safety implications. The ca-

pacity of national meteorological agencies to issue timely,

accurate weather forecast guidance for the Antarctic re-

gion is therefore of paramount importance.

However, observational records of the weather and

climate of Antarctica and the Southern Ocean are

temporally limited and spatially sparse. Since the 1950s,

automatic weather stations (AWSs) have been installed

on the continent to take surface meteorological mea-

surements, and in recent decades to also take surface

chemistry measurements (Lazzara et al. 2012). Con-

tinuing to install new AWSs and maintain existing sites

requires considerable financial and logistical investment.

Furthermore, not all AWSs are recognized or used by

every national Antarctic program, and they produce data

of variable quality. Logistical and financial constraints on

the number of stations that can be serviced per season

result in a substantial proportion of sites being left for
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several years between maintenance visits. During periods

of this length, the accumulation of snow changes the ele-

vation of the instruments above the surface, and some

stations can even be entirely buried beneath snow.

AWSs are sometimes installed on surfaces other

than rock, such as on ice shelves, which move over

time and require additional effort to ensure mea-

surements of elevation and location are adequately

maintained (Lazzara et al. 2012). The AWS network

that currently exists is generally concentrated in re-

gions near manned stations, such as around the West

Antarctic Peninsula, the Ross Ice Shelf, and in parts of

the East Antarctic coastline such as Adelie Land

(Fig. 1). However, large regions of the continental

interior and coastline, as well as the sea ice and sur-

rounding ocean, remain without any AWS observa-

tional records. While satellite observations have provided

enhanced spatiotemporal observational coverage of the

region, the utility of these observations is limited, such as by

cloud or temporal coverage (Comiso 2000; Walton 2013).

The lack of a long-term, continuous observational

record of key weather variables places constraints

upon weather forecasting and research, which neces-

sitates targeted and internationally collaborative observ-

ing campaigns. One such campaign is the Year of Polar

Prediction (YOPP) Special Observing Period (SOP),

which ran from 16 November 2018 to 15 February 2019

(see Goessling et al. 2016) and aims to populate the ob-

servational record with enhanced observations over an

extended period of time.

While the output of NWP can be used to fill gaps in the

observational record, a higher level of caution must be

taken with NWP output than in midlatitude regions,

since the sparsity of observational data can lead to

model drift (Connolley and Harangozo 2001) or a

greater influence of the model background (i.e., a prior

forecast). The spatiotemporal variability of NWPoutput

has been shown to have differing levels of predictive

skill between the mid- and high latitudes, as well as

varying both horizontally and vertically throughout the

atmosphere (Bengtsson 1991). The predictive skill of

NWP is sensitive to data paucity, whereby fewer ob-

servations can lead to a greater contribution of the

model prior during assimilation, and greater reliance

on the model itself during verification. Heat flux and mo-

mentum energy transfers, and errors in the model param-

eterization of physical processes such as cloudmicrophysics

also have substantial impacts on the skill of NWP (Bauer

et al. 2015). The verification of NWP model output is

therefore more challenging in regions of lower observa-

tional coverage, such as in the high southern latitudes.

Traditional NWP output verification uses a range of

metrics and skill scores (Wilks 2011; Bauer et al. 2015;

Jung and Matsueda 2016) for a range of meteorological

parameters such as mean sea level pressure (MSLP),

geopotential height at 500 hPa, and surface winds and

temperatures (WMO 2015). MSLP is typically used for

the identification of high or low pressure systems, which

are essential for the forecasting of both the type and

severity of weather phenomena; it is also less dominated

by biases in orography (Bracegirdle and Marshall 2012)

and provides insight into atmospheric conditions both at

the surface and throughout the atmospheric column

above. The standard geopotential height for analysis in

theAntarctic region is 500hPa as it is the first mandatory

reporting geopotential height level that is located ev-

erywhere above the ice surface (Pendlebury et al. 2003).

In addition, as the 500-hPa surface is also above the

planetary boundary layer in the free atmosphere, its flow

is in near-geostrophic balance and not influenced by

surface effects such as friction and shearing stresses

(Kaimal and Finnigan 1994). The 500-hPa surface is

used as a general performance indicator independent

of boundary layer and surface parameterizations, which

become less important at these heights for variables such

as temperature (Bracegirdle and Marshall 2012).

Real-time forecasting for the Antarctic relies heavily

on both global and limited-area (or mesoscale) atmo-

spheric models (LAMs), such as the popular Antarctic

Mesoscale Prediction System (AMPS). AMPS was first

implemented in late 2000 to provide experimental real-

time meteorological forecasts for the Antarctic region

(Powers et al. 2003) and has been run operationally as a

real-time implementation of the Weather Research and

Forecasting (WRF)Model (Skamarock et al. 2008) since

2008. Initial conditions in AMPS are generated from the

National Centers for Environmental Prediction (NCEP)

global forecasting system as well as space-borne and

surface observations. As a limited-area model, AMPS

covers six domains: one domain that encompasses most

of the Southern Ocean, another over the Antarctic

continent, and four others that focus specifically on re-

gions of interest such as the Ross Sea and South Pole

(Bromwich et al. 2005). The performance of AMPS

forecasts has been found to be generally strong, due in

part to polar-specific modifications to the original

model, including changes to the radiation scheme, in-

corporating fractional sea ice coverage, updates to the

thermal properties of sea ice, ice and snow, and careful

treatment of the Antarctic coastal topography and land

surface (Powers et al. 2003).

In conjunction with LAMS, forecasting centers also

provide weather forecasts for the polar regions using

outputs from global prediction systems. One such model

is the global variant of theAustralian Community Climate

and Earth-System Simulator (ACCESS); operated and

1082 WEATHER AND FORECAST ING VOLUME 34



maintained by the Australian Bureau of Meteorology

(Puri et al. 2013). ACCESS is an atmosphere-only NWP

suite built upon the Met Office (UKMO) Unified Model

(UM; see Cullen 1993); using a combination of UKMO

and custom components developed specifically for the

Southern Hemisphere. Initial conditions are generated

via a four-dimensional variational assimilation system

(4DVAR; see Rawlins et al. 2007); combining quality-

controlled observations with the model prior and

background error covariances (Puri et al. 2013). Table 1

briefly describes general details of the model and the

reader is referred to Puri et al. (2013), Australian

Bureau of Meteorology (2016) and Davies et al. (2005)

for more specific details regarding model implemen-

tation and physical parameterizations. ACCESS has

several variants spanning global (ACCESS-G), regional

(ACCESS-R), and city (ACCESS-C) domains, as well

as a relocatable tropical cyclone domain (ACCESS-

TC). However, as there is no polar-specific version of

ACCESS, Antarctic forecasters rely on forecast guid-

ance from the global variant, ACCESS-G; upon which

this study is focused.

The performance of ACCESS is released to the

public in the form of quarterly performance state-

ments (Wu 2015, 2016). These statements assess

model skill of MSLP and 500-hPa geopotential height

for the Australian verification domain for both the

global model and the higher-resolution regional forecast

model. In addition, these statements chart the perfor-

mance of ACCESS compared to international models

from other forecasting centers. While these statements

focus primarily on the performance over the Australian

verification domain, model forecast data remain available

for the polar regions. This presents both the opportunity

and the data required to assess model performance in the

Antarctic.

Anecdotal reports suggest that atmosphere-only weather

forecast models have unreliable performance over the

FIG. 1. Overview of AutomaticWeather Stations in the Antarctic (AMRC 2018). Note that someAWSs [i.e., Mawson (Australia)] do not

feature on this diagram.
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Antarctic continent and surrounding ocean, leading to

the interpretation of ACCESS-G in concert with models

from other centers to confirm or repudiate the model

output. It is through this approach that forecasters le-

verage the strengths/weaknesses of each model to find

an agreement that best informs the forecasting process.

Until recently, the performance of NWP has had par-

ticular emphasis on the tropics andmidlatitudes (Jung and

Matsueda 2016), where societal implications are un-

derstandably weighted by the proportion of the population

residing within these latitude ranges. Nevertheless, the

performance of NWP toward the poles is experiencing

renewed interest from the international community and

National Arctic/Antarctic Programs through the World

Meteorological Organization’s Polar Prediction Project

(PPP) and YOPP 2017–19. Furthermore, there is a par-

ticular emphasis on the verification of the complex polar

environment (Casati et al. 2017) towhich this study aims to

contribute.

In this study, we seek to understand the degradation of

performance of ACCESS-G south of 508S through in-

terpretation of standard evaluation techniques used oper-

ationally by the Australian Bureau of Meteorology and

other forecasting centers. We focus on the S1 skill score

(Teweles and Wobus 1954), mean error (ME), mean ab-

solute error (MAE), and root-mean-square error (RMSE)

to assess the accuracy of forecasts for mean sea level and

surface pressure, surface (10m) winds, screen (2m) tem-

perature, and geopotential height at 500hPa. Due to the

limitations of using model MSLP over the Antarctic

landmass (such as vertical extrapolation from the first

terrain-following model level), this study also examines

surface pressure variables. Through better understanding

of model performance in the region, we quantify the per-

formance of the model over the Southern Ocean and

Antarctic. In doing so, we identify notable systemic model

biases, the physical processes that drive them, and whether

these biases are regionally or diurnally influenced.Abetter

understanding ofmodel deficiencieswill potentially lead to

an improved future representation of Antarctic physics

and parameterizations of processes not yet fully resolved in

the ACCESS-G NWP model.

2. Method

a. Data

This study uses the forecast output of MSLP, surface

pressure, surface winds, screen temperature, and geo-

potential height and air temperature at both 500hPa and

throughout the vertical column from the operational sec-

ond version of the ACCESS-G Australian Parallel Suite

(APS2) between January and December 2017. Forecasts

and verifying analyses were temporally aligned by first

subtracting the desired forecast length (horizon) in hours

from the analysis time to select the forecast file preceding

the reference analysis. Then, within the forecast file, the

appropriate forecast horizon was selected to align with the

verifying analysis. This enabled direct comparison between

an analysis and the forecast (generated prior) for the same

point in time. The analyses studied were the model run-

times (0000, 0600, 1200, and 1800 UTC) as compared with

the 12-, 24-, 36-, and 48-h forecast horizons. These times

were selected for their applicability in short-term fore-

casting, potential diurnal sensitivities and computational

convenience. Topographical data were taken as the

model’s own land elevation field, which was converted

from meters to (approximate) geopotential height for

plotting against model outputs via the inverse of the

equations provided by NOAA (2018).

While the use of model analysis as a reference verifica-

tion dataset is not ideal (as data-sparse regions effectively

TABLE 1. ACCESS-G APS2 configuration overview. See Puri et al. (2013) and Australian Bureau of Meteorology (2016) for further

details.

Atmospheric core UKMO Unified Model (UM) version 8.2

Boundary layer Joint U.K. Land Environment Simulator (JULES; Best et al. 2011)

Clouds Prognostic cloud and condensate (PC2) scheme (Wilson and Ballard 1999) with cloud area correction

(Boutle and Morcrette 2010)

Convection Mass flux scheme based on Gregory and Rowntree (1990) version 4a

Data assimilation (DA) Four-dimensional variational assimilation (4DVAR) version v29.1

DA frequency 6-hourly at 0000, 0600, 1200, 1800 UTC

Horizontal resolution 769 3 1024 (approx. 0.238 3 0.358, 25 km)

Precipitation Single-moment bulk microphysics scheme (Wilson and Ballard 1999) with modifications from Abel and

Shipway (2007)

Radiation Edwards and Slingo (1996) with additions outlined in Australian Bureau of Meteorology (2016)

Sea surface temperature GAMSSA Daily Global 0.258 SST analysis (Beggs 2008)

Sea ice NCEP 1/128 sea ice analysis

Soil moisture analysis SURF nudges soil moisture field via screen-level analysis; once every 6 h

Vertical resolution 70 levels, model top approx. 80 km/0.009 hPa
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leave the model verifying against itself), this approach is

routine in operational forecasting (i.e., Eerola 2013) and is

recommended by the WMO (2015) to standardize verifi-

cation between centers for model intercomparison. Point-

based observations, while preferable, undersample the

forecast space (Ebert et al. 2013) and are limited to the

spatial distribution of installations, which in the Antarctic

are perhaps fewer and sparser than anywhere else in the

world. While there are efforts to verify NWP against sat-

ellites and vice versa to achieve greater observational

coverage for various meteorological parameters (Crocker

and Mittermaier 2013), the readings from satellite sensors

are subject to their own inherent assumptions, biases and

limitations, such as the delineation of cloud cover over ice

and the temperature at the surface against which a model

could be verified.

b. Verification metrics

Following the guidelines set forth by the WMO

(2015), this study first investigates the performance of

the model by the metric of the S1 skill score (Teweles

and Wobus 1954) as well as the additional metrics of

mean error, mean absolute error, and root-mean-squared

error. Metrics are assessed spatially over the study do-

main as well as as meridional/zonal averages as appro-

priate. The inclusion of these additional metrics allows

us to assess model performance from different per-

spectives, while acknowledging the limitations of each

metric. All of the metrics described below were com-

puted cell-wise through the model time series, with the

exception of the S1 skill score.

1) S1 SKILL SCORE

The S1 score (Teweles and Wobus 1954) determines

the difference between adjoining grid cells, rather than

comparing absolute values of grid cells, and while it does

not reflect bias (since it does not compare absolute

values), it provides insight into long-term trends in

forecast accuracy (Wilks 2011). S1 skill considers the

gradients of values across a two-dimensional grid in the

x and y dimensions for both forecast and analysis for a

particular forecast parameter (typically pressure at a

given level). This contrasts with differences at specific

grid coordinates between forecast and analysis used in

other metrics. These gradients are then compared rela-

tive to themaximum gradients of the forecast or analysis

(Jolliffe and Stephenson 2012). The S1 skill score [Eq.

(1)] is sensitive to both domain size and resolution, and

can bemanuallymanipulated by a forecaster by choosing a

value greater than the median of the probability distribu-

tion (Thompson and Carter 1972; Jolliffe and Stephenson

2012). However, in this study we use raw model analyses

and forecasts and hence there is no manual manipulation:
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Herewi is applied as a weight term to reduce meridional

convergence and to normalize cells across latitude ranges.

The term fi is the latitude of the current cell, f is the

forecast value for the parameter of interest, o is the ob-

served (or reference analysis) value for the parameter of

interest, eg is the (forecast2 observed) pressure difference

gradient, andGl is the larger of either the forecast gradient

or the observed gradient (Thompson and Carter 1972).

Both eg and Gl are solved first by computing difference

fields, then the equation is solved using adjacent pairs in

both the x and y dimensions to yield the S1 skill. S1 is in the

range [0, ‘], with 0 indicating a perfect score. The ob-

served value used in the calculation is typically taken as the

analysis for spatial, grid-based verification and a physical

observation in point-based verification (WMO, 2015).

In this study, we calculated the S1 skill of the model

over the Antarctic (508–908S) and global domains to

compare model performance and confirm that our

methods were comparable with those used operationally

at the bureau. Further to this, we calculated the S1 skill

of the model over each global latitude band (domains of

the full longitudinal range for each latitude) to observe

the meridional performance of the model and any idi-

osyncrasies of a metric reliant on grid structure. We

present the results of the meridional S1 performance in

this study.

The S1 skill score possesses some undesirable quali-

ties described by Wilks (2011), such as the lack of im-

portance placed on the magnitude of forecast pressures,

the lack of bias reflected in the metric, seasonality of

performance (where summer scores tend to be worse

and therefore challenging to interpret for annual time

series), and sensitivity to domain size and grid structure.

While considered by some to be a legacy metric that has

fallen out of favor resulting from these qualities (Wilks

2011), S1 is still used operationally within the Bureau to

continue the historical time series of model im-

provement over time. Cosine latitude weighting is not
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used operationally by the Bureau over the Australian

domain; however, we have used it in this study to adhere as

closely as possible to the WMO specifications.

2) MEAN ERROR

The mean error, defined as

ME5
1

n
�
n

i51

(f
i
2 o

i
) , (5)

was used to observe the average error through time at

each grid point. This metric was included to establish a

more general assessment of model performance, how-

ever, it is subject to issues of centrality from extreme

positive or negative values thatmay shift themean of the

metric toward zero.

3) MEAN ABSOLUTE ERROR

The mean absolute error, defined as

MAE5
1

n
�
n

i51

jf
i
2 o

i
j , (6)

is a computationally inexpensive metric that is resistant

to issues of centrality and less sensitive to outliers than

second-order statistics such as mean-squared error

(Jolliffe and Stephenson 2012). MAE is useful when the

magnitude, but not the sign of the error, is important as

it does not discriminate between positive and negative

errors. We have included it to observe error magnitudes,

however, higher-order statistics such as mean-squared

error aremore commonplace in operational verification.

4) ROOT-MEAN-SQUARED ERROR

The root-mean-squared error, defined as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(f
i
2 o

i
)2

s
, (7)

was selected over the commonly used mean-squared

error metric as it retains the units of the original data.

RMSE does not suffer from centrality issues from ex-

treme positive or negative values. Instead, RMSE is

sensitive to these outliers and heavily penalizes extreme

errors rather than diluting them through the calculation

of the mean. We have used this statistic to detect local

error maxima that may be the result of regional or di-

urnal influence.

This metric is most appropriate when the error dis-

tribution is expected to be Gaussian (Chai and Draxler

2014), such as may be expected from time series data

averaged over multiple model analysis base times or

forecast horizons, and draws attention to model grid

cells at time steps containing larger errors. However,

given that RMSE is constructed in multiple steps (sum

of squared error, mean of the sum, and the square root of

the sum) (Willmott and Matsuura 2005) the interpreta-

tion of the metric can oftentimes prove challenging.

All metrics were calculated on postprocessed model

analysis and forecast data using Python and the NCAR

Command Language (NCL) (UCAR 2019); in particu-

lar the Iris Python Library (MetOffice 2010) and custom

verification code under development for the Truth

Python Library (Schroeter 2018).

3. Results

Interpretation of the following results is a function of the

metric evaluated and the forecast parameter of interest

within the study domain (Fig. 2). No single combination of

either can establish a complete picture of model

performance. Hence, we assess the range of metrics

and parameters to develop a broader understanding of

model performance. For convenience, we adopt the lan-

guage conventions strong skill, weak skill, and under- and

over-forecasting to communicate results. As the S1 skill

score [Eq. (1)] is of the range [0, ‘], stronger skill refers to
lower values, whereas weaker skill refers to higher values.

Underforecasting is defined as situations where the model

forecasts a meteorological value less than that of the

verifying analysis; overforecasting is defined as situa-

tions where themodel forecasts a value greater than that

of the verifying analysis. Model biases are communi-

cated in terms of positive and negative, referring to sit-

uations of over and underforecasting, respectively.

a. Meridional performance

We calculated the ACCESS-G NWP 2017 annual S1

skill score as a combined average of analysis times (0000,

0600, 1200, and 1800UTC) at each forecast horizon over

each latitude band of the entire global domain for both

MSLP and 500-hPa height (Fig. 3). The skill profile of

MSLP shows that the model is weakest at the equator

and toward the poles, with the strongest skill around

508S at all forecast horizons. The profile also appears to

rapidly improve between 808 and 908S. This increase in

skill is likely due to a combination of factors, such as

fewer available observations (and as a consequence in-

creased influence from the initial model forecast back-

ground), the reduction from surface pressure to sea level

for MSLP in the model, and meridional convergence.

This suggests a peculiarity of the metrics rather than a

rapid performance increase. Equatorial performance

remains stable, albeit poor, irrespective of forecast ho-

rizon (Figs. 3e–g). Figures 3e–g show a weakening of

skill toward toward 708S, after which skill begins to
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improve toward the poles. Arguably, the increasing

proportion of land to ocean and the derivation of MSLP

over land in the model may account for some of this

increase in skill. The slope either side of this inflexion

point steepens with longer to forecast horizon, suggest-

ing that skill performance becomes less stable at longer

forecast horizons.

The S1 skill score of the 500-hPa geopotential height

field is also weakest at the equator and toward the poles,

with the strongest skill also around 508S (Fig. 3a). Again,

while equatorial performance is poor, it is consistently

so at longer forecast horizons. We note that the skill

profile of 500-hPa geopotential height is considerably

smoother than that of MSLP, with the 500-hPa skill

outperforming the MSLP skill through from the mid-

latitudes to approximately 708S. This suggests potential
topographic influences, as 500 hPa is positioned in the

free atmosphere above the planetary boundary layer

where topography is less influential. Despite topo-

graphical problems, when plotted as a function of the

12-h forecast (Figs. 3e–g) 500-hPa geopotential height

degrades faster than MSLP at longer forecast horizons.

RMSE and MAE of MSLP (Figs. 4a–d) indicate de-

creasing performance toward the poles. Performance

weakens at longer forecast horizons and is worst at

around 608S for both metrics. Using this latitude for

reference, RMSE performance is approximately three

times weaker at 48 h as it is at 12 h. Similarly, ME and

MAE are about 2 times weaker over the same time

period. The meridional profiles of these metrics show a

performance degradation toward the high latitudes,

particularly to the south. The slope of this degradation

steepens at longer to forecast horizon. The meridional

profile of ME for MSLP does not exhibit this behavior,

rather the metric tends toward zero with slight positive

biases at about 308S and south of 758S.
The meridional profiles of surface pressure (Figs. 4e–h)

follow a similar pattern to MSLP, albeit with a steeper

slope to the RMSE/MAE maximum at 608S. If we use

this latitude for reference, the 48-h RMSE of surface

pressure is approximately 2.5 times that of the 12-h

forecast.

ME of screen temperature shows a negative model

bias for much of the midlatitudes and at 808S where the

parameter is underforecast (Figs. 4i–l). This bias is re-

flected in bothMAE andRMSE, albeit to a lesser extent

due to the averaging used to produce the profile. There

are RMSE and MAE maxima at 808S, which given the

coincidence with strong negative model bias (shown in

the ME profile) suggests that these errors consist of

greater instances of underforecasting of the parameter.

Specifically, the model is forecasting temperatures that

are too cold in comparison to the reference analysis

with a number of outliers that contribute to an elevated

RMSE, increasing error variance. As with MSLP and

surface pressure, the minima and maxima of the me-

ridional error profile of screen temperature become

exaggerated at longer forecast horizons, but still exhibit

similar behavior. Taking the reference latitude of 808S,
RMSE andMAE are approximately 3 and 4 times worse

at 48 h than at 12 h, respectively.

The meridional error profiles of the zonal u wind com-

ponent of the model show a predominantly positive

(overforecast) model bias in ME over the Antarctic do-

main, with exceptions at 708S and south of 808S where the

bias becomes negative (Figs. 4m-p). RMSE and MAE

show a maximum about 658S, suggesting that while ME

may be tending toward negative at this latitude, that there

are strong outliers that contribute to higher RMSE scores.

There are potential diurnal signatures in the ME profile,

with the 24- and 48-h forecasts (Figs. 4n and 4p) showing

weaker negative biases than at 36h toward the pole. In-

terestingly, shorter forecast horizons (Figs. 4n-o) show

positive model ME biases around 508S with slightly ele-

vated MAE scores at this latitude. Taking a reference

latitude of 658S, the 48-h forecast shows errors three times

that of the 12-h forecast. Again, the slope of weakening

RMSE/MAE toward the high southern latitudes steepens

with forecast horizon and the ME profile becomes more

exaggerated. The error profiles of the meridional y wind

component of the model (Figs. 4q-t) follow a similar

pattern to the zonal wind component, with the notable

FIG. 2. Map of the study domain annotated with the regions dis-

cussed; including the Ronne Filchner Ice Shelf (RFIS), Amery Ice

Shelf (AIS), and the Ross Ice Shelf (RIS). The dashed red lines

indicate the location of atmospheric transects through 858 and

1208E. The blue line indicates the approximate ice-shelf edge.
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exception of RMSE/MAE maxima occurring at slightly

lower latitudes (608S).
Themeridional error profiles of geopotential height at

500 hPa (Figs. 4u–x) show a smoother profile in RMSE

and MAE with maxima around 708S; this profile follows
the steepening slope toward the poles depicted by other

parameters. Oddly, the ME profile is considerably dif-

ferent to other parameters and metrics, with a defined

negative bias across the majority of the global latitude

range (608N–608S). A positive model ME bias occurs at

708S at all horizons, becoming greater at longer forecast

leads. The coincidence of these positive ME biases with

RMSE and MAE maxima suggest that errors at these

latitudes include those that are mostly positive and with

strong outliers. There is inconsistent model behavior at

808S, which remains around zero at 12, 36, and 48h, but

not at 24 h. This suggest some temporal influence (such

as diurnal processes or assimilation of observations)

adversely affecting the forecast at 24 h. Furthermore,

this zero point in the ME profile moves farther south at

longer forecast horizons before becoming positively

biased toward the pole.

b. Spatial distribution of model performance

The ME performance distributions of MSLP and

surface pressure (Figs. 5a–h) show positive model biases

near the coast over the Ross Sea. These biases intensify

at longer forecast horizons and reach magnitudes of

2 hPa or greater, particularly to the east of Adelie Land.

To the west, a strong discontinuity leading to strong

negative biases (also intensifying at longer forecast ho-

rizons) covers large portions of East Antarctica ap-

proaching 2-hPa divergence from the reference analyses.

The Ronne Filchner Ice Shelf (RFIS) is also another site

of intensifying negative biases. There are positive screen

temperature ME biases approaching 1.5–2.0 K be-

tween 1008 and 1508E extending to approximately 608S
(Figs. 5i–l). Negative biases of comparable magnitude

(but not distribution) occur around 758S, 808E.
The zonal wind u component of the model yields posi-

tive biases approaching 1ms21 over parts of Dronning

Maud Land, along the coast east of the Amery Ice Shelf

(AIS) and in the lee of Adelie Land, where errors increase

toward 2m s21 (Figs. 5m–p). The meridional wind y

component of the model is substantially underforecast

between 908 and 1508E, by more than 2m s21 at longer

forecast horizons (Figs. 5q–t).

ME of geopotential height at 500 hPa shows a strong

negative biases between 08 and 1508E, where the

model underforecasts the geopotential height by up

to 10m at longer forecast horizons (Figs. 5u–x). Con-

versely, the model overforecasts the height field

over the Ross, Amundsen, Bellingshausen, andWeddell

Seas; with errors penetrating inland from 1208E to

908W. These positive biases also increase at longer

forecasts.

FIG. 3. ACCESS-G 2017 annual average S1 skill score as a combined average of analysis times (0000, 0600, 1200, 1800UTC) for 12–48-h

forecast horizon calculated over each latitude band (a)–(d) for MSLP and 500-hPa geopotential height and (e)–(g) depicted as a per-

centage of the 12-h forecast.
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FIG. 4. Meridional error profiles for (a)–(d) MSLP, (e)–(h) surface pressure, (i)–(l) screen temperature, (m)–(p) zonal wind,

(q)–(t) meridional wind, and (u)–(x) 500-hPa geopotential height for the combined average analysis base times (0000, 0600, 1200,

1800 UTC) at each forecast horizon (12, 24, 36, 48 h).
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FIG. 5. ACCESS-G 2017 annual average mean error (through time) as a combined average of analysis times (0000,

0600, 1200, 1800 UTC) for 12–48-h forecast horizon for (a)–(d) MSLP, (e)–(h) surface pressure, (i)–(l) screen tem-

perature, (m)–(p) zonal wind, (q)–(t) meridional wind, and (u)–(x) 500-hPa geopotential height. The inner latitude

reference circle is 608S.

1090 WEATHER AND FORECAST ING VOLUME 34



c. Atmospheric transects

To better understand the nature of model biases

throughout the atmospheric column, we calculated vertical

atmospheric transects through the longitudes of regions

presenting strong positive and negative error behavior.We

have plotted transects of theses error profiles through 858
and 1208E, respectively, to assess regions of larger positive

and negative model biases.

The model exhibits a positive (warm) surface temper-

ature bias through 858E over sloping topography at all

forecast horizons, becoming stronger as forecast length

increases (Figs. 6a–d). Similarly, there is also a warm bias

in the mid- and upper atmosphere over land that also

intensifies at longer forecasts. In contrast, there is a neg-

ative (cold) model temperature bias over the ocean and

close to the surface over smooth topography, as well as a

poleward cool bias that contracts poleward at longer

forecasts and is delineated by the theoretical 500-hPa

surface above the planetary boundary layer (PBL)

(Figs. 6a–d). A positive (fast) meridional wind bias is also

shown between 658 and 808S, which is delineated by a

negative (slow) bias to the north and south (Figs. 6e–h).

These biases extend through almost the full atmospheric

column and overforecast winds are likely driven by the

high to low pressure gradient illustrated in Figs. 6i–l.

A positive (elevated) bias exists in geopotential height

at the surface and in the midatmosphere through 858E
at 12 h (Fig. 6i). However, this positive bias detaches

from the surface at longer forecasts, when negative

(depressed) biases over the ocean begin to dominate at

the surface and throughout the atmospheric column

over the ocean (Figs. 6j–l).

Figure 7 illustrates the vertical error profile of an atmo-

spheric transect through 1208E, where error extremes have

been noted previously. A positive (warm) surface bias is

present in the model, particularly over steep topography

and toward the coast through 1208E (Figs. 7a–d). This is

FIG. 6. ACCESS-G 2017 atmospheric transects through 858E for the 0000 UTC analysis at each forecast horizon for mean error in

(a)–(d) air temperature, (e)–(h) meridional wind, and (i)–(l) geopotential height. The dashed line is the theoretical 500-hPa isobaric

surface.
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coincident with a negative (slow) meridional wind bias in

the same region, which is consistent out to longer forecast

lengths (Figs. 7e–h). These warm biases appear to advect

farther to the north aloft of cold ocean biases as the forecast

horizon increases, remaining attached to the land at 24

and 48h (Figs. 7b,d). As with the transects through 858E
(Fig. 6), negative temperature biases are delineated by the

theoretical PBL at 500hPa, contracting poleward and

with a subtle diurnality covering a greatermeridional range

of the continent at 12 and 36h (Figs. 7a–d).

The model overforecasts meridional winds over land

and aloft of negative ocean wind biases at 12 h; however,

these biases change sign at longer forecast horizons

(Figs. 7e–h). Ocean biases remain negative and increase

in intensity from 12 to 48h. The 500-hPa geopotential

surface is under forecast (too low) in the model over the

ocean through 1208E at all forecast horizons (Figs. 7i–l).

There are potential diurnal influences across the forecast

horizons examined, with 24- and 48-h forecast connecting

surface and upper atmosphere positive biases throughout

the vertical column more substantially than at 12 and 36h.

Given that the time series was averaged over an entire

year, seasonal analyses not covered in this study would

yield greater insight into diurnal influences.

4. Discussion

The performance of ACCESS-G NWP weakens to-

ward the high southern latitudes, most notably toward

the Antarctic continent. This behavior is consistent

under a range of different performance metrics. The S1

skill profile of the model at each latitude shows not only

that model performance is reduced toward the pole, but

it reduces at a greater rate as the forecast horizon in-

creases (Fig. 3). While there may be peculiarities with

the S1 metric (such as sensitivities to grid structure and

resolution), this behavior is also present to varying de-

grees in themeridional profiles of RMSE,MAEandME

FIG. 7. ACCESS-G 2017 atmospheric transects through 1208E for the 0000 UTC analysis at each forecast horizon for mean error in

(a)–(d) air temperature, (e)–(h) meridional wind, and (i)–(l) geopotential height. The dashed line is the theoretical 500-hPa isobaric

surface.
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for the additional meteorological parameters examined

in this study (Fig. 4).

It should be generally noted that the utility of the

S1 skill score is limited in this study, as meridional

convergence and the lack of observations available

for data assimilation (see Puri et al. 2013; Australian

Bureau of Meteorology 2016) yield an unrepresentative

measure of model performance; this is also the case with

the other metrics examined in this study. Arguably, the

lack of observations has substantial influence in the high

southern latitudes with a dearth of surface observations

and satellite measurements rejected or simply unavailable

for data assimilation, particularly during winter. Con-

versely, the high NH latitudes are comparatively better

sampled than the SH. This has important implications for

self-verification, whereby the model analysis will not de-

viate substantially from the model background (the prior

forecast). Thus, in the absence of observations the model

will verify against itself and appear artificially skilful.

There is an historical legacy behind the use of S1

skill and it remains a useful skill measure for SH mid-

to high-latitude weather driven by horizontal gradi-

ents associated with baroclinicity. However, it must

be considered in concert with other measures when

evaluating model performance at the pole. Observa-

tional coverage is challenging in the Antarctic; with

surface and satellite instruments that are spatially

sparse, temporally intermittent (with some platforms

only operating seasonally) and AWSs subject to oc-

casional relocation as needed by base operations.

Furthermore, while there is an array of AWSs dis-

tributed on and around the continent (Fig. 1) not all of

the stations available are actually assimilated into

ACCESS-G (see Puri et al. 2013; Australian Bureau

of Meteorology 2016).

The ACCESS-G NWP model exhibits persistent

negative surface pressure and MSLP biases over large

parts of the continent, the strongest of which occur at the

36-h forecast over East Antarctica between 08 and

1208E. Similarly, the 500-hPa geopotential height field

over the same region is systemically underforecast, with

the isobaric surface approaching 10m below the refer-

ence analysis. These parameters appear to be linked,

with lower surface pressures expressed throughout the

vertical column via a depression of the 500-hPa isobaric

surface (Fig. 5). For context, 2017 featured positive

surface pressure anomalies over the ocean in several of

the regions presenting negative biases for much of the

year (Clem et al. 2018). These pressure anomalies were

characterized by a pronounced zonal wave-3 (ZW3)

pattern that emerged in June–September and featured

ridges across 508S at 908E, 1508E, and 308W. The effect

of these anomalies is subtle and only observable in

12–24-hMSLP and surface pressureME fields (Figs. 5a,b),

tending toward a zonal wave-1 (ZW1) pattern at longer

forecast horizons with an error ridge along 1508E
(Figs. 5c,d). It is possible that this strong zonal wave-3

pattern observed in 2017 impresses itself upon the errors

within the model. However, it is likely that the errors

associated with the Adelie Land trough and Ross Sea

ridge are a linked 1-wave pattern, possibly as a conse-

quence of the model’s inability to correctly simulate

atmospheric drainage over Adelie Land, with the asso-

ciated errors propagating eastward as an atmospheric

wave. As global NWP models are noted to exhibit sen-

sitivities to surface and planetary boundary layer initial

conditions (Powers et al. 2012), errors at the surface are

arguably propagated upward. Thus, an improved rep-

resentation of physical processes at the surface more

suited to the unique Antarctic environment will likely

yield improvements aloft.

Positive surface and MSLP biases near Adelie Land

may again be associated with surface pressure anomalies

observed in 2017 (Clem et al. 2018), or with cyclonic

activity in the area. Furthermore, these biases may be

associated with the large temperature gradient brought

about by katabatic outflow from the elevated East

Antarctic topography, which frequently develops into a

low in the region (Chen et al. 2014; Bromwich et al.

2011). Bromwich et al. (2011) describe the processes of

cyclogenesis in this region as both secondary and lee

cyclogenesis whereby dissipating synoptic-scale cy-

clones to the west interact with the Adelie katabatic jet

to spin up the secondary development of cyclones. This

is expressed at the surface as surface/MSLP minima

observable in Figs. 5a–h. Similarly, if the model does

not capture the cyclonic activity in this area, isobaric

surfaces throughout the vertical column would also be

more elevated that the reference analysis, as shown in

Figs. 5u–x. A contributing factor to this error behavior is

the underforecasting of meridional winds over western

Adelie Land (Figs. 5q–t), whereby a weakened repre-

sentation of katabatic outflow would fail to reach suffi-

cient momentum to create a closed circulation and

trigger cyclogenesis. The forces driving weaker modeled

winds in ACCESS-G NWP are not yet fully understood;

however, Orr et al. (2014) found strong wind events in

the Unified Model (which is the atmospheric core of

ACCESS-G) to be sensitive to both horizontal resolu-

tion (especially at the coast) and turbulent mixing under

stable conditions. As such, future studies should in-

vestigate these areas to improve model development.

Results here suggest that katabatic outflow from the

Adelie Land coast is underrepresented in the ACCESS-

G NWP model (Figs. 5q–t), and is likely influenced by

positive temperature biases at the surface illustrated in
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Fig. 7. These positive temperature biases may be asso-

ciated with below-average temperatures across the

continent and east (west) of midlatitude ridges (troughs)

(Clem et al. 2018), poor observational sampling, or as a

result of suboptimal model parameterization. However,

the proximity of these temperature biases to troughs is

also favorable for storm development through enhanced

baroclinic instability (Chen et al. 2014), further em-

phasizing the importance of accurately modeled tem-

peratures throughout the atmospheric column.

As katabatic flow is driven by both temperature and

topography, a warm bias of the former leads to less re-

sultant downslope movement of air and subsequently

slower model wind speeds. Strong surface temperature

inversions over ice-covered terrain, which may be much

cooler than the air aloft (Hines and Bromwich 2008),

could be addressed by adjusting the model’s radiative

and thermal properties over the Antarctic continent,

such as treating upward longwave flux as a function of

skin temperature (Hines and Bromwich 2008). Simi-

larly, modifying the thermal conductivity of permanent

snow/ice surfaces as a function of empirical snow density

(Yen 1981) could be investigated for the Antarctic en-

vironment, as would a SH-focused snow analysis (i.e.,

Pullen et al. 2011).

5. Conclusions

This study has investigated the performance of

ACCESS-G NWP over the high southern latitudes where

the performance of the model was found to degrade to-

ward the poles, at a rate proportional to forecast horizon.

This behavior was diagnosed by several performance

metrics. Evaluation of model error both spatially and

vertically suggest boundary layer parameterization, initial

conditions and associated physical processes may be con-

tributing factors in the error behavior of the region, as

could the anomalous surface pressure and temperature

behavior observed in 2017 (Clem et al. 2018). Many of

these biases are interrelated, coalescing into regional

biases such as the combination of warm surface biases,

weakmodelwinds and positive surface pressure biases that

inadequately represent cyclonic activity around theAdelie

Land coast.

The biases examined in this paper could be addressed

through an improved representation of the physical pro-

cesses governing model initialization and boundary layer

parameterization over the unique Antarctic region (see

Tastula and Vihma 2011; Powers et al. 2003), which have

been shown to be sensitive to initial conditions over frozen

surfaces (Hines et al. 2011). Improvingmodel performance

in the region would likely yield improved model forecast

guidance to those operating in the region. However, this is

largely speculative and further model experimentation is

required. As such, future ACCESS-G development should

focus on better representation of Antarctic processes to

improve overall model performance.

Additional observations made available for data

assimilation would also likely yield improvements to

the model initial conditions, as may increased model

resolution. Given the logistical and financial challenges

of installing and maintaining in situ observing systems,

this requires modelers to make greater use of remotely

sensed and satellite observations for data assimilation

and verification purposes (Casati et al. 2017).

We acknowledge the limitations of this study, specif-

ically the use of model analysis as a reference dataset for

verification and the use of a single year of data. Given

the development schedules of the ACCESS family of

models, data from 2017 were the most consistent and

complete, across a full calendar year. Ideally, a longer

time series and additional observational data would

provide additional context around model performance,

as would a seasonally focused study.
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