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Abstract. In this article we present the algebraic rearrangement, or matrix inversion of the

Dirac equation in a curved Riemann-Cartan spacetime with torsion; the presence of non-

vanishing torsion is implied by the intrinsic spin-1/2 of the Dirac field. We then demonstrate

how the inversion leads to a reformulation of the fully non-linear and self-interactive Einstein-

Cartan-Dirac field equations in terms of Dirac bilinears. It has been known for some decades

that the Dirac equation for charged fermions interacting with an electromagnetic field can

be algebraically inverted, so as to obtain an explicit rational expression of the four-vector

potential of the gauge field in terms of the spinors. Substitution of this expression into

Maxwell’s equations yields the bilinear form of the self-interactive Maxwell-Dirac equations.

In the present (purely gravitational) case, the inversion process yields two rational four-

vector expressions in terms of Dirac bilinears, which are gravitational analogues of the

electromagnetic vector potential. These potentials also appear as irreducible summand

components of the connection, along with a traceless residual term of mixed symmetry. When

taking the torsion field equation into account, the residual term can be written as a function

of the object of anholonomity. Using the local tetrad frame associated with observers co-

moving with the Dirac matter, a generic vierbein frame can described in terms of four Dirac

bilinear vector fields, normalized by a scalar and pseudoscalar field. A corollary of this is

that in regions where the Dirac field is non-vanishing, the self-coupled Einstein-Cartan-Dirac

equations can in principle be expressed in terms of Dirac bilinears only.

1. Introduction

The Dirac equation, the relativistic wave equation for spin-1/2 fermions, can be made to

describe particles interacting with a gauge field by replacing the partial derivative with the

covariant derivative for the particular field. For a gauge potential of a given form, the

Dirac equation may be solved for the spinor field corresponding to the fermion state. One

example solution for an electron in an external field is that of the hydrogen atom, where the

Dirac equation correctly predicts fine structure as a result of relativistic corrections to the

Hamiltonian [1]. However, the external Dirac-Coulomb solution itself does not explain the

famous Lamb shift, which requires a consideration of how radiative corrections provided by

the Maxwell field affect the energy of the bound electron [2].
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An inversion of the Dirac equation can be performed via algebraic rearrangement, such

that the gauge potential is written as a rational, explicit function of the spinors [3]. The

outcome of this rearrangement procedure appears as though we have performed a matrix

inversion, since the Dirac equation can be written in the form

MA = R, (1)

where the complex 4 × 4 spinor-vector matrix M is a function only of the components of

the Dirac spinor. Assuming the vector potential A is real, M is invertible, and an explicit

expression for A in terms of the spinors can be obtained [4]. Substituting the inverted

Dirac equation into the equations of motion for the gauge field results in a self-coupled

system, where the charged fermion field interacts with itself in an internally consistent way.

A central aspect of the algebraic inversion procedure is that the spinors do not appear as

stand-alone objects, but rather as bilinear combinations. An early proponent of using the

bilinear description of Dirac states as the objects of primary interest was Takabayasi [5],

who promoted the idea of a relativistic hydrodynamical model of Dirac matter. The states

of this model were not spinors or wavefunctions, but tensors corresponding to quantum

observables, such as current and spin densities. This in effect was an early substantial

attempt to formulate a semi-classical fluid model of relativistic quantum electrodynamics.

There exists a rich set of interrelationships between quadratic combinations of Dirac

bilinears, known as Fierz identities [6], [7] (alternatively, Fierz-Pauli-Kofink identities [8]);

derived via a successive set of Fierz expansions over a Dirac Clifford algebra primitive set

of sixteen basis elements. Using a similar process, Crawford showed that [9], given a set

of sixteen bilinears formed from this set, the spinor field is recoverable up to a constant

spinor with arbitrary phase. In addition to this set, there are two bilinears which are the

real and imaginary parts of a complex bilinear (constructed with a both charge conjugated

and a regular spinor: ψcγaψ), and comprise a locally orthonormal tetrad frame along with

the standard Lorentz four-vector and axial-vector fields [10].

In the electromagnetic case, the self-coupled Maxwell-Dirac equations were shown

to be describable in terms of the gauge independent bilinears only, by Inglis and Jarvis

[11], manifestly reflecting the physical gauge invariance of the system. Furthermore, these

equations were able to be greatly simplified via the applications of infinitesimal invariance

under several subgroups of the Poincaré group. These subgroups were chosen from a set of 158

given by Patera, Winternitz & Zassenhaus [12], where a comprehensive list of all the Poincaré

Lie subalgebras and their corresponding generators are given. These symmetry reductions

aid in the search for solutions to an otherwise intractable set of non-linear equations.

The ability to invert the Dirac equation is not limited to the electromagnetic case

either, and we showed in a previous publication [13] that an inversion can be performed for

the non-Abelian gauge field SU(2). We found that the algebraic process was very similar to

the Abelian case, but with some extra difficulty, and the inverted form was given implicitly.

It is currently unclear whether a similar generalisation exists for the strong SU(3) case,

although the SUL(2)×U(1) electroweak case appears to be promising. Substitution into the
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Yang-Mills equations yields a fully non-linear self-interactive non-Abelian hydrodynamical

theory, relevant to the study of non-perturbative high-energy plasmas. Another, simpler

approach to modelling aspects of non-Abelian hydrodynamics, is to generalize the classical

fluid mechanical equations to include local internal symmetries. A description of the non-

Abelian Lorentz force involving chromoelectric and chromomagnetic field couplings was

obtained this way in [14].

In this paper, we demonstrate how the Dirac equation in a curved Riemann-Cartan

spacetime with torsion can be algebraically inverted, in an analogous manner to the U(1)

and SU(2) cases; the covariant derivative we use contains the connection contracted with

the generator for Lorentz transformations. Due to the intrinsic spin carried by the Dirac

fermions, we consider the torsion field generated from the spin current density to be non-

vanishing in general [15]; an extra set of constraints on the gravitational field are obtained

as a result. In comparison with (1), the curved spacetime Dirac equation is of the form

MΩ +NΩ5 = R, (2)

and the matrix inversion procedure yields explicit rational expressions for the gravitational

“vector potentials” Ω and Ω5. In section 2, we derive an equation of the form (2) from

the standard Dirac equation in curved spacetime. We do this by considering an irreducible

decomposition of the connection in GL(4), which can be written as a sum of three terms.

The trace term is a function of Ωa, and the two traceless terms are a fully antisymmetric

function of Ω5a and a residual term of mixed symmetry, (3)Γabc.

In section 3, we give our definition of the tensor fields resulting from sandwiching

elements of the Dirac Clifford algebra basis between Dirac spinors. Using this notation,

we then show that by left-multiplying the curved spacetime Dirac equation and its charge

conjugate with four different spinors, the resulting set of four equations can be solved

explicitly for the two gravitational vector potentials. These expressions are rational functions

of bilinears and their first derivatives, but are not able to be expressed in terms of our tensor

field set without further calculations.

The process by which we can write the inverted expressions in terms of bilinear tensor

fields is given in 4. Here, we give a brief outline of the process by which Fierz expansions,

where an outer product of two Dirac spinors is expanded in the Dirac Clifford algebra basis,

are used to derive Fierz identities which are quadratic in the bilinears. These identities are

then used to eliminate the explicit appearance of Dirac spinors in the inverted forms of the

Dirac equation, replacing them with pure tensor expressions.

Section 5 is given in four parts. In the first two parts, we describe the field equations

of the Einstein-Cartan system, for the gravitational dynamics of space-time curvature and

spin-torsion respectively. Expressions for the Ricci tensor, scalar, and the torsion are given

in terms of the connection and the object of anholonomity. In the third part, we show how

the algebraic torsion field equation can be used to place constraints on Ωa and Ω5a, and to

derive an explicit expression for (3)Γabc in terms of the object of anholonomity. In the final

part, we use the existence of a locally orthonormal tetrad frame corresponding to a family
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of observers co-moving with the Dirac matter (which arises from the Fierz identities), to

generate an expression for the generic vierbein field as a function of the Dirac bilinears.

A summary of our formulation of the self-coupled Einstein-Cartan system is given in

Section 6, which demonstrates in principle how this system can be reduced to a set of relations

between Dirac bilinears only. A glossary of the symbols we use in this paper are given in

Appendix A. Further reduction and analysis of this system is left for future publications.

2. The Einstein-Cartan-Dirac equations and conventions

The Einstein-Cartan-Dirac equations in curved spacetime with torsion have the form

(iγaea
µ(x)∇µ −m)ψ = 0, (3)

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (4)

Υµν
γ + δγµΥνσ

σ − δγνΥµσ
σ = 8πGΣµν

γ. (5)

The Dirac equation (3) governs the dynamics of the matter sector of this system; namely,

the relativistic wave-like behaviour of spin-1/2 fermionic matter. The gravitational field in

the presence of Dirac matter has both curvature and torsion due to the stress-energy and

spin of the Dirac matter respectively; the Einstein field and Cartan torsion equations, (4)

and (5), describe these relationships.

The focus of this paper is primarily on (3) and its explicit invertibility for irreducible

components of the connection. A brief discussion of the Einstein field equation (4) is given in

subsection 5.1. The utilization of the torsion field equation (5) to obtain further constraints

on the connection is presented in subsections 5.2 and 5.3. Our end result will be an in-

principle integration of (3) and (5) with (4), with the ability to express (4) entirely in terms

of Dirac bilinears, the state densities of matter which also act as the source of gravity. Deeper

analysis of the Einstein equation using the inverted form of the Dirac equation and torsion

constraints is beyond the scope of this paper, and is left to future publications.

For Dirac matter, the stress-energy and spin densities are given in terms of the spinors

as [16], [17]

Tµν =
i

2
[ψγµ(∇νψ)− (∇νψ)γµψ], (6)

Σµνγ =
i

4
ψγ[µγνγγ]ψ. (7)

Greek and Latin indices run from 0 to 3, and correspond to coordinate and locally

orthonormal frames respectively. The vierbein field ea
µ(x) relates these two frames locally

at each point x, and is quadratically related to the metric, according to

gµν(x) = eaµ(x)ebν(x)ηab. (8)

For the Minkowski spacetime metric we use the particle physics sign convention, whereby

the signature is negative in the spatial components:

ηab := diag(1,−1,−1,−1). (9)
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2.1. The gravitational four-vector potentials

For Dirac spinor fields, the covariant derivative is of the form [18], [19]

∇µψ = ∂µψ + Γµψ, (10)

where in the spinor representation, the connection coefficients are

Γµ =
1

2
Γµ

abSab = − i

2
Γµ

abσab. (11)

The object Γµ
ab with the leading index in the world-coordinate (holonomic) frame and the

other two indices in the local (anholonomic) frame, is often referred to as the spin connection,

however we shall mostly refer to it as simply the connection. The connection transforms

inhomogeneously between the coordinate and local frames, according to [20]

Γa
bc = ea

µebνecλΓµν
λ − eaµebν∂µecν , (12)

where Γa
bc = ea

µΓµ
bc. Note that because of the intrinsic spin of the Dirac field, Γµν

λ is in

general asymmetric in µ, ν, resulting in a non-vanishing spacetime torsion [21], [15]. The

infinitesimal Lorentz generators in the Dirac spinor representation are

Sab = − i

2
σab =

1

4
[γa, γb], (13)

where γa are the Dirac matrices, and σab ≡ i/2[γa, γb]. Taking account of the Dirac matrix

anticommutator

{γa, γb} = 2ηab, (14)

it can be shown that the right-hand side of (13) satisfies the Lie bracket identity for Lorentz

generators

[Sab, Scd] = ηadSbc + ηbcSad − ηacSbd − ηbdSac. (15)

Using (11) and (13), we can rewrite the covariant derivative of the Dirac spinor as

∇µψ = ∂µψ +
1

8
Γµ

ab[γa, γb]ψ. (16)

Substituting this into (3), then absorbing the vierbeins and rearranging, the Dirac equation

becomes
i

8
Γabcγa[γb, γc]ψ = −(iγa∂a −m)ψ, (17)

with γa∂a ≡ γaea
µ∂µ. Using the Dirac identity

γaγbγc = ηabγc + ηbcγa − ηacγb − iεabcdγ5γ
d, (18)

we can write the commutator in the last two indices as

γa[γb, γc] = 2(ηabγc − ηacγb − iεabcdγ5γ
d). (19)
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The conventions we use for γ5 and the Levi-Civita symbol are those of Itzykson and Zuber

[22]:

εabcd = −εabcd =


+1 if {a, b, c, d} even

−1 odd

0 otherwise,

(20)

γ5 = γ5 = −(i/4!)εµνρσγ
µγνγργσ = iγ0γ1γ2γ3 = −iγ0γ1γ2γ3. (21)

The left-hand side operator of (17) therefore becomes

i

8
Γabcγa[γb, γc] =

i

4
Γabc(ηabγc − ηacγb − iεabcdγ5γ

d)

=
i

4
(ηabηcd − ηacηbd)Γabcγd +

1

4
εabcdΓ

abcγ5γ
d

= Ωdγ
d + Ω5dγ5γ

d, (22)

where we define the gravitational vector potentials as

Ωd :=
1

4
δadbcΓ

abc =
i

2
Γc

c
d, (23)

Ω5d :=
1

4
εabcdΓ

abc, (24)

with the mixed symmetry imaginary Sylvester tensor [23]

δabcd := i(ηacηbd − ηadηbc), (25)

playing a dual role to the Levi-Civita tensor.

2.2. Connection Irreducible Decomposition

From the definitions (23) and (24), we can see that the gravitational vector potentials

correspond to components of the connection Γabc. Now, since the connection corresponds to

a rank-3 representation of the local Lorentz group SO(1, 3), we can write it as the sum of

three irreducible components:

Γabc = (1)Γabc + (2)Γabc + (3)Γabc. (26)

Due to the antisymmetry of the connection in its second and third indices in the local frame,

this irreducible decomposition can equivalently be written in terms of Young patterns as

[1]⊗ [11] = [1]⊕ [111]⊕ [21], (27)

corresponding to (1) a trace term, (2) a fully antisymmetric term, and (3) a traceless mixed-

symmetry term respectively. Written in terms of the connection, the irreducible parts are

(1)Γabc =
1

3
ηabΓd

d
c −

1

3
ηacΓd

d
b = − i

3
δaebcΓd

de, (28a)

(2)Γabc =
1

3
(Γabc + Γbca + Γcab), (28b)

(3)Γabc =
1

3
(2Γabc − Γbca − Γcab) +

i

3
δaebcΓd

de. (28c)
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Using (23) and (24), we can express two of the three irreducible components of the connection

in terms of the gravitational four-vector “potentials”:

(1)Γabc = −2

3
δadbcΩ

d, (29a)

(2)Γabc = −2

3
εabcdΩ

d
5, (29b)

The connection can now be written as

Γabc = −2

3
δadbcΩ

d − 2

3
εabcdΩ

d
5 + (3)Γabc. (30)

We have thus obtained an expression for the connection in the local frame, which allows for

its replacement in terms of the bilinear Dirac matter states via the inverted forms of the

Dirac equation (70) and (71), with the exception of the residual term (3)Γabc. As we shall

see in subsection 5.3, (3)Γabc can be replaced by the irreducible traceless mixed-symmetry

component of the object of anholonomity (79), which itself can be replaced by Dirac bilinears

when the vierbein is chosen to be the bilinear tetrad (63). Thus, we will be able to obtain

an expression for the connection entirely in terms of Dirac bilinears.

2.3. Charge conjugation and comparison with electromagnetism

In terms of the Ω-potentials, the Dirac equation now reads

Ωaγ
aψ + Ω5aγ5γ

aψ = −(iγa∂a −m)ψ. (31)

According to the gauging of the Poincaré group [15], there are four translation-type potentials

θa = eµ
adxµ and six Lorentz-type potentials Γab = Γµ

abdxµ. By introducing the two new

four-vector potentials Ωa and Ωa
5 to replace irreducible parts of the connection, we have

increased the number of components from 6 to 4 + 4 = 8. The inverted Dirac equation

provides two explicit expressions for these potentials, (70) and (71), that reduce the number

of independent connection components back down to six.

Equation (31) can be compared with the electromagnetically covariant Dirac equation

in flat spacetime

−qAaγaψ = −(iγa∂a −m)ψ. (32)

We can see that there is an analogy between Ωa and −qAa, in the sense that these terms

are coupled to γaψ. However, in electromagnetism there is no equivalent potential to Ω5a,

say −qA5a, which couples to γ5γ
a. Such an analogous term could in principle arise in an

Abelian chiral generalization of the electromagnetic gauge group, such as local U(1)L×U(1)R
symmetry. It is of interest to note that if the torsion field equation is taken into account

in (31), say by directly substituting the constraint (100), the left-hand side of (31) becomes

non-linear in the spinors (via the axial vector term ka), and the Hehl-Datta equation is

obtained [24]. However, as our emphasis is on the explicit inversion of the Dirac equation

for the Ω and Ω5 “potentials”, we shall leave these objects intact.
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In order to proceed with the inversion process, we require the Dirac equation for the

charge conjugated spinor. It can be shown [25] that in the absence of electromagnetic fields,

this equation has exactly the same form as (3) and (31), such that

(iγaea
µ(x)∇µ −m)ψc = 0, (33)

and therefore

Ωaγ
aψc + Ω5aγ5γ

aψc = −(iγa∂a −m)ψc. (34)

Incidentally, in the electromagnetic case, the sign of the term carrying the charge coupling

constant q changes sign under a charge conjugation:

+qAaγ
aψc = −(iγa∂a −m)ψc. (35)

3. The inversion procedure

The inversion of the Dirac equation for the components of the connection which couple

to spin-1/2 fermions proceeds in a similar fashion to the analogous U(1) electromagnetic

[11] and non-Abelian SU(2) [13] cases. In all of these cases, the procedure involves the

formation of spinor bilinears, which in the tradition of Takabayasi [5], Zhelnorovich [26], and

Halbwachs [27], we can write as a set of 16 tensor fields: scalar, pseudoscalar, four-vector,

axial four-vector, and rank-2 tensor

σ = ψψ, (36a)

ω = ψγ5ψ, (36b)

ja = ψγaψ, (36c)

ka = ψγ5γ
aψ, (36d)

sab = ψσabψ. (36e)

In addition, we also have the dual rank-2 tensor

∗sab =
i

2
εabcdscd = ψγ5σ

abψ, (37)

as well as two four-vectors comprising real and imaginary parts of a complex bilinear

ma + ina = ψcγaψ (38a)

ma = Re{ψcγaψ} =
1

2
(ψcγaψ + ψγaψc) (38b)

na = Im{ψcγaψ} =
i

2
(ψγaψc − ψcγaψ), (38c)

where ψ and ψc are the Dirac and charge conjugate spinors respectively. The bilinear set are

all real, except for ω and ∗sab, which are pure imaginary; this is just a choice of convention,

which can be altered by defining the new real bilinears −iω and −i∗sab. Now, left-multiplying

(31) by ψγb gives

Ωaψγ
bγaψ + Ω5aψγ

bγ5γ
aψ = −iψγbγa(∂aψ) +mψγbψ. (39)
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Applying the Dirac identities

γbγa = ηba − iσba, (40a)

{γ5, γa} = 0, (40b)

and writing closed-form bilinears in tensor notation, we get

(σηba − isba)Ωa + (−ωηba + i∗sba)Ω5a = −iψ(∂bψ)− ψσba(∂aψ) +mjb. (41)

Likewise, left-multiplying (31) by ψγ5γ
b, and applying the same Dirac identities yields

(ωηba − i∗sba)Ωa + (−σηba + isba)Ω5a = −iψγ5(∂
bψ)− ψγ5σba(∂aψ) +mkb.(42)

Following the same steps with the charge conjugate Dirac equation, left-multiplying 34 by

ψcγb and ψcγ5γ
b yields the respective equations

(ψcψcηba− iψcσbaψc)Ωa+ (−ψcγ5ψ
cηba+ iψcγ5σ

baψc)Ω5a

= −iψc(∂bψc)− ψcσba(∂aψ
c) +mψcγbψc, (43)

(ψcγ5ψ
cηba− iψcγ5σ

baψc)Ωa + (−ψcψcηba+ iψcσbaψc)Ω5a

= −iψcγ5(∂
bψc)− ψcγ5σ

ba(∂aψ
c) +mψcγ5γ

bψc. (44)

Using the definition for the charge conjugate spinor

ψc = CψT = iγ2γ0ψT, (45)

we can derive a relationship between bilinears with non-Grassmann charge conjugate spinors

and regular spinors‡

ψcΓχc = −χC−1ΓTCψ, (46)

where the spinor χ may have tensor indices (ie. χ = ∂aψ), and Γ is an element of the

same Dirac-Clifford algebra defining the set (36a)-(36e). Applying the Dirac matrix charge

conjugation identities [22]

C−1γaTC = −γa, (47a)

C−1γT5 C = γ5, (47b)

C−1(γ5γ
a)TC = γ5γ

a, (47c)

C−1σabTC = −σab, (47d)

C−1(γ5σ
ab)TC = −γ5σab, (47e)

we can rewrite (43) and (44) as

(−σηba − isba)Ωa + (ωηba + i∗sba)Ω5a = i(∂bψ)ψ − (∂aψ)σbaψ +mjb, (48)

(−ωηba − i∗sba)Ωa + (σηba + isba)Ω5a = i(∂bψ)γ5ψ − (∂aψ)γ5σ
baψ −mkb (49)

respectively. Subtracting (48) from (41), and (49) from (48), yields the respective equations

2σΩa − 2ωΩa
5 = −i∂aσ − [ψσab(∂bψ)− (∂bψ)σabψ], (50)

2ωΩa − 2σΩa
5 = −i∂aω − [ψγ5σ

ab(∂bψ)− (∂bψ)γ5σ
abψ] + 2mka, (51)

‡ In the present work we assume the spinor quantities are c-numbers.
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where we have relabelled the indices. Multiplying (50) and (51) by (σ, ω) and (ω, σ)

respectively, then subtracting the second equation from the first gives

Ωa =
1

2
(σ2 − ω2)−1{i[ω(∂aω)− σ(∂aσ)] + ω[ψγ5σ

ab(∂bψ)− (∂bψ)γ5σ
abψ]

− σ[ψσab(∂bψ)− (∂bψ)σabψ]− 2mωka}, (52)

Ωa
5 =

1

2
(σ2 − ω2)−1{i[σ(∂aω)− ω(∂aσ)] + σ[ψγ5σ

ab(∂bψ)− (∂bψ)γ5σ
abψ]

− ω[ψσab(∂bψ)− (∂bψ)σabψ]− 2mσka}, (53)

the inverted form of the Dirac equation in curved spacetime.

4. Bilinear refinement using Fierz identities

It is apparent however, that the bracketed second and third terms in (52) and (53) are not

closed-form bilinears, due to the minus sign preventing a simple application of the Leibniz

rule for derivatives. It is possible to show through a very lengthy algebraic process that

Fierz expansions can be used to re-write these terms in closed tensor form. Due to the sheer

length and tediousness of these calculations, they are not given here, however their derivation

follows a similar process to Appendix C in [11] and Appendix B in [28].

The Fierz expansion can be used to write the outer product of two spinors ψχ, which

is a 4 × 4 matrix in the spinor degrees of freedom, as a sum of terms over the basis of

Dirac-Clifford matrices with bilinear coefficients

ψχ =
1

4
(χψ)I+

1

4
(χγaψ)γa+

1

8
(χσabψ)σab− 1

4
(χγ5γaψ)γ5γ

a+
1

4
(χγ5ψ)γ5, (54)

which can be derived from the more formal expression

ψχ =
16∑
R=1

aRΓR (55)

where R = 1, ..., 16 runs over all of the elements of the Dirac-Clifford algebra. Multiplying

(55) from the right by Dirac matrix ΓB [where B runs over the types: scalar, ..., rank-2

tensor in (36a)-(36e)], and using the trace identities

Tr(ΓRΓB) =

{
Tr(Γ2

B) if R = B,

0 otherwise,
(56)

Tr(ψχΓB) = χΓBψ, (57)

along with the trace properties of the Dirac matrices, one can easily derive (54).

Following a very tedious process of applying (54) to the terms in (52) and (53) where

the spinors are visible, we obtain the purely bilinear expressions

ω[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− σ[ψσab(∂bψ)− (∂bψ)σabψ]

= (σ2 − ω2)−1{sab[ωjc(∂bkc) + iσmc(∂bnc)]− ∗sab[σjc(∂bkc) + iωmc(∂bnc)]}
+ δabcd[kc(∂bkd)− jc(∂bjd)], (58)
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σ[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− ω[ψσab(∂bψ)− (∂bψ)σabψ]

= (σ2 − ω2)−1{sab[σjc(∂bkc) + iωmc(∂bnc)]− ∗sab[ωjc(∂bkc) + iσmc(∂bnc)]}
+ εabcd[kc(∂bkd)− jc(∂bjd)]. (59)

Using the Fierz identities [9]

sab = (σ2 − ω2)−1(σεabcd − ωδabcd)jckd (60a)
∗sab = (σ2 − ω2)−1(ωεabcd − σδabcd)jckd, (60b)

iεabcdjckd = i(manb −mbna) = δabcdmcnd, (60c)

iδabcdjckd = −jakb + jbka = εabcdmcnd, (60d)

the expressions within the curved braces can be recast as

sab[ωjc(∂bkc) + iσmc(∂bnc)]− ∗sab[σjc(∂bkc) + iωmc(∂bnc)]

= δabcd[jcj
ekd(∂bke) +mcm

end(∂bne)], (61)

sab[σjc(∂bkc) + iωmc(∂bnc)]− ∗sab[ωjc(∂bkc) + iσmc(∂bnc)]

= εabcd[jcj
ekd(∂bke) +mcm

end(∂bne)]. (62)

To proceed further, we require the tetrad frame of four-vector bilinears, with scalar

normalizing factor:

tα
a = (σ2 − ω2)−1/2[ja,ma, na, ka], (63)

where α = 0, 1, 2, 3 labels the columns. The details of this local frame are discussed in

subsection 5.4. The tetrad orthonormality implies

tα
atαb = δab = (σ2 − ω2)−1(jajb −mamb − nanb − kakb), (64)

and taking the derivative yields

tα
a(∂btβa) = −tβa(∂btαa), (65)

which provides the freedom to switch what bilinear the derivative operator acts on, when the

Lorentz index is summed over. In the special case where α = β, we can replace four-vectors

entirely via

ja(∂bja) = −ma(∂bma) = −na(∂bna) = −ka(∂bka) = σ(∂bσ)− ω(∂bω), (66)

which is just the derivative of the invariant length squared Fierz identity [9]. Note that (66)

is consistent with (64), when setting a = b and summing. Applying these identities to the

square brackets in (61) and (62) gives, after some manipulation

jcj
ekd(∂bke) +mcm

end(∂bne)

=
1

2
(σ2 − ω2)[jc(∂bjd)− kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]. (67)

We now write a much simpler form of (58) and (59):

ω[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− σ[ψσab(∂bψ)− (∂bψ)σabψ]

=
1

2
δabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)], (68)
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σ[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− ω[ψσab(∂bψ)− (∂bψ)σabψ]

=
1

2
εabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]. (69)

Finally, substituting into (52) and (53), we obtain the gravitational four-vector potentials in

terms of closed-form bilinears only

Ωa =
1

2
(σ2 − ω2)−1{i[ω(∂aω)− σ(∂aσ)]− 2mωka

+
1

2
δabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}, (70)

Ωa
5 =

1

2
(σ2 − ω2)−1{i[σ(∂aω)− ω(∂aσ)]− 2mσka

+
1

2
εabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}. (71)

Comparing with the inverted Dirac equation in the electromagnetic case [11]

Aa =
1

2q
(σ2 − ω2)−1{εabcd[jc(∂bkd)− kc(∂bjd)] +mb(∂anb)− 2mσja}

+
1

2q
(σ2 − ω2)−2{δabcdjckd[ω(∂bσ)− σ(∂bω)]

+ εabcdjckd[ω(∂bω)− σ(∂bσ)]}, (72)

where the totality of the U(1) gauge dependence is represented by the mb(∂anb) term, we

can see some apparent structural similarities, despite their differences.

5. The Einstein-Cartan-Dirac self-coupled system

5.1. Curvature Field Equations

Consider Einstein’s equations coupled to a source term with generally non-vanishing

cosmological constant:

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (73)

In the present case, where the gravitational field couples to the Dirac field, the asymmetric

canonical stress-energy tensor on the right hand side is given by [16]

Tµν =
i

2
[ψγµ(∇νψ)− (∇νψ)γµψ]. (74)

This can be rewritten in terms of Dirac bilinears with the use of Fierz identities [28], which

yields

Tµν =
1

2
(σ2−ω2)−1[ikµ(ω∂νσ−σ∂νω)−g−1/2εµσρε(∇νj

σ)jρkε+jµm
σ(∇νnσ)].(75)

One the other side of the equation, we have the contractions of the curvature tensor, which

in terms of the spin connection is given by [21], [29]

Ra
bµν = ∂νΓµ

a
b − ∂µΓν

a
b − Γµ

a
eΓν

e
b + Γν

a
eΓµ

e
b. (76)
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It is important to note that the curvature tensor we use is not the Riemannian one from

standard general relativity, due to the presence of a non-vanishing torsion field. The non-

Riemannian component of Ra
bµν vanishes in the limit where the torsion vanishes. An

expression in terms of locally orthonormal components is obtained, as usual, via contraction

with the vierbein

Rab
cd ≡ eµce

ν
dR

ab
µν

= [eµc(∂deµ
e)− eµd(∂ceµe)]Γeab + ∂dΓc

ab − ∂cΓdab − Γc
a
eΓd

eb + Γd
a
eΓc

eb. (77)

Switching the derivatives on the vierbein terms (which reverses the sign), we can write the

curvature tensor as

Rab
cd = Θe

cdΓe
ab + ∂dΓc

ab − ∂cΓdab − Γc
a
eΓd

eb + Γd
a
eΓc

eb, (78)

where we define the objects of anholonomity as

Θabc ≡ eµa(∂be
µ
c − ∂ceµb), (79)

which are representative of the non-commutativity of the tetrad basis [17]. Contracting b

and d in the curvature tensor yields the Ricci tensor

Ra
b = Θc

bdΓc
ad + ∂cΓb

ac − ∂bΓcac − Γb
a
cΓd

cd + Γd
a
cΓb

cd, (80)

with the final contraction yielding the Ricci scalar

R = ΘabcΓ
abc + 2∂aΓb

ba − Γa
a
bΓc

bc + ΓabcΓ
bca. (81)

5.2. Torsion Field Equations

The torsion tensor is defined as the degree to which the affine connection fails to be

symmetric:

Υµν
λ = Γµν

λ − Γνµ
λ. (82)

A particle field with intrinsic quantum spin will act as the source of a non-vanishing torsion

field, in an analogous manner to stress-energy acting as the source of curvature [15]. The

torsion field equation is given by

Υµν
γ + δγµΥνσ

σ − δγνΥµσ
σ = 8πGΣµν

γ. (83)

Together, the curvature and torsion gravitational field equations, (73) and (83), comprise

the Einstein-Cartan(-Sciama-Kibble) equations.

In terms of the spinor field, the canonical spin momentum tensor in a locally orthonormal

frame is

Σabc =
i

4
ψγ[aγbγc]ψ. (84)

Given that

γ[aγbγc] =
1

6
(γaγbγc − γaγcγb + γbγcγa − γbγaγc + γcγaγb − γcγbγa), (85)
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we can apply the Dirac identities

γaγb = 2ηab − γbγa (86a)

γaσbc = iηabγc − iηacγb + εabcdγ5γd (86b)

to obtain

γ[aγbγc] = −iεabcdγ5γd. (87)

Substituting into (84), we find

Σabc =
1

4
εabcdkd, (88)

the spin angular momentum tensor of the Dirac field is proportional to the rank-3 dual of

the axial vector bilinear. With regards to the left-hand side of (83), using the connection

transformation rule (12), we can write the torsion in terms of the object of anholonomity

and connection

Υabc ≡ Υµν
λeµae

ν
beλc = Θcba − Γabc + Γbac. (89)

Alternatively, taking an appropriate cyclic combination of the torsion, the connection can

be written as [30], [29]

Γabc = Kabc +
1

2
(Θabc −Θbca −Θcab), (90)

where we define the contorsion tensor to be

Kabc :=
1

2
(−Υabc + Υbca −Υcab). (91)

5.3. Constraints Arising From Torsion

We shall now demonstrate how the torsion field equation can be used to obtain a further,

very useful set of constraints on the Einstein-Cartan-Dirac system. For convenience, we shall

consider the torsion field equation in a local frame

Υabc + ηacΥb
d
d − ηbcΥa

d
d = 8πGΣabc. (92)

Now, substituting the irreducible decomposition of the connection (30) into the torsion (89),

we obtain

Υabc = −Θcab + (3)Γcab −
2

3
δcdabΩ

d +
4

3
εcdabΩ

d
5, (93)

where we have used the cyclic identities

δadbc − δbdac = −δcdab, (94)
(3)Γabc − (3)Γbac = −(3)Γcab. (95)

Taking the trace of (93) in the last two indices, the (3)Γ and Ω5 terms vanish, and we find

Υa
b
b = Θb

b
a + 2iΩa, (96)
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where we have used the antisymmetry of Θabc in bc. Substituting (93), (96), and (88) into

(92), then gathering terms and rearranging, we obtain an explicit expression for the remaining

component of the connection

(3)Γabc = Θabc + iδadbcΘe
ed − 4

3
δadbcΩ

d − 4

3
εabcdΩ

d
5 + 2πGεabcdk

d. (97)

Taking the trace of (97), the left-hand side and Levi-Civita terms vanish, and we obtain the

constraint on the gravitational vector potential

Ωa =
i

2
Θb

b
a. (98)

Similarly, when we fully contract both sides of (97) with the Levi-Civita tensor, the left-hand

side and δ-dependent terms vanish. Using the Levi-Civita contraction identity

εabcdε
abcf = −6δd

f , (99)

where the factors of
√
|g| cancel out, we obtain the constraint on the dual gravitational

potential

Ωd
5 = −1

8
Θabcε

abcd +
3π

2
Gkd. (100)

Substituting our constraints (98) and (100) back into (97), we obtain the expression

(3)Γabc =
1

3
(2Θabc −Θbca −Θcab) +

i

3
δadbcΘe

ed. (101)

This expression can be interpreted as that due to the constraints imposed by the

Cartan torsion equation (92), the traceless mixed symmetry irreducible component of the

connection is equal to the traceless mixed symmetry irreducible component of the object of

anholonomity. Substituting the constraints (98), (100), and (101) into (93), we obtain the

simple form of the torsion

Υabc = 8πGΣabc, (102)

which is obviously a solution of (92) due to the vanishing trace of the fully antisymmetric

spin tensor. Substituting the same constraints into the connection (30) we obtain

Γabc = −4πGΣabc +
1

2
(Θabc −Θbca −Θcab), (103)

which is consistent with (90), and the contorsion solution corresponding to (102):

Kabc = −4πGΣabc. (104)

5.4. The Dirac Bilinear Local Frame

In section 4, we used the fact that there is a local orthonormal tetrad frame corresponding

to a family of observers comoving with the Dirac matter. Using the Fierz identities for the

four four-vector quantities§ derived from the Dirac algebra [9], [31], [7], [10]

jµj
µ = −mµm

µ = −nµnµ = −kµkµ = σ2 − ω2, (105)

jµm
µ = jµn

µ = jµk
µ = mµn

µ = mµk
µ = nµk

µ = 0, (106)

§ Subjecting the spinors to a complex phase transformation, causes the m-n plane to rotate by an angle

corresponding to double the phase parameter, whereas the j and k vectors are left invariant.
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where these bilinears are defined in terms of the spinors in (36a)-(38c), a local tetrad frame

(t0, t1, t2, t3) = (σ2 − ω2)−1/2(j,m,n,k)

= (σ2 − ω2)−1/2(jµ,mµ, nµ, kµ)∂µ, (107)

can be constructed, with the time-like direction given by j, and the three space-like directions

given by m, n, and k, with normalising factor (σ2 − ω2)−1/2 equal to the reciprocal of the

invariant length of the four-vectors via (105). This bilinear tetrad is one of infinitely many

local orthonormal frames, related to one another by a local Lorentz transformation. It is

pertinent to ask whether we are able to describe the components of an arbitrary vierbein

field in the coordinate frame ea
µ in terms of the bilinears which appear in ta

µ. Consider an

arbitrary four-vector field V in terms of the coordinate frame (c), and the bilinear (b) and

generic (g) tetrad local frames

V = V (c)µ∂µ = V (b)iti = V (g)aea. (108)

Taking all right-hand parts of the equation with respect to the coordinate frame gives the

relationship between the various components

V (c)µ = ti
µV (b)i = ea

µV (g)a. (109)

Contracting (109) with the inverse of the bilinear tetrad gives

V (b)i = tiµea
µV (g)a = tiaV

(g)a, (110)

Substituting (110) into (109) yields an expression for the generic vierbein frame in terms of

the Dirac bilinear frame

ea
µ = ti

µtia = (σ2 − ω2)−1(jaj
µ −mam

µ − nanµ − kakµ). (111)

This expression for the generic vierbein field in terms of the Dirac bilinears provides us with

a tool for calculating internal solutions of the Einstein-Cartan-Dirac equations, in regions

where the Dirac field is non-vanishing; vacuum solutions must be matched on the matter

boundary. The expression (111) simplifies the self-coupled equations summarized below in

section 6 by reducing the number of fields we need to solve for, to the number of independent

parameters in the bilinears. On the other hand, due to the length of the right-hand side

of (111) the equations may appear far more untidy. However, this will be offset by the

application of Fierz identities between contracted bilinears. An explicit algebraic reduction

is deferred to future publications.

6. Summary and conclusions

For the sake of clarity, we shall collate our main results. We have Einstein’s equations

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (112)

where on the right-hand side, we have the Dirac matter stress-energy tensor

Tµν =
1

2
(σ2−ω2)−1[ikµ(ω∂νσ−σ∂νω)−g−1/2εµσρε(∇νj

σ)jρkε+jµm
σ(∇νnσ)], (113)
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and on the left, we have the Ricci tensor and scalar, which in the local frame are respectively

Ra
b = Θc

bdΓc
ad + ∂cΓb

ac − ∂bΓcac − Γb
a
cΓd

cd + Γd
a
cΓb

cd, (114)

R = ΘabcΓ
abc + 2∂aΓb

ba − Γa
a
bΓc

bc + ΓabcΓ
bca. (115)

Note that our curvature terms implicitly contain a non-zero torsion component. The

covariant derivatives in the stress-energy tensor contain the connection with world indices,

which due to its inhomogeneous transformation law, can be written in terms of the local

frame as

Γµν
λ = eaµebνec

λΓa
bc + eaµeb

λ∂ae
b
ν . (116)

Reducing the connection into three irreducible terms, and taking account of the torsion

equation, the connection in the local frame can be written as

Γabc = −2

3
δadbcΩ

d − 2

3
εabcdΩ

d
5 +

1

3
(2Θabc −Θbca −Θcab) +

i

3
δadbcΘe

ed, (117)

where the first two terms can be written in terms of Dirac bilinears, via the gravitational

vector potentials obtained by inverting the Dirac equation:

Ωa =
1

2
(σ2 − ω2)−1{i[ω(∂aω)− σ(∂aσ)]− 2mωka

+
1

2
δabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}, (118)

Ωa
5 =

1

2
(σ2 − ω2)−1{i[σ(∂aω)− ω(∂aσ)]− 2mσka

+
1

2
εabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}. (119)

The object of anholonomity is given in terms of the vierbein as

Θabc ≡ eµa(∂be
µ
c − ∂ceµb). (120)

Using the fact that, due to the existence of a local orthonormal frame carried by observers

co-moving with the Dirac field, the vierbein field can be written as

ea
µ = (σ2 − ω2)−1(jaj

µ −mam
µ − nanµ − kakµ), (121)

implying that the object of anholonomity can also be described using only bilinears; via (117)

the connection in the local frame can also be described using only bilinears. Furthermore,

the torsion field equation provides us with the constraints

Ωa =
i

2
Θb

b
a, (122)

Ωd
5 = −1

8
Θabcε

abcd +
3π

2
Gkd, (123)

Γabc = −πGεabcdkd +
1

2
(Θabc −Θbca −Θcab). (124)

Taken together, the equations (112)-(124) describe the gravitationally self-interacting

Einstein-Cartan-Dirac equations, in terms of the Lorentz covariant observables of the Dirac

field: the Dirac bilinears. We believe the inverted forms of the Dirac equation (118) and
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(119), the Fierz identities (68) and (69) that lead to their description in terms of Dirac

bilinears as opposed to spinors, and their application to the Einstein-Cartan-Dirac system,

to be new results.

In the electromagnetic case of the self-coupled Maxwell-Dirac equations, we showed

that this system is able to be reduced in the presence of global spacetime symmetries

corresponding to subgroups of the Poincaré group, and we gave four specific examples [11].

The approach we used was an infinitesimal method, which involved using the Lie generators

of a particular Poincaré subalgebra, provided by Patera, Winternitz & Zassenhaus [12], to

calculate joint invariant scalar and vector fields, which were then applied to the physical

equations to obtain new exact and numerical solutions [32]. Due to the similar complexity of

the Einstein-Cartan-Dirac equations, global symmetry reduction using the same techniques

is one way in which solutions to this system can be pursued.

Another avenue of study which the results of this paper highlight is that of the

extended Fierz algebra. The derivation of the Fierz identities needed to manipulate

expressions involving Dirac bilinears, for the case where the spinors carry no tensor indices

is straightforward (see (54)-(57)). However, the Dirac equation and related expressions

of course involve partial derivatives of spinors, so that new classes of “higher rank” Fierz

identities must be obtained. Equations (68) and (69) are two examples of a much broader

set of such relations.
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