1 Title Page

2

A Drug-Tunable Flt23k Gene Therapy for Controlled Intervention in Retinal Neovascularization

- 5
- Jinying Chen^{1,2}, Fan-Li Lin^{2,3}, Jacqueline Y.K. Leung⁴, Leilei Tu¹, Jiang-Hui Wang⁵, Yu-Fan Chuang^{2,4}, Fan Li^{2,6}, Hsin-Hui Shen^{7,8}, Gregory J. Dusting^{5,9}, Vickie H.Y. Wong¹⁰, Leszek Lisowski^{11,12,13}, Alex W. Hewitt^{2,5,9}, Bang V. Bui¹⁰, Jingxiang Zhong^{1,14}, Guei-Sheung Liu^{1,2,9,14*}
- 9
- ¹Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
- ¹¹ ²Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- ¹² ³Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen
- 13 Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- ⁴Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
- ⁵Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- ⁶State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University,
 Guangzhou, China
- ⁷Department of Materials Science and Engineering, Faculty of Engineering, Monash University,
 Clayton, Australia
- ⁸Department of Biochemistry and Molecular Biology, School of Biomedical Science, Monash
 University, Clayton, Australia
- ⁹Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- ²³ ¹⁰Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
- ¹¹Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and
 Health, University of Sydney, Sydney, Australia
- ¹²Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of
 Medicine and Health, University of Sydney, Sydney, Australia
- ¹³Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and
 Countermeasure Centre, 24-100 Puławy, Poland
- 30 ¹⁴JZ and GSL contributed equally to this work as senior author.
- 31
- *Correspondence and requests for materials should be addressed to Dr Guei-Sheung Liu
 (<u>rickliu0817@gmail.com</u>). Menzies Institute for Medical Research, University of Tasmania. Address:
 17 Liverpool Street, Hobart, TAS 7000, Australia. Tel: +61362264250.
- 35
- 36 Running title: Tunable gene therapy for retinal neovascularization

37 Abstract

38 Gene therapies that chronically suppress vascular endothelial growth factor (VEGF) represent a new 39 approach for managing retinal vascular leakage and neovascularization. However, constitutive 40 suppression of VEGF in the eye may have deleterious side effects. Here, we developed a novel strategy 41 to introduce Flt23k, an intraceptor that binds intracellular VEGF, fused to the destabilizing domain 42 (DD) of Escherichia coli dihydrofolate reductase (DHFR) into the retina. The expressed DHFR(DD)-43 Flt23k fusion protein is degraded unless "switched on" by administering a stabilizer; in this case, the antibiotic trimethoprim (TMP). Cells transfected with the DHFR(DD)-Flt23k construct expressed the 44 fusion protein at levels correlated with the TMP dose. Stabilization of the DHFR(DD)-Flt23k fusion 45 46 protein by TMP was able to inhibit intracellular VEGF in hypoxic cells. Intravitreal injection of self-47 complementary adeno-associated viral vector (scAAV)-DHFR(DD)-Flt23k and subsequent 48 administration of TMP resulted in tunable suppression of ischemia-induced retinal neovascularization 49 in a rat model of oxygen-induced retinopathy (OIR). Hence, our study suggests a promising novel 50 approach for the treatment of retinal neovascularization.

51 Introduction

52 Retinal neovascularization is a key pathological feature of several leading causes of vision loss, 53 including diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusions[1]. In these 54 diseases, abnormally high levels of vascular endothelial growth factor (VEGF) have been observed in 55 the retina. Excessively high levels of VEGF cause pathological vascular leakage and the formation of 56 new blood vessels in the retina, which can lead to vision loss. Intraocular injections of anti-VEGF 57 agents (such as VEGF-neutralizing proteins) have been shown to reduce blood vessel leakage, 58 allowing fluid reabsorption and resulting in improved visual acuity[2]. However, as this approach does 59 not address the cause of VEGF production, leakage and neovascularization will recur when the 60 vitreous levels of exogenous anti-VEGF proteins drop below therapeutic levels. Thus, current 61 regimens require frequent (as often as monthly) and prolonged treatment, sometimes for many years, 62 to maintain visual acuity[3]. Although intraocular delivery of anti-VEGF agents is generally safe, some 63 of the drugs administered can enter the systemic circulation, where chronically high levels of anti-64 VEGF proteins can increase the risk of systemic adverse effects[4].

65 Recently, the utilization of gene therapies with the potential to chronically suppress the 66 production of VEGF in the retina has been proposed as an attractive way to manage ocular 67 neovascularization[5,6]. While promising, chronic VEGF suppression may have deleterious side 68 effects on the retina. As the disease course can fluctuate between periods of relative VEGF inactivity 69 and high activity in many patients, a gene therapy approach that can accommodate such fluctuations 70 during the course of disease would potentially be a safer and more effective approach than an approach 71 with prolonged VEGF suppression. In this study, we created a fusion gene consisting of an intracellular 72 VEGF-targeting decoy receptor, Flt23k[7], and a protein disruption system (based on the destabilizing 73 domain (DD) of Escherichia coli dihydrofolate reductase (DHFR); DHFR (DD)-Flt23k)[8,9]. Flt23k 74 consists of domains 2-3 of VEGF receptor 1 (VEGFR1, the highest-affinity VEGF receptor) coupled 75 to the C-terminal endoplasmic reticulum (ER) retention signal KDEL, a tetrapeptide (Lys-Asp-Glu76 Leu). Flt23k binds intracellular VEGF and sequesters it in the ER, where VEGF undergoes 77 proteasomal degradation[10,11]. Without a triggering molecule, the expressed DHFR(DD)-Flt23k 78 fusion protein becomes unfolded and ubiquitinated and then is rapidly processed by the proteasome, 79 resulting in degradation of the entire fusion protein[12]. A stabilizing drug such as the antibiotic 80 trimethoprim (TMP) reliably prevents proteasomal destruction of DHFR(DD)-Flt23k, which then 81 binds to intracellular VEGF and prevents VEGF secretion (Figure 1a, illustration). In addition, to achieve long-term and early-onset gene expression, a self-complementary adeno-associated viral 82 83 vector (scAAV)[13] was utilized to deliver the DHFR(DD)-Flt23k gene into the back of the eve via a single intravitreal injection. Our data demonstrated that gene delivery of DHFR(DD)-Flt23k and 84 85 subsequent administration of TMP allowed disruption of VEGF levels in vitro. Importantly, we also 86 showed that this approach resulted in tunable suppression of retinal neovascularization in a rat model 87 of oxygen-induced retinopathy (OIR).

- 88
- 89

90 **Results**

91 Design and validation of the DHFR-based destabilized domain approach *in vitro*.

92 scAAVs encoding enhanced green fluorescent protein (EGFP) (or mCherry), Flt23k, DHFR(DD)-93 yellow fluorescent protein (YFP) (or DHFR(DD)-mCherry), DHFR(DD)-Flt23k, or Flt23k-94 DHFR(DD) were designed and constructed for the study (Figure 1b). We first validated whether the 95 DHFR(DD)-protein destabilizing system could be controlled using the stabilizing ligand TMP *in vitro*. 96 Human embryonic kidney 293A (HEK293A) cells were transfected with scAAV plasmid (pscAAV)-97 mCherry, pscAAV-Flt23k, pscAAV-DHFR(DD)-YFP, pscAAV-DHFR(DD)-Flt23k or pscAAV-98 Flt23k-DHFR(DD) for 24 hours and then exposed to 10 µM TMP or varying doses of TMP (0, 2, 10, 99 and 50 µM) for 24 hours. A 42-kDa band for DHFR(DD)-Flt23k or Flt23k-DHFR(DD) or a 25-kDa 100 Flt23k protein was detectable in pscAAV-DHFR(DD)-Flt23k, pscAAV-Flt23k-DHFR(DD) and 101 pscAAV-Flt23k-transfected cells, respectively, by western blotting. Neither protein was found in 102 pscAAV-DHFR(DD)-YFP- or pscAAV-mCherry-transfected cells (Figure 1c). Compared with the 103 construct with C-terminal fusion of Flt23k (Flt23k-DHFR(DD): 1.41-fold increase, p<0.05; n=3), the 104 construct with N-terminal fusion (DHFR(DD)-Flt23k: 2.66-fold increase, p<0.001; n=3) was more 105 flexibly regulated by TMP, as evidenced by relatively low DHFR(DD)-Flt23k protein levels in the 106 absence of TMP and high levels following TMP exposure (Figure 1d). Interestingly, we observed a 107 slight increase in DHFR(DD)-Flt23k expression in pscAAV-DHFR(DD)-Flt23k-transfected cells even 108 without TMP, indicating that some undegraded proteins remained despite the DHFR(DD)-protein 109 destabilizing system.

110 Next, we investigated whether DHFR(DD)-Flt23k is dependent on the TMP dose *in vitro*. 111 Compared to no TMP, the addition of 2, 10 or 50 μM TMP to the culture medium resulted in an 112 increase in cytosolic DHFR(DD)-Flt23k expression (2 μM: 2.12-fold, 10 μM: 3.14-fold, 50 μM: 4.45-113 fold; p<0.05, n=4) (**Figure 1e and 1f**). Although DHFR(DD)-Flt23k protein levels rose with 114 increasing doses of TMP, no significant difference was found between 10 and 50 μM TMP treatment 115 (p=0.2330). These data suggest that the N-terminal fusion construct DHFR(DD)-Flt23k is more 116 flexibly regulated and can be dose-dependently stabilized by TMP.

117

118 Stabilization of DHFR(DD)-Flt23k functionally inhibits hypoxia-induced VEGF in vitro.

119 Next, we considered whether the product resulting from TMP induction of DHFR(DD)-Flt23k was 120 biologically active by examining its capacity to inhibit hypoxia-induced human VEGF production. 121 HEK293A cells were transfected with pscAAV-DHFR(DD)-Flt23k for 24 hours and exposed to TMP 122 at a dose between 0 and 50 μ M for 24 hours. The cells were incubated under hypoxic conditions for 123 24 hours. Cell lysates and conditioned medium were harvested for enzyme-linked immunosorbent 124 assay (ELISA)-based detection of VEGF. Under the hypoxic conditions, compared to pscAAV-125 mCherry-transfected cells, the cells transduced with pscAAV-Flt23k (intracellular VEGF: 190 ± 27

126	pg/µg, p<0.05, n=6-7; extracellular VEGF: 1156 \pm 107 pg/mL, p<0.05, n=7) showed reductions in
127	both intracellular and extracellular VEGF levels (intracellular VEGF: 315 ± 32 pg/µg; extracellular
128	VEGF: 1564 ± 102 pg/mL; n=5) (Figure 2a and 2b). Cells transfected with pscAAV-DHFR(DD)-
129	Flt23k showed a significant decrease in the intracellular VEGF concentration, an effect that was
130	dependent on the dose of TMP (DHFR(DD)-Flt23k: 198 \pm 19 pg/µg; DHFR(DD)-Flt23k with 2 µM
131	TMP: $95 \pm 16 \text{ pg/}\mu\text{g}$; DHFR(DD)-Flt23k with 10 μ M TMP: $63 \pm 13 \text{ pg/}\mu\text{g}$, p<0.05; DHFR(DD)-Flt23k
132	with 50 μ M TMP: 45 ± 14 pg/ μ g, p<0.01; n=8) (Figure 2a). Similarly, the cells transfected with
133	pscAAV-DHFR(DD)-Flt23k also showed a significant TMP-dependent decrease in extracellular
134	VEGF secretion (DHFR(DD)-Flt23k: 1192 \pm 79 pg/mL; DHFR(DD)-Flt23k with 2 μ M TMP: 828 \pm
135	89 pg/mL; DHFR(DD)-Flt23k with 10 μ M TMP: 601 ± 97 pg/mL, p<0.01; DHFR(DD)-Flt23k with
136	50 μ M TMP: 507 ± 92 pg/mL, p<0.001; n=7) (Figure 2b). Together, our <i>in vitro</i> data suggest that
137	gene delivery of DHFR(DD)-Flt23k can reduce the VEGF protein level in a TMP-controlled manner.
138	Interestingly, we also found that cells transfected with pscAAV-DHFR(DD)-YFP (intracellular
139	VEGF: 388 ± 33 pg/µg, n=7; extracellular VEGF: 1544 ± 92 pg/mL, n=8) showed a significant
140	decrease in intracellular (153 \pm 24 pg/µg, p<0.001, n=8) and extracellular (932 \pm 113 pg/mL, p<0.01,
141	n=7) VEGF levels when exposed to 50 μ M TMP (Figure 2a). We investigated whether the high dose
142	of TMP inhibits VEGF expression using quantitative polymerase chain reaction (qPCR). Under
143	hypoxic conditions, cells were exposed to TMP at a dose between 0.01 and 100 $\mu M,$ and compared to
144	no TMP, the high dose of TMP (100 μ M) decreased VEGF gene expression (Figure S1a). We then
145	confirmed that compared to cells not treated with TMP, cells transfected with pscAAV-DHFR(DD)-
146	YFP (fold change in <i>VEGFA</i> mRNA: 8.1 ± 0.7 , p<0.05; n=3) or pscAAV-DHFR(DD)-Flt23k (fold
147	change in VEGFA mRNA: 7.8 \pm 0.4, p<0.05; n=3) and then exposed to 50 μ M TMP also showed a
148	decrease in VEGF gene expression (DHFR(DD)-YFP: 17.2 ± 1.9; DHFR(DD)-Flt23k: 15.0 ± 1.6; n=3)
149	(Figure S1b). Thus, our results indicate that a high dose of TMP (> 10 μ M) may also inhibit VEGF
150	gene expression.

151

Efficiency of scAAV2-mediated gene delivery and validation of transgene product regulation by the DHFR(DD)-protein destabilizing system in rat retinas.

154 The rat OIR model was employed to evaluate the therapeutic potential of drug-tunable Flt23k gene 155 therapy in retinal neovascularization. We first assessed the effectiveness of scAAV2-mediated gene 156 delivery in OIR rats. Eleven days after intravitreal injection of scAAV2-EGFP into OIR rats (postnatal 157 day 18 [P18]), EGFP expression was evident across the whole flat-mount retina (Figure 3a). Retinal 158 cross-sections also showed that scAAV2 drove strong panretinal expression across all retinal layers 159 (including the ganglion cell layer, inner nuclear layer and outer nuclear layer), as evidenced by the 160 presence of EGFP (Figure 3b). Given that retinal glia are a potential cellular source of VEGF, we 161 further characterized scAAV2-mediated transgene expression in retinal glial cells using colabeling of 162 glial fibrillary acidic protein (GFAP; a marker of glial cells). We found that scAAV2 was able to drive 163 gene expression in GFAP-positive retinal glial cells (Figure 3c).

164 To verify the hypothesis that DHFR(DD) provides control of the expressed fusion protein in 165 vivo, P7 rat pups were intravitreally injected with scAAV2-DHFR(DD)-YFP and then received an 166 intraperitoneal injection of 3 µg TMP on P14 and P16. Eyes were harvested on P18 to validate the 167 expression of DHFR(DD)-YFP (Figure 3d). We found that a few YFP fluorescence-positive cells 168 were present without TMP treatment but YFP protein levels were significantly elevated after the 169 stabilization of DHFR(DD)-YFP by systemic injection of TMP (Figures 3e and S2). A similar pattern 170 indicating a drug-tunable effect was shown in scAAV2-DHFR(DD)-mCherry-treated retinas of OIR 171 rats (Figure S3). To further verify that the drug-tunable effect of the DHFR(DD)-fusion protein is 172 mediated through posttranslational regulation, DHFR(DD)-Flt23k mRNA and protein levels in the 173 retinas of OIR rats were quantified using qPCR and western blotting. DHFR(DD)-Flt23k gene 174 expression was significantly increased in retinas from scAAV2-DHFR(DD)-Flt23k-injected rats 175 compared with those from scAAV2-DHFR(DD)-mCherry-injected rats (Figure 3f). No statistically 176 significant difference (p=0.8410) in the DHFR(DD)-Flt23k mRNA level was found between scAAV2-177 DHFR(DD)-Flt23k-injected rats treated with TMP (118.5 \pm 36.95-fold; n=3) and those not treated 178 with TMP (132.7 \pm 55.14-fold; n=3). DHFR(DD)-Flt23k proteins were detected only in retinas from 179 scAAV2-DHFR(DD)-Flt23k/TMP-injected rats; no protein was found in retinas from scAAV2-180 mCherry/vehicle- or scAAV2-DHFR(DD)-Flt23k/vehicle-injected rats (**Figure 3g**). These results 181 demonstrate that scAAV2 can effectively deliver DHFR(DD)-Flt23k to the retina in OIR rats and that 182 subsequent administration of TMP is able to stabilize the expressed DHFR(DD)-Flt23k protein.

183

scAAV2-mediated gene delivery of DHFR(DD)-Flt23k reduces VEGF levels and attenuates retinal neovascularization in the OIR rat model.

186 The rat OIR model was applied to evaluate the therapeutic potential of drug-tunable DHFR(DD)-187 Flt23k gene therapy in retinal neovascularization. P7 pups were intravitreally injected with scAAV2-188 mCherry, scAAV2-Flt23k, scAAV2-DHFR(DD)-mCherry or scAAV2-DHFR(DD)-Flt23k. On P14 189 and P16, rats received intraperitoneal injections of TMP. Eyes were then harvested on P18 to evaluate 190 VEGF expression and pathological blood vessel formation on the surface of the retina (retinal 191 neovascularization; Figures 4a and S4a). Increased mRNA and protein expression of VEGF was 192 observed in the retina of OIR rats on P18 (Figure S4b and S4c). Compared with eyes that received 193 scAAV2-mCherry (VEGF: 39.9 ± 4.1 pg/mL; n=8), those intravitreally injected with scAAV2-Flt23k 194 (VEGF: 28.5 ± 2.6 pg/mL, p<0.05; n=8) showed a significantly reduced level of VEGF in the retina 195 (Figure 4b). Surprisingly, we found that VEGF expression was significantly reduced in retinas from 196 scAAV2-DHFR(DD)-Flt23k/vehicle-injected rats (VEGF: 27.3 ± 1.5 pg/mL, p<0.05; n=8) and 197 scAAV2-DHFR(DD)-Flt23k/TMP-injected rats (VEGF: 22.9 ± 1.4 pg/mL, p<0.01; n=8) compared 198 with those from scAAV2-DHFR(DD)-mCherry/vehicle-injected rats (VEGF: 42.3 ± 4.8 pg/mL; n=8) 199 or scAAV2-DHFR(DD)-mCherry/TMP-injected rats (VEGF: 37.8 ± 3.7 pg/mL; n=8) (Figure 5b). A 200 slight reduction in the retinal VEGF level was found in scAAV2-DHFR(DD)-Flt23k/TMP-injected rats compared to scAAV2-DHFR(DD)-Flt23k/vehicle-injected rats, but this difference did not reach
statistical significance (p=0.0508) (Figure 4b). The results indicate that DHFR(DD)-Flt23k can reduce
VEGF levels in the retina even without TMP administration.

204 We subsequently evaluated the therapeutic potential of the drug-tunable Flt23k gene delivery 205 system in retinal neovascularization in vivo. Small tufts of vascular endothelial cells were observable 206 at the edge of new blood vessel growth adjacent to avascular areas (Figures 4c and S5). Compared 207 with intravitreal injection of scAAV2-mCherry (neovascular area: $3.23 \pm 0.25\%$ [95% confidence 208 interval (CI): 2.68-3.78]; n=15), intravitreal injection of scAAV2-Flt23k significantly inhibited 209 neovascularization (neovascular area: $1.57 \pm 0.14\%$ [95% CI: 1.28-1.86], p<0.001; n=20) (Figure 4d). 210 In the drug-tunable system, a significant inhibition of retinal neovascularization was observed between 211 scAAV2-DHFR(DD)-Flt23k-injected rats treated with TMP ($1.28 \pm 0.13\%$ [95% CI: 1.02-1.55], 212 p < 0.05; n=20) and those not treated with TMP (1.95 ± 0.12% [95% CI: 1.69-2.20]; n=23) (Figure 4d). 213 Similarly, there was a significant reduction in the neovascular area $(1.28 \pm 0.13\% [95\% CI: 1.02-1.55],$ 214 p < 0.001; n = 20) in retinas from scAAV2-DHFR(DD)-Flt23k/TMP-injected rats compared with those 215 from scAAV2-DHFR(DD)-mCherry/TMP-injected rats (neovascular area: $2.94 \pm 0.25\%$ [95% CI: 216 2.40-3.48]; n=17) (Figure 4d). We also found a reduction in the retinal neovascular area in scAAV2-217 DHFR(DD)-Flt23k/vehicle-injected rats (neovascular area: $1.95 \pm 0.12\%$ [95% CI: 1.69-2.20], p<0.01; 218 n=23) compared with rats injected with scAAV2-DHFR(DD)-mCherry/vehicle (neovascular area: 219 $2.49 \pm 0.23\%$ [95% CI: 2.00-2.98]; n=19) (Figure 4d). Moreover, no significant difference in the 220 avascular area was observed among the 6 groups (Figure 4e). Together, our results demonstrate that 221 gene delivery of DHFR(DD)-Flt23k by scAAV2 allows controlled suppression of retinal 222 neovascularization in OIR rats via the administration of TMP.

- 223
- 224
- 225 Discussion

226 In the present study, we demonstrate that the DHFR(DD)-protein destabilizing system may be a 227 promising way to regulate the level of Flt23k in the retina for tailored suppression of retinal 228 neovascularization. Our *in vitro* studies showed that fusion of Flt23k to the N terminus of DHFR(DD) 229 allowed relatively good control of Flt23k expression with TMP. We showed that in a dose-dependent 230 manner, TMP increased the expression of Flt23k, which was functional with the capacity to attenuate 231 intracellular and extracellular VEGF levels in cells exposed to hypoxic conditions. Finally, intravitreal 232 gene delivery of DHFR(DD)-Flt23k by scAAV2 and subsequent administration of TMP provided 233 evidence for tunable attenuation of ischemia-induced retinal neovascularization in a rat model of OIR. 234 Rapid advances in gene therapy have brought this approach nearly to clinical use in 235 ophthalmology. Given that the eye is a particularly favorable organ for gene delivery, ocular use is 236 likely to be among the most successful applications of this technique. We provided proof-of-principle 237 evidence that intravitreal injection of scAAV2 under a ubiquitous cytomegalovirus (CMV) promoter 238 in OIR rats resulted in efficient and high-level transgene expression within a time frame relevant to 239 the treatment of retinal neovascularization. scAAV2 has been shown to exhibit better transduction 240 efficiency and faster initiation of gene expression in the retina than conventional single-stranded 241 AAVs[13,14]. However, the ubiquitous CMV promoter cannot be used to express anti-VEGF 242 therapeutic genes in specific cell types (i.e., Müller glial cells and photoreceptors) that are the primary 243 source of VEGF production in proliferative retinopathies. As such, it will be important to develop a 244 better delivery system with either a cell-specific promoter or an AAV variant that targets desired cell 245 types. Such refinements will lead to more effective therapies while reducing the potential for adverse 246 effects.

In this study, we show that using scAAV2 to deliver Flt23k can modify VEGF levels and reduce retinal neovascularization in OIR rats. A similar therapeutic effect was also observed with AAV-mediated gene delivery of Flt23k in a murine model of choroidal neovascularization[11]. However, high-level expression of an anti-VEGF protein such as Flt23k in the retina may have

251 unwanted consequences. Strategies are needed to regulate transgene expression through the 252 incorporation of trigger elements into the expression cassette, which are then modulated by an 253 exogenous drug[15] or endogenous molecules generated as part of the disease process[16]. Different 254 from those approaches, a protein-destabilizing system based on E. coli DHFR(DD) was used here. In 255 this system, the engineered DHFR(DD) is rapidly degraded along with any attached protein. A small-256 molecule pharmacological chaperone (protein stabilizer) such as TMP, a common antibiotic, allows 257 newly synthesized DDs to be folded and stabilized at higher steady-state levels within cells, thus 258 protecting the attached therapeutic protein from degradation[17]. An appealing aspect of this strategy 259 to stabilize therapeutic proteins is that TMP, which is safe and able to cross the blood-retina barrier, 260 can be administered orally at a chosen time, such as during an exacerbation of retinal angiogenesis[9]. 261 Oral or topical administration of TMP reliably prevents proteasomal destruction of DD-fused proteins 262 (delivered via an AAV) in the rodent retina without impacts on retinal function or structure[11,9]. 263 Thus, TMP-mediated tunable gene therapy could meet the clinical requirement for a tailored and 264 sustained therapeutic intervention to treat retinal neovascularization.

265 Although promising in several regards, the DHFR(DD) destabilizing system requires further 266 refinement. Specifically, we observed that low protein levels of DHFR(DD)-Flt23k were present in 267 transfected cells not treated with TMP, suggesting that not all DHFR(DD)-fusion proteins were 268 degraded. Indeed, a significant reduction in the cytosolic VEGF level was seen in DHFR(DD)-Flt23k-269 transfected cells and the retina of scAAV2-DHFR(DD)-Flt23k-injected eyes without the addition of 270 TMP. Additionally, Flt23k is a recombinant construct consisting of domain 2/3 of the VEGFR1 271 receptor coupled with a C-terminal ER-retention signal sequence (KDEL)[10]. The ER-retention 272 signal sequence allows newly formed fusion proteins to be retained in the ER[18], thus delaying their 273 degradation and leading to VEGF binding. However, newly formed fusion proteins may generate a 274 pull effect between the ER-retention signal and the protein-destabilizing signal of DHFR(DD)-Flt23k, 275 which may result in a delay in protein degradation, thereby increasing the amount of undegraded

276 protein in the cytosol. The undegraded or intermediate DHFR(DD)-Flt23k protein can potentially 277 neutralize cytosolic VEGF and modulate the angiogenic response even without TMP stabilization. 278 This might account for our observation that retinal neovascularization was reduced in scAAV2-279 DHFR(DD)-Flt23k-treated rats compared to those that received scAAV2-DHFR(DD)-mCherry. As 280 OIR is a relatively acute model of retinal neovascularization with a low level of VEGF upregulation, 281 a small increase in VEGF suppression can impact neovascularization. Thus, rats receiving scAAV2-282 DHFR(DD)-Flt23k could express low levels of undegraded or intermediate DHFR(DD)-Flt23k protein, 283 which could neutralize retinal VEGF over time. A higher protein level of stabilized DHFR(DD)-Flt23k 284 was observed upon TMP injection on P14 and P16 and led to more effective neutralization and thus a 285 greater suppressive effect on retinal neovascularization. Therefore, our drug-tunable Flt23k gene 286 therapy might be improved by removing the ER-retention signal sequence and adjusting the viral dose 287 to reduce basal VEGF inhibition. Further studies in a clinically relevant model of chronic retinal 288 neovascularization will further inform differences in the benefits of this tunable system.

289 A limitation of our work was that the safety of the drug-tunable Flt23k gene therapy in the 290 retina was not evaluated in our proof-of-concept experiments. However, two recent studies have 291 reported the safety profile of retinal Flt23k gene therapy and systemic TMP administration in mice. 292 Zhang et al. reported that subretinal AAV-mediated gene delivery of Flt23k had no impact on retinal 293 function or morphology for up to 6 months[11]. Datta et al. showed that there was no impact on the 294 visual function or structure of the mouse retina after 3 months of TMP treatment[9]. Although these 295 two studies have indicated that these strategies are safe in the retina, it will be important to assess the 296 safety of both AAV-mediated Flt23k gene delivery and TMP administration before current research 297 can be clinically translated. Another limitation of the present study was that the treatment was 298 evaluated with a single dose of TMP (10 mg/kg) over a relatively short period of time in OIR rats. The 299 TMP dose used in this study (10 mg/kg) was based on published reports[8,9] and is within the 300 recommended dose for humans (10-15 mg/kg)[19]. As indicated by other reports and our *in vitro* data, 301 the dose of TMP impacts the expression of the stabilized DHFR(DD)-Flt23k protein. Therefore, the 302 dose and frequency of TMP administration will need to be further optimized to match a drug-tunable 303 Flt23k gene therapy system to the protracted time course of clinical disease processes.

304 Consistent with previous studies, this study showed that protein expression was dependent on 305 the TMP dose. Although maximizing the TMP dose to achieve the optimal therapeutic effect is critical, 306 the systemic administration of high-dose TMP may also have deleterious effects. Indeed, our in vitro 307 study showed that a high dose of TMP could also inhibit VEGF mRNA expression (Figure S1). High 308 doses of TMP can induce cell toxicity[20], thus modifying VEGF mRNA expression under hypoxia 309 condition. Therefore, administration of high-dose TMP together with DHFR(DD)-Flt23k gene 310 delivery may act synergistically to suppress VEGF at both the transcriptional level and the 311 posttranslational level. In addition, prolonged oral TMP administration has been shown to disrupt the 312 gut microbiome, which can impact the central nervous system[21] and in turn modify the progression 313 of ocular diseases[22]. Thus, topical administration of TMP via eye drops may be a safer alternative. 314 One study of the rodent retina demonstrated that topical administration of TMP could reliably and 315 locally stabilize the expression of proteins fused to DHFR(DD) (delivered via an AAV)[9]. Moreover, 316 to further mitigate systemic adverse events, a TMP-based nonantibiotic small molecule has been 317 developed to control DHFR(DD)-fused proteins[23]. Therefore, a combination of nonantibiotic eye 318 drops and tunable Flt23k gene therapy would be a safe and attractive approach for the treatment of 319 retinal neovascularization.

In summary, our data suggest that the DHFR(DD)-protein destabilizing system is a promising way to regulate the level of Flt23k in the retina and provides the potential to tailor suppression of retinal neovascularization. Although further investigations are required to assess long-term safety and efficacy in clinically relevant models, we believe that this comprehensive strategy has the potential as a treatment strategy for retinal neovascularization and avoids the need for repeated intravitreal injections. 326

327

328 Materials and Methods

329 The sources of the materials and equipment used in this study are listed in **Table S1**.

330

331 Cell culture. HEK293A (catalog no. R70507; Life Technologies Australia, Mulgrave, VIC, Australia) 332 and HEK293D (a gift from Dr. Ian Alexander at the Children's Medical Research Institute, University 333 of Sydney, Australia) cells were cultured in Dulbecco's modified Eagle's medium (DMEM; catalog 334 no. 11965092; Life Technologies Australia) supplemented with 10% fetal bovine serum (catalog no. 335 F9423; Sigma-Aldrich, St. Louis, MO, USA), 50 U/mL penicillin-streptomycin (catalog no. 15070-336 063; Life Technologies Australia) and 2 mM glutamine (catalog no. 2503008; Life Technologies 337 Australia). Cell lines were confirmed to be free of mycoplasma using the MycoAlertTM Mycoplasma 338 Detection Kit (catalog no. LT07; Lonza, Walkersville, MD, USA) and cultured in a humidified 5% 339 CO₂ atmosphere at 37 °C.

340

341 Transfection. Plasmid transfection was performed with Lipofectamine 2000 (catalog no. 11668019; 342 Life Technologies Australia). In brief, HEK293A cells were plated in a 6-well plate on day 0 343 $(2.5 \times 10^{5} / \text{well})$ and transfected with 750 ng of plasmid DNA using the protocol provided in the kit. 344 After 24 hours of incubation, the transfection medium was replaced with fresh medium and treated 345 with TMP (0, 2, 10, or 50 µM; catalog no. T7883; Sigma-Aldrich). Thereafter, cells were either 346 exposed to hypoxia (GENbag anaer hypoxia bag, catalog no. 45534; bioMeriux, Marcy-l'Étoile, 347 France) or kept in normoxia for 24 hours. Cell lysates and conditioned medium were then harvested 348 for ELISA and qPCR.

349

350 AAV construction and virus production. EGFP, mCherry, Flt23k, DHFR(DD)-YFP, DHFR(DD)-351 mCherry, Flt23k-DHFR(DD) and DHFR(DD)-Flt23k complementary DNA (cDNA) sequences 352 surrounded by AgeI/NotI cleavage sites were obtained by gene synthesis (GenScript, Piscataway, NJ, 353 USA) and subcloned into the pHpa-trs-SK-EGFP plasmid (a gift from Dr. Douglas M. McCarty at the 354 Center for Gene Therapy, Nationwide Children's Hospital, USA) by replacing the EGFP sequence. 355 The Flt23k DNA sequence was kindly provided by Dr. Balamurali K Ambati at the Moran Eye Center 356 (University of Utah, USA). The DHFR(DD) DNA sequence was based on pBMN-DHFR(DD)-YFP 357 (a gift from Dr. Thomas Wandless at the Stanford University, USA; Addgene plasmid #29325). 358 Recombinant scAAV2s were packaged as previously described[24]. Briefly, the scAAV2s were 359 prepared by transfecting HEK293D cells with the targeted plasmids (pscAAV-mCherry, pscAAV-360 Flt23k, pscAAV-DHFR(DD)-YFP, pscAAV-DHFR(DD)-mCherry, pscAAV-DHFR(DD)-Flt23k or 361 pHpa-trs-SK-EGFP), a helper plasmid (pXX6, kindly provided by the UNC Vector Core Facility, USA) 362 and an AAV2 capsid plasmid (pXX2, kindly provided by the UNC Vector Core Facility, USA) using 363 the calcium phosphate method. Viral vectors were purified using the AAVpro Purification Kit (catalog 364 no. 6666; Clontech Laboratories, Mountain View, CA, USA), and titers were quantified by qPCR.

365

366 Western blot analysis. Cells or retinas were collected in 150 µL of Pierce RIPA buffer (catalog no. 367 89900; Life Technologies Australia) with a protease inhibitor cocktail (catalog no. 14692300; Roche 368 Diagnostics, Basilea, Swiss). The lysates were homogenized using a sonicator for 5-10 seconds and 369 then centrifuged at full speed for 15 minutes at 4 °C. The supernatants were collected and quantified 370 using a Pierce[™] BCA assay kit (catalog no. 23227; Life Technologies Australia). Proteins were denatured at 85 °C for 10 minutes, followed by separation on NuPAGE[™] Novex[™] 4-12% Bis-Tris 371 372 Protein Gels (catalog no. NP0321BOX; Life Technologies Australia) using gel electrophoresis and 373 transfer to polyvinylidene fluoride membranes (catalog no. IPVH00010; Immobilon-P; Merck 374 Millipore, Burlington, MA, USA) using the XCell IITM Blot Module (Life Technologies Australia) at 375 30 volts for 1 hour. The membranes were then blocked with 5% skim milk in TBS-T (10 mM Tris, 376 150 mM NaCl, and 0.05% Tween-20) at room temperature for 1 hour and incubated with a mouse anti-377 VEGFR1 antibody (Flt-1/EWC) (1:500 dilution; catalog no. ab9540; Abcam, Cambridge, UK) 378 overnight at 4 °C or with a mouse anti-GAPDH antibody (clone 6C5, 1:500 dilution; catalog no. 379 MAB374; Merck Millipore) or mouse anti-Actin antibody (clone C4, 1:5000 dilution; catalog no. 380 MAB1501; Merck Millipore) at room temperature for 1 hour. The membranes were washed and further 381 incubated with a goat anti-mouse IgG HRP-conjugated secondary antibody (1:4000 dilution; catalog 382 no. 12-349; Merck Millipore) at room temperature for 1 hour. The membranes were then developed 383 using the Amersham ECL Prime Western Blotting Detection Kit (catalog no. RPN2235; GE 384 Healthcare Australia, Parramatta, NSW, Australia).

385

ELISA. The VEGF protein level was detected in HEK293A cell lysates, conditioned media and rat retinal tissue lysates using ELISA. For cell and tissue lysates, samples were prepared in Pierce RIPA buffer. Lysates and conditioned media were analyzed using human or rat VEGF ELISA kits (catalog no. DY293B and RRV00; R&D Systems, Inc., Minneapolis, MN, USA) per the manufacturer's instructions, and results were read at a 450-nm wavelength using a CLARIOstar microplate reader (BMG LABTECH, Ortenberg, Germany).

392

qPCR. Total RNA was extracted and purified from cells or retinas using TRIzol Reagent (catalog no.
15596026; Life Technologies Australia) according to the manufacturer's instructions. cDNA synthesis
from total RNA was achieved using a high-capacity RT kit (catalog no. 4368814; Life Technologies
Australia). Two nanograms of cDNA were used for real-time PCR using an ABI QuantStudio3 device
(Applied Biosystems, Foster City, CA, USA) and TaqMan Fast Master mix (catalog no. 4444557; Life
Technologies Australia) with the TaqMan assay probes for VEGFA (Hs00900054_m1). Human

399 *HPRT1* (Hs99999909_m1) was used as the reference gene. Transcript levels were calculated using the 400 $\Delta\Delta$ Ct method, as previously described by Livak[25].

401

402 **Animals.** Female Sprague-Dawley rats were supplied by the Cambridge Farm Facility of the 403 University of Tasmania and housed in standard cages with free access to food and water in a 404 temperature-controlled environment under a 12-h light (50 lux illumination)/12-h dark (< 10 lux 405 illumination) cycle to minimize possible light-induced eye damage. All animal experiments described 406 adhered to the guidelines of the Association for Research in Vision and Ophthalmology Statement for 407 the Use of Animals in Ophthalmic and Vision Research and were approved by the Animal Ethics 408 Committee of the University of Tasmania, Australia (ethics approval number A0017598).

409

410 Rat model of OIR and vessel quantification. We employed a modified rat OIR protocol based on a 411 previous study[26]. Briefly, newborn Sprague-Dawley rats and their nursing mothers were housed in 412 a commercially available chamber (A-Chamber; BioSpherix, Parish, NY, USA) within 12 hours of 413 birth (P0) and exposed to daily cycles of 80% O₂ for 21 hours and room air for 3 hours from P0 to P14. 414 The pups were then returned to room air until P18. An oxygen controller (ProOx 110; BioSpherix) 415 was used to monitor and control the oxygen level in the humidified chamber. The rats were sacrificed on P18, and their retinas were dissected and stained with 5 g/mL Alexa FluorTM 488-conjugated 416 417 isolectin B4 (isolectin GS-IB4 from Griffonia simplicifolia; catalog no. I21411; Life Technologies 418 Australia). The sizes of the neovascularization and vaso-obliteration areas in the rat retinas were 419 quantified with Adobe Photoshop (CC 2017.1.1) by two blinded assessors (JC and GSL). If the 420 isolectin GS-IB4-labeled retinal vascular area was < 20% of the total retinal area, the sample was 421 excluded from the study.

422

423 Intravitreal injection. Intravitreal injections of AAVs were performed under a surgical microscope. 424 In brief, after making a guide track through the conjunctiva and sclera at the superior temporal 425 hemisphere behind the limbus using a 30-gauge needle, a hand-pulled glass micropipette connected to 426 a 10-µL Hamilton syringe (Bio-Strategy, Broadmeadows, VIC, Australia) was inserted into the vitreal cavity. A total of 1 μ L of AAVs (2-2.5x10⁹ viral genomes) was injected into an eye of OIR rats on P7, 427 428 and an equal amount of saline was injected into the contralateral eye of the same animal. A total of 429 192 neonatal rats (from 20 litters) were used in our in vivo study. Animals were randomly allocated 430 into the following groups: scAAV2-EGFP (n=5), scAAV2-mCherry (n=29), scAAV2-Flt23k (n=30), 431 scAAV2-DHFR(DD)-YFP (n=10), scAAV2-DHFR(DD)-mCherry (n=52), and scAAV2-DHFR(DD)-432 Flt23k (n=66). Any issues arising from the injection, including large backflow upon removal of the 433 needle and the presence of hemorrhaging anywhere on the eye, resulted in exclusion from the study.

434

435 **TMP administration.** OIR rats were intraperitoneally injected with a TMP lactate salt (catalog no. 436 T0667; Sigma-Aldrich) or vehicle on P14 and P16. TMP was freshly dissolved in nanopure water and 437 diluted to a concentration of 30 mg/mL. Rats were given 100 μ L of this solution, which equates to 3 438 mg of TMP/rat/dose.

439

440 Immunofluorescence analysis. Rat pups were euthanized on P18. Eyeballs were removed and fixed 441 in a 4% formaldehyde solution in PBS for 1 hour at room temperature. The cornea and lens were 442 removed, and the globes were incubated with 18% sucrose until the eyeball sank to the bottom of the 443 container at room temperature. The eyes were then placed in 30% sucrose overnight. Samples were 444 embedded in optimal cutting temperature compound (catalog no. IA018; ProSciTech, Kirwan, QLD, 445 Australia) and stored at -80 °C. Serial cryosections (20-µm thickness) were obtained and stored at -20 446 °C. The sections were rinsed in three washes of PBS and then underwent immunofluorescence labeling with NucBlueTM Live Cell Stain ReadyProbes Reagent (catalog no. R3760S; Life Technologies 447

448 Australia) for 20 minutes and an anti-GFAP antibody (1:500 dilution; catalog no. G3893; Merck 449 Millipore) for 1 hour. The sections were washed and mounted with Dako fluorescent mounting 450 medium (catalog no. s3020; DAKO, Carpinteria, CA, USA). Images were digitized using a 451 fluorescence microscope (Zeiss Axio Imager Microscope; Carl-Zeiss-Strasse, Oberkochen, Germany) 452 equipped with a charge-coupled digital camera (Axiocam MRm, Zeiss) and image acquisition software (ZEN2, Zeiss). The entire retina was photographed using appropriate filters to capture the fluorescence 453 454 emission spectra of mCherry (610 nm), EGFP/isolectin B4-FITC (509 nm), and NucBlue (460 nm), 455 and separate images were merged to form a complete image of the retinal section. The fluorescence of 456 the EGFP-positive area in the total retina was quantified with ImageJ.

457

458 Statistical analysis. Statistical analysis was performed using GraphPad Prism 7 for all experimental 459 data. Measurement data are presented as the mean ± standard error of the mean (SEM). Comparisons 460 among multiple groups were analyzed by two-tailed Student's *t*-tests, one-way or two-way ANOVA 461 followed by Tukey's multiple comparisons. Values were determined to be significant when the p value 462 was less than 0.05.

463

464 Acknowledgements

465	The authors thank UTAS CFF animal technicians, Karen Shiels, Keri Smith, Heather Howard, Lisa
466	Harding and Danielle Eastley, for their assistance with rat chamber operation. This work was supported
467	by grants from the National Health and Medical Research Council of Australia (NHMRC; 1061912,
468	1123329, 1108311 and 1161583), the Ophthalmic Research Institute of Australia, the National Natural
469	Science Foundation of China (8197030485) and the Rebecca L Cooper Medical Research Foundation.
470	A.W.H. received an NHMRC Practitioner Fellowship (1103329). L.L. was supported by the
471	Department of Science and Higher Education of Ministry of National Defense, Republic of Poland
472	("Kościuszko" k/10/8047/DNiSW/T-WIHE/3) and the National Science Centre, Republic of Poland
473	(UMO-2017/25/B/NZ1/02790). The Centre for Eye Research Australia receives Operational
474	Infrastructure Support from the Victorian Government.
475	
476	Competing Interests
477	The authors have declared that no competing interest exists.
478	
479	Data Availability
480	All datasets generated for this study are included in the article/supplementary materials.
481	
482	Author contributions
483	Conceptualization- J.C., G-S.L. Methodology- J.C., F-L.L., J.Y.K.L., G-S.L. Formal Analysis- J.C.,
484	F-L.L., G-S.L. Investigation- J.C., F-L.L., J.Y.K.L., L.T., Y-F.C., J-H.W., F.L., V.H.Y.W. Resources-
485	G.J.D., H-H.S., B.V.B., L.L., A.W.H., J.Z., G-S.L. Data Curation- J.C., G-S.L. Writing (Original
486	Draft)- J.C., G-S.L. Writing (Review & Editing)- J.Y.K.L., J-H.W., F-L.L., L.L., G.J.D., V.H.Y.W.,
487	B.V.B., J.Z. Visualization- J.C., G-S.L. Supervision- J.Z., G.S.L. Project Administration- J.C., G-S.L.
488	Funding Acquisition- J.Z., G-S.L.

- 489 Figure Captions
- 490

491 Graphical Abstract. Schematic diagram of the tunable system utilizing the DHFR(DD)-Flt23k 492 approach to reduce VEGF secretion. (a) The schematic shows normal VEGF secretion. (b) Without 493 the ligand TMP, the DHFR(DD)-Flt23k protein is destabilized and degraded by the proteasome. (c) In 494 the presence of the ligand TMP, DHFR(DD)-Flt23k is stabilized and sequestered in the ER, thereby 495 conditionally inhibiting VEGF. Green lines indicate the intracellular and extracellular distributions of 496 VEGF. Blue lines indicate proteasomal degradation of the DHFR(DD)-Flt23k protein. Orange lines 497 indicate the uptake of cell-permeable TMP. TMP, trimethoprim; VEGF, vascular endothelial growth 498 factor; ER, endoplasmic reticulum.

499

500 Figure 1. Characterization of DHFR(DD)-Flt23k gene transfer in vitro. (a) The schematic illustrates conditional protein stabilization by the ligand TMP. The DHFR(DD)-fused Flt23k protein 501 is an unstable cytosolic protein that is rapidly degraded by the proteasome unless protected by the 502 503 specific cell-permeable ligand TMP. (b) The schematic shows plasmid constructs. (c and d) Two days 504 after transfection, the expression of Flt23k or DHFR(DD) fused with Flt23k in HEK293A cells in the 505 presence of 0 or 10 µM TMP was confirmed by western blotting. The graph shows the quantification 506 of protein expression. Two-tailed Student's *t*-tests were performed to determine the significance of 507 differences (***p < 0.001, *p < 0.05). (e and f) The DHFR(DD)-Flt23k level in HEK293A cells was 508 increased by TMP in a dose-dependent manner (0-50 µM). The graph shows the quantification of 509 protein expression. Two-tailed Student's t-tests were performed to determine the significance of 510 differences (**p<0.01; [#]p<0.05 compared to DHFR(DD)-Flt23k with 0 µM TMP). All data are 511 presented as the mean \pm SEM. Corresponding uncropped images of western blots are shown in **Figure** 512 **S6**. CMV, cytomegalovirus; mCH, mCherry; EGFP, enhanced green fluorescent protein; YFP, yellow 513 fluorescent protein; TMP, trimethoprim. 514

- **Figure 2. Stabilization of DHFR(DD)-Flt23k inhibits intracellular and extracellular VEGF.** Cells were transfected and treated with different doses of TMP (0, 2, 10, or 50 μ M), followed by treatment with hypoxia for 24 hours. Histograms show that compared to DHFR(DD)-YFP or DHFR(DD)-Flt23k, stabilized DHFR(DD)-Flt23k inhibits intracellular (a) and extracellular (b) VEGF expression, as detected by ELISA. One-way ANOVA followed by Tukey's multiple-comparisons test was performed to determine the significance of differences (***p<0.001, **p<0.01, *p<0.05). All data are presented as the mean ± SEM. mCH, mCherry; YFP, yellow fluorescent protein; TMP, trimethoprim.
- 523 Figure 3. scAAV2-mediated gene transduction following intravitreal injection into the retina of OIR rats. Representative images of retinal flat-mount sections (a) and cross-sections (b and c) from 524 525 OIR rats (P18) 11 days after scAAV2-EGFP intravitreal injection. Intact retinas were confirmed with 526 NucBlue[™] (blue) staining. (a) Retinal flat mounts showing EGFP expression distribution (green). 527 Scale bars: 1 mm. (b) Distribution and colocalization of EGFP (green) and GFAP staining (retinal glial cell marker, red) in retinal cross-sections. Scale bars: 500 µm. (c) High-magnification view of a retinal 528 529 cross-section. Transduction of retinal cells is evident by the presence of EGFP-positive cells in the 530 outer nuclear layer (arrows) and inner segments. Scale bars: 100 µm. (d) Schematic diagram of the rat 531 OIR model protocol to illustrate the timing of viral vector injection and intraperitoneal TMP injection. 532 (e) Retinal flat-mount section showing TMP-mediated YFP protein stabilization in an OIR rat. Scale bars: 1 mm (left panels) and 70 µm (right panels). (f) DHFR(DD)-Flt23k mRNA expression levels in 533 534 retinas injected with scAAV2-DHFR(DD)-mCherry or scAAV2-DHFR(DD)-Flt23k with or without 535 TMP, as quantified using qPCR (n=3). Two-tailed Student's t-tests were performed to evaluate 536 differences between groups. All data are presented as the mean \pm SEM. (g) Retinal DHFR(DD)-Flt23k 537 protein levels determined using western blotting, each with three replicates. Corresponding uncropped 538 images of western blots are shown in Figure S6. OIR, oxygen-induced retinopathy; EGFP, enhanced

green fluorescent protein; GFAP, glial fibrillary acidic protein; mCH, mCherry; YFP, yellow
fluorescent protein; TMP, trimethoprim; GCL, ganglion cell layer; INL, inner nuclear layer; ONL,
outer nuclear layer.

543 Figure 4. Effects of intravitreal scAAV2 injection on retinal neovascularization in the rat OIR 544 model. (a) Schematic of the rat OIR model protocol to illustrate the timing of viral vector injection 545 and intraperitoneal TMP injection. Neonatal rats were exposed to daily cycles of 80% oxygen for 21 546 hours and room air for 3 hours from P0 to P14 and received an intraperitoneal injection of 3 mg of 547 TMP on P14 and P16. On P14, the animals were returned to room air until P18. scAAV2-mCherry, 548 scAAV2-Flt23k, scAAV2-DHFR(DD)-mCherry, or scAAV2-DHFR(DD)-Flt23k was injected on P7. (b) Rat retinal VEGF levels quantified using ELISA analysis of 8 retinas (3 littermates). One-way 549 550 ANOVA followed by Tukey's multiple comparisons test was performed to determine the significance of differences (**p<0.01, *p<0.05). (c) A typical cluster of vascular structures represented as 551 "neovasculature" on a flat-mounted retina harvested on P18 after intravitreal injections on P7 and 552 553 stained with isolectin B4. Retinal neovascularization is highlighted in white, and insets show the 554 selected areas at high magnification. Scale bars: 250 µm. Corresponding uncropped images of retinas are shown in Figure S5. (d) Retinal neovascular area quantified from 15 to 23 retinas. One-way 555 556 ANOVA followed by Tukey's multiple-comparisons test was performed to compare groups 557 (***p<0.001, **p<0.01, *p<0.05). (e) Retinal avascular area quantification. Data are presented as the mean \pm SEM from 11 to 22 retinas. No significant difference was observed in the avascular area. All 558 559 data are presented as the mean ± SEM. OIR, oxygen-induced retinopathy; mCH, mCherry; TMP, 560 trimethoprim.

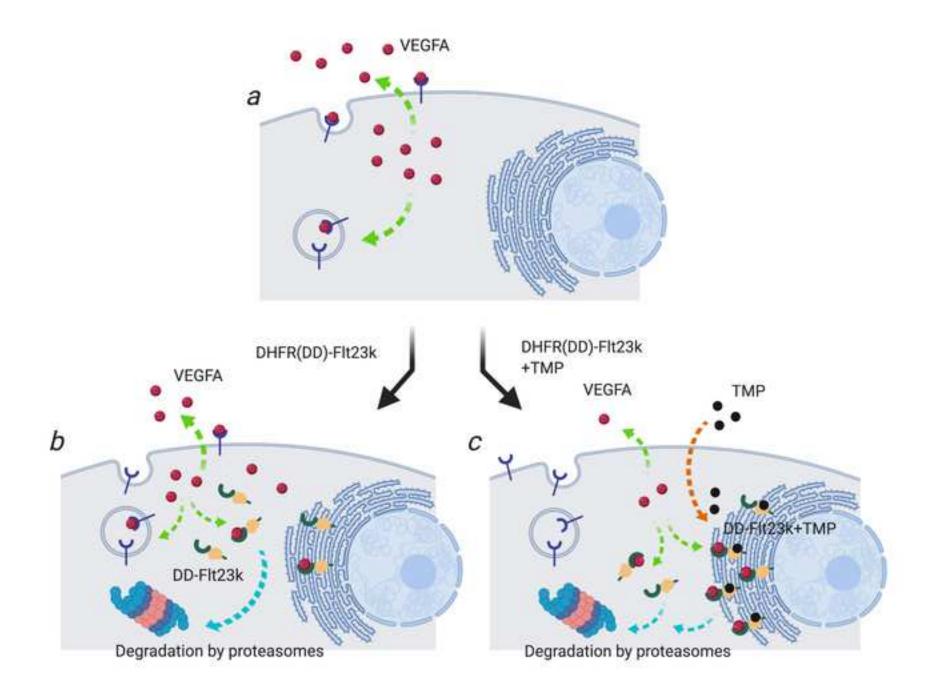
561

562 Table S1. Key Resources

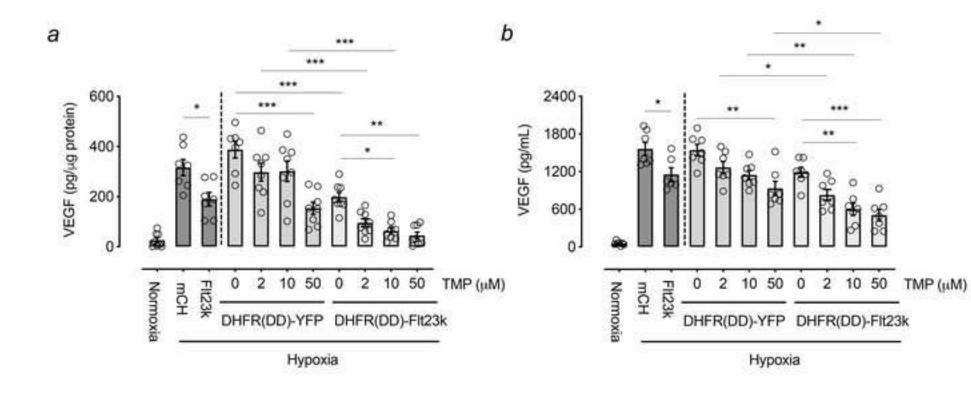
REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
Mouse anti-VEGF receptor 1 antibody (Flt-1/EWC)	Abcam	Cat# ab9540	
Mouse anti-GFAP antibody	Millipore	Cat# G3893	
Mouse anti-GAPDH (clone 6C5) antibody	Chemicon	Cat# MAB374	
Mouse anti-Actin (clone C4) antibody	Millipore	Cat# MAB1501	
Goat anti-mouse IgG HRP-conjugated secondary antibody	Millipore	Cat# 12-349	
Isolectin GS-IB4 From Griffonia simplicifolia, Alexa Fluor™ 488 Conjugate	Life Technologies Australia	Cat# I21411	
NucBlue TM Live Cell Stain ReadyProbes Reagent	Life Technologies Australia	Cat# R3760S	
Plasmid DNA			
pHpa-trs-SK-EGFP	Kindly provided by Dr Douglas M. McCarty, Center for Gene Therapy, Nationwide Children's Hospital, USA	n/a	
pXX2	Kindly provided by UNC Vector Core Facility, USA	n/a	
pXX6	Kindly provided by UNC Vector Core Facility, USA	n/a	
pscAAV-mCherry	The plasmid was generated by Liu Lab from this study	Vector backbone: pHpa-trs-SK	

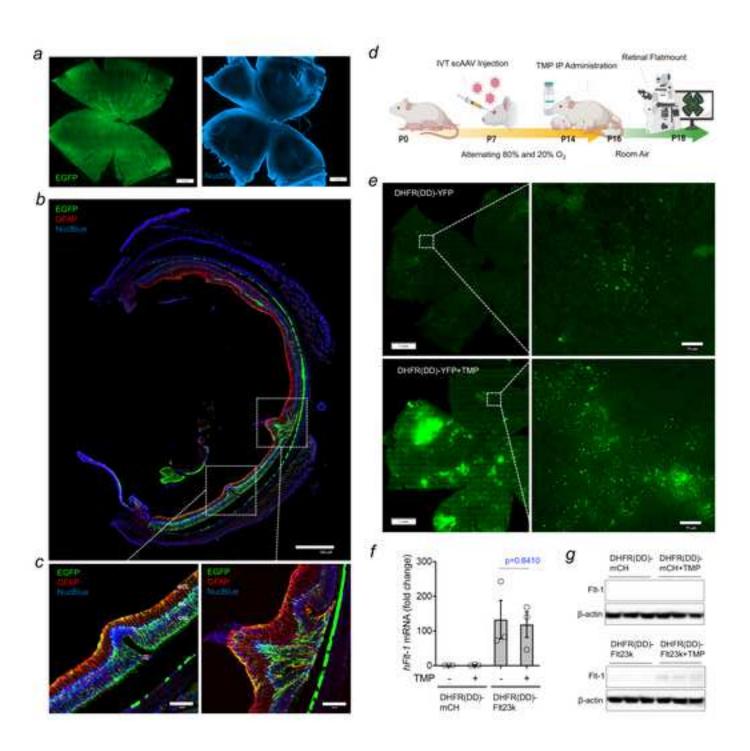
pscAAV-Flt23k	The plasmid was generated by Liu Lab from this study	Vector backbone: pHpa-trs-SK
pscAAV-DHFR(DD)-YFP	The plasmid was generated by Liu Lab from this study	Vector backbone: pHpa-trs-SK
pscAAV-DHFR(DD)-mCherry	The plasmid was generated by Liu Lab from this study	Vector backbone: pHpa-trs-SK
pscAAV-DHFR(DD)-Flt23k	The plasmid was generated by Liu Lab from this study	Vector backbone: pHpa-trs-SK
pscAAV-Flt23k-DHFR(DD)	The plasmid was generated by Liu Lab from this study	Vector backbone: pHpa-trs-SK
Chemicals		
Glutamine	Life Technologies Australia	Cat# 2503008
Penicillin-streptomycin	Life Technologies Australia	Cat# 15070063
Trimethoprim	Sigma-Aldrich	Cat# T7883
Trimethoprim lactate salt	Sigma-Aldrich	Cat# T0667
Critical Commercial Assays		
MycoAlert [™] Mycoplasma Detection Kit	Lonza, Walkersville	Cat# LT07
AAVpro Purification Kit	Clontech Laboratories	Cat# 6666
Pierce™ BCA assay kit	Life Technologies Australia	Cat# 23227
Amersham ECL Prime Western Blotting Detection Kit	GE Healthcare Australia	Cat# RPN2235

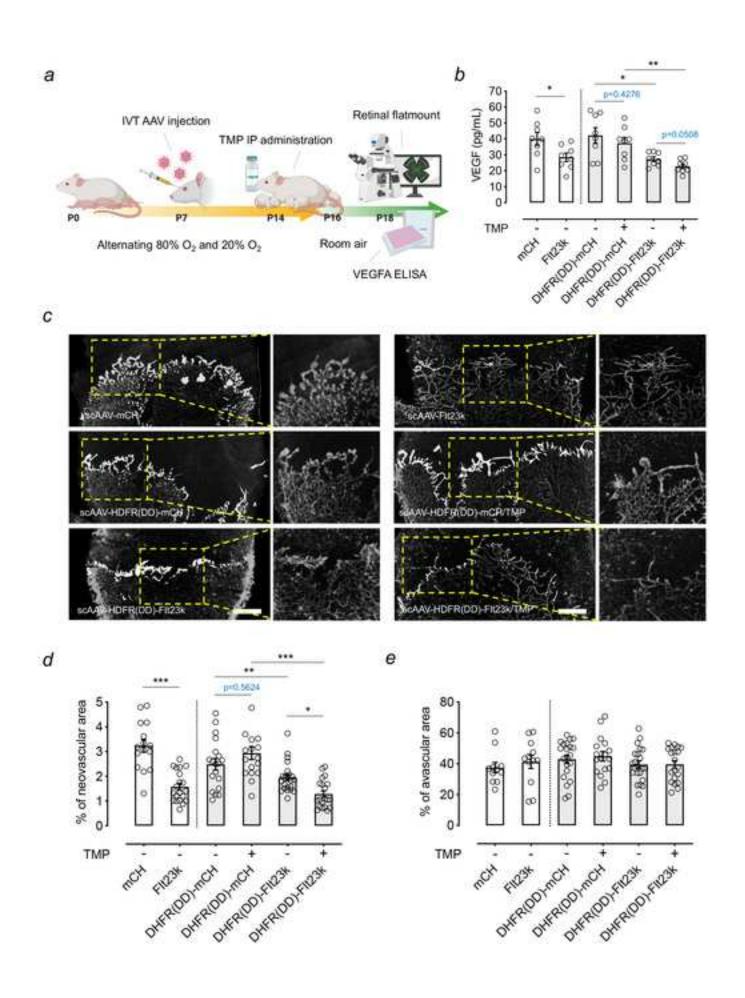
DuoSet® Ancillary Reagent Kit 2	R&D Systems	Cat# DY008
Duoset® human ELISA VEGF Kit	R&D Systems	Cat# DY293B-05
Rat VEGF Quantikine ELISA Kit	R&D Systems	Cat# RRV00
High capacity cDNA reverse transcription Kit	Life Technologies Australia	Cat# 4368814
TaqMan Fast Master mix	Life Technologies Australia	Cat# 4444557
Experimental Models: Cell Lines		
Human embryonic kidney 293A	Life Technologies Australia	Cat# R70507
Human embryonic kidney 293D	Kindly provided by Professor Ian Alexander at the Children's Medical Research Institute, Australia	n/a
Experimental Models: Organisms/Strains		
Sprague-Dawley rat	Cambridge Farm Facility in University of Tasmania, Hobart, Australia	AEC: 004/16
Equipment		
CLARIOstar microplate reader	BMG LABTECH, Ortenberg	n/a
QuantStudio3	Applied Biosystems	n/a
Oxygen controller, ProOx 110	BioSpherix	n/a


Hamilton syringe	Bio-Strategy	n/a
Zeiss Axio Imager Microscope	Carl-Zeiss-Strasse, Oberkochen, Germany	n/a
qPCR Probes		
Human VEGFA TaqMan probe sequences: N/A	Applied Biosystems	Hs00900054_m1
Human HPRT1 TaqMan probe sequences: N/A	Applied Biosystems	Hs999999909_m1
Software and Algorithms		
ImageJ version 1.48	Schneider et al., 2012	https://imagej.nih .gov/ij
Prism 7	GraphPad Software	n/a
Adobe Photoshop (CC 2017.1.1)	Connor et al., 2009	Adobe
Other		
Dulbecco's modified Eagle's medium	Life Technologies Australia	Cat# 11965092
Fetal bovine serum	Sigma-Aldrich	Cat# F9423
Opti-MEM I reduced serum medium	Life Technologies Australia	Cat# 31985088
Lipofectamine 2000	Life Technologies Australia	Cat# 11668019
Hypoxia bag	BioMeriux	Cat# 45534

Anaerotic indicator	BioMeriux	Cat# 96118
Pierce RIPA buffer	Life Technologies Australia	Cat# 89900
Protease Inhibitor Cocktail	Roche Diagnostics	Cat# 14692300
NuPAGE [™] Novex [™] 4-12% Bis-Tris Protein Gels	Life Technologies Australia	Cat# NP0321BOX
Polyvinylidene fluoride membranes	Millipore	Cat# IPVH00010
XCell II™ Blot Module	Life Technologies Australia	Cat# 11965118
Trizol Reagent	Life Technologies Australia	Cat# 15596026
Optimal cutting temperature compound	ProSciTech	Cat# IA018
Dako Fluorescent mounting medium	DAKO	Cat# S3020


565 **References**


- 566 1. Sun Y, Smith LEH (2018) Retinal Vasculature in Development and Diseases. Annu Rev Vis Sci
 567 4:101-122
- 568 2. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker
- 569 CW, Bressler NM, Browning DJ, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun
- 570 JK, Beck RW (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J 571 Med 372 (13):1193-1203
- 572 3. Mehta H, Tufail A, Daien V, Lee AY, Nguyen V, Ozturk M, Barthelmes D, Gillies MC (2018) Real-
- world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal
 vascular endothelial growth factor inhibitors. Prog Retin Eye Res 65:127-146.
 doi:10.1016/j.preteyeres.2017.12.002
- 4. Avery RL, Gordon GM (2016) Systemic Safety of Prolonged Monthly Anti-Vascular Endothelial
 Growth Factor Therapy for Diabetic Macular Edema: A Systematic Review and Meta-analysis. JAMA
 Ophthalmol 134 (1):21-29. doi:10.1001/jamaophthalmol.2015.4070
- 579 5. Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, Schwartz SD,
- 580 Blumenkranz MS, Chalberg TW, Degli-Esposti MA, Constable IJ (2015) Gene therapy with
- 581 recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year
- follow-up of a phase 1 randomised clinical trial. Lancet 386 (10011):2395-2403. doi:10.1016/s0140 6736(15)00345-1
- 584 6. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, Delacono C, Purvis A, Richards S,
- Le-Halpere A, Connelly J, Wadsworth SC, Varona R, Buggage R, Scaria A, Campochiaro PA (2017)
- 586 Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular
- 587 degeneration: a phase 1, open-label trial. Lancet 390 (10089):50-61. doi:10.1016/s0140-588 6736(17)30979-0
- 589 7. Luo L, Zhang X, Hirano Y, Tyagi P, Barabás P, Uehara H, Miya TR, Singh N, Archer B, Qazi Y,
- 590 Jackman K, Das SK, Olsen T, Chennamaneni SR, Stagg BC, Ahmed F, Emerson L, Zygmunt K,
- 591 Whitaker R, Mamalis C, Huang W, Gao G, Srinivas SP, Krizaj D, Baffi J, Ambati J, Kompella UB,
- 592 Ambati BK (2013) Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in
- primate and murine macular degeneration. ACS Nano 7 (4):3264-3275. doi:10.1021/nn305958y
- 8. Santiago CP, Keuthan CJ, Boye SL, Boye SE, Imam AA, Ash JD (2018) A Drug-Tunable Gene
 Therapy for Broad-Spectrum Protection against Retinal Degeneration. Mol Ther 26 (10):2407-2417
- 596 9. Datta S, Renwick M, Chau VQ, Zhang F, Nettesheim ER, Lipinski DM, Hulleman JD (2018) A
- 597 Destabilizing Domain Allows for Fast, Noninvasive, Conditional Control of Protein Abundance in the
- Mouse Eye Implications for Ocular Gene Therapy. Invest Ophthalmol Vis Sci 59 (12):4909-4920
 Singh N, Amin S, Richter E, Rashid S, Scoglietti V, Jani PD, Wang J, Kaur R, Ambati J, Dong Z,
- Ambati BK (2005) Flt-1 intraceptors inhibit hypoxia-induced VEGF expression in vitro and corneal
- neovascularization in vivo. Invest Ophthalmol Vis Sci 46 (5):1647-1652. doi:10.1167/iovs.04-1172
- 602 11. Zhang X, Das SK, Passi SF, Uehara H, Bohner A, Chen M, Tiem M, Archer B, Ambati BK (2015)
- 603 AAV2 delivery of Flt23k intraceptors inhibits murine choroidal neovascularization. Mol Ther 23 604 (2):226-234
- 605 12. Egeler EL, Urner LM, Rakhit R, Liu CW, Wandless TJ (2011) Ligand-switchable substrates for a ubiquitin-proteasome system. J Biol Chem 286 (36):31328-31336. doi:10.1074/jbc.M111.264101
- 13. Yokoi K, Kachi S, Zhang HS, Gregory PD, Spratt SK, Samulski RJ, Campochiaro PA (2007)
- 608 Ocular gene transfer with self-complementary AAV vectors. Invest Ophthalmol Vis Sci 48 (7):3324-
- 609 3328. doi:10.1167/iovs.06-1306
- 610 14. McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 16
- 611 (10):1648-1656. doi:10.1038/mt.2008.171
- 612 15. St-Onge L, Furth PA, Gruss P (1996) Temporal control of the Cre recombinase in transgenic mice
- 613 by a tetracycline responsive promoter. Nucleic Acids Res 24 (19):3875-3877


- 614 16. Prentice HM, Biswal MR, Dorey CK, Blanks JC (2011) Hypoxia-regulated retinal glial cell-615 specific promoter for potential gene therapy in disease. Invest Ophthalmol Vis Sci 52 (12):8562-8570
- 616 17. Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method
- 617 to regulate protein stability in the mammalian central nervous system. Chem Biol 17 (9):981-988
- 618 18. Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell
- 619 48 (5):899-907. doi:10.1016/0092-8674(87)90086-9
- 62019.Sulfamethoxazole/TrimethoprimDosage(2019)621https://www.drugs.com/dosage/sulfamethoxazole-trimethoprim.html.(2019)
- 622 20. Güzel Bayülken D, Bostancıoğlu RB, Koparal AT, Ayaz Tüylü B, Dağ A, Benkli K (2018)
 623 Assessment of in vitro cytotoxic and genotoxic activities of some trimethoprim conjugates.
 624 Cytotechnology 70 (3):1051-1059. doi:10.1007/s10616-018-0187-7
- 625 21. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between 626 enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28 (2):203-209
- 627 22. Rowan S, Jiang S, Korem T, Szymanski J, Chang ML, Szelog J, Cassalman C, Dasuri K, McGuire
- 628 C, Nagai R, Du XL, Brownlee M, Rabbani N, Thornalley PJ, Baleja JD, Deik AA, Pierce KA, Scott
- JM, Clish CB, Smith DE, Weinberger A, Avnit-Sagi T, Lotan-Pompan M, Segal E, Taylor A (2017)
- 630 Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular
- 631 degeneration. Proc Natl Acad Sci U S A 114 (22):E4472-e4481. doi:10.1073/pnas.1702302114
- 632 23. Peng H, Chau VQ, Phetsang W, Sebastian RM, Stone MRL, Datta S, Renwick M, Tamer YT,
 633 Toprak E, Koh AY, Blaskovich MAT, Hulleman JD (2019) Non-antibiotic Small-Molecule Regulation
 634 of DHFR-Based Destabilizing Domains In Vivo. Mol Ther Methods Clin Dev 15:27-39
- 24. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus
 vectors in the absence of helper adenovirus. J Virol 72 (3):2224-2232
- 637 25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time
 638 quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4):402-408.
 639 doi:10.1006/meth.2001.1262
- 640 26. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of
- retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35 (9):3429-3435
- 642

b a EGFP or mCH - CMV EGFP or mCH TMP Fit23k - CMV Stabilized DHFR(DD)-Fit23k FII:23k Proteasome DHFR(DD)-YFP or DHFR(DD)-mCH YFP or mCH DHFR(DD)-Fit23k-CMV FI1231 DHFR(DD) Fit23k DHFR(DD)-Fit23k FIt23k-DHFR(DD)-CMV FH23k degradation d CON CONTROL OF С OFOFT A A A 3 Control Fit23k (fold changes) TMP (10µM) Flt23k mCH 2 p=0.7553 TMP (10µM) . . ٠ ٠ . . . 0 1 -42kDa Fit-1 -25KDa 0 0 0 0 0 GAPDH -37KDa mort DHFRODITER DHFRODIFICSK DHFRODI f e p=0.2330 FIt23k (fold changes) 81 DHFR DHFR (DD)-YFP (DD)-Flt23k FI123k 6 TMP (µM) 0 2 10 50 0 2 10 50 0 4 42kDa 0 2 Fit-1 厌 -25KDa 01 GAPDH -37KDa TMP (µM) 2 10 50 0 2 10 50 0 0 DHFR(DD)-YFP DHFR(DD)-Flt23k Flt23k

Supplementary Material

Click here to access/download **Supplementary Material** FIt23k gene therapy _supplemental materials_R2_26082020.docx