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ABSTRACT: Knowledge of long-term and multi-scale
trends in ecological systems is a vital component in
understanding their dynamics. We used Landsat
satellite imagery to develop the first long-term (1986—
2015) data set describing the cover of dense surface
canopies of giant kelp Macrocystis pyrifera around
the entire coastline of Tasmania, Australia, and as-
sessed the extent to which potential environmental
drivers explain the dynamics of surface canopies at
multiple spatial and temporal scales. Broad-scale
temporal patterns in canopy cover are correlated with
El Nino-Southern Oscillation events, while regional
patterns are related to sea surface temperature and
nutrient regimes are associated with the East Aus-
tralian Current. Regression models developed to pre-
dict the presence or absence of giant kelp canopy
emphasise the importance of sea surface temperature
in these systems. Long-term decline in canopy cover
is clearly evident in most regions, and in light of in-
creasing thermal stress associated with a changing
ocean climate, this raises concern for the future of this
species as a major habitat-forming kelp in Australia
and some other regions worldwide. Given that Tas-
mania represents the stronghold of the range of this
species in Australia, but is a geographic trap in that
there is no suitable habitat for M. pyrifera to the
south, our findings support the Federal listing of giant
kelp communities in Australia as an endangered
marine community type.
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A stand of giant kelp at Carlton Bluff, Tasmania, Australia.
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1. INTRODUCTION

Many marine ecosystems are under threat as a
consequence of global warming (Hughes et al. 2003,
Wernberg et al. 2016). Oceans are becoming warmer
and more acidic, shifts in ocean circulation are alter-
ing temperature and nutrient regimes, and in many
locations, anthropogenically associated disturbance
events are increasing in frequency and severity, so
that marine ecosystems are increasingly subject to
multiple environmental stressors. These physical
changes to the environment affect biotic communi-
ties, including in coastal regions where ecosystems
are particularly subject to growing anthropogenic
pressure from urbanisation, development and ex-
ploitation (Vasquez 2008, Strain et al. 2014). Under-
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standing how these changes manifest, however, is
difficult. Species’ responses are the result of complex
biotic and abiotic interactions, and long-term data-
sets are required to separate anthropogenically
driven changes from natural variability (Reed et al.
2016, Bell et al. 2020). Data collection in the marine
environment is costly and often labour intensive, so
despite recognition of the value of long-term data
sets, few studies are able to assess long-term change.

Among coastal ecosystems, giant kelp (Macrocystis
pyrifera) forests are a key and iconic habitat that
dominate many nearshore rocky coastlines in tem-
perate and cold-water regions worldwide (Graham et
al. 2007). Growing from the seafloor and extending
as much as 40 m to the surface, these dense under-
water forests form closed to semi-closed canopies
that alter the light environment, reduce water flow,
alter sedimentation rates and provide an important
source of fixed carbon both within the kelp forest and
to surrounding communities (Steneck et al. 2002,
Layton et al. 2019). Their 3-dimensional structure
provides habitat for a diverse range of fish and inver-
tebrate species, including as recruitment grounds for
commercially and non-commercially exploited spe-
cies, and constitutes one of the most biodiverse mar-
ine systems in the world (Schiel & Foster 2015). Many
of these species are directly associated with the for-
est itself, and loss of the canopy can reduce the
trophic structure of the ecosystem (Graham 2004,
O'Connor & Anderson 2010) and have significant
impacts on biodiversity.

The success of giant kelp populations is in part due
to their ecological plasticity. Given an adequate
spore supply, suitable rocky substrata and a range of
environmental conditions, giant kelp can rapidly
establish, grow and become reproductive in less than
a year (Buschmann et al. 2006). These qualities have
enabled it to colonise and adapt to coastal habitats
across the globe, an ability that is further enhanced
by its capacity to float and disperse via rafting (Rot-
hausler et al. 2009) and its capacity for genetic adap-
tation (Camus et al. 2018).

Reproduction, recruitment and growth in giant
kelp are controlled by physical ocean properties,
including nutrient concentrations and temperature
(Graham et al. 2007). The limited capacity of M.
pyrifera to store nitrate, a nutrient essential for
photosynthesis, means that populations will respond
rapidly to changes in nitrate and ammonia concen-
trations (Kopczak 1994). Microscopic and juvenile
sporophytes demonstrate a similar response, and
recruitment occurs only when favourable conditions
of nitrogen availability and light coincide (Dean &

Jacobsen 1984, Carney & Edwards 2010). Tempera-
ture is almost always negatively correlated with
nitrate (although see Fram et al. 2008, Brzezinksi et
al. 2013), and giant kelp populations do not typi-
cally survive or establish in waters >20°C (Cava-
naugh et al. 2019). A growing body of literature
is also reporting that early life stages of giant kelp
are vulnerable to the effects of temperature even
when nutrients are abundant (e.g. Hollarsmith et
al. 2020).

In areas where conditions are otherwise suitable
for growth, wave-driven disturbance is a primary
control of mortality in M. pyrifera sporophytes (Reed
et al. 2011, Bell et al. 2015). Because of their large
size, giant kelps experience high drag forces which
make canopies and even whole plants vulnerable to
dislodgement during periods of high water turbu-
lence (Seymour et al. 1989). Prolonged periods of
low nutrients and/or high temperatures, such as
those associated with El Nino—-Southern Oscillation
(ENSO) events, can also lead to frond deterioration,
senescence or sporophyte mortality (Dayton et al.
1999, Edwards 2004). Population dynamics in giant
kelp thus reflect the interplay between resource
availability (nutrients, temperature) and physical dis-
turbance (wave activity), as determined by seasonal
and inter-annual fluctuations in ocean circulation, as
well as latitudinal gradients and variability driven by
local seafloor topography.

A number of studies have documented local and
regional changes in the distribution and extent of
giant kelp populations and their relationship with
inter-annual climate fluctuations. These studies con-
sistently record severe decline and elimination of
giant kelp forests during El Nino periods in the east-
ern Pacific when coastal upwelling is depressed, but
recovery is typically observed within <1 to 4 yr. For
example, Edwards (2004) examined the effect of the
1997-1998 EI Nifho on populations of giant kelp over
its entire geographic range in the northeast Pacific,
and found that while the stormy, warm and nutrient-
poor conditions associated with these events resulted
in the near-complete loss of giant kelp in the south-
ern half of its range, recovery occurred within 6 mo
to 2 yr. On the Mejillones Peninsula in Chile, distur-
bances associated with this same 1997-1998 El Nino
led to the loss and subsequent recovery of M. pyri-
fera (morph integrifolia) populations within 4 yr
(Vega et al. 2005), while in Mexico (Baja California)
and Chile, M. pyrifera forest canopy cover recovered
to former levels within 3 yr of significant losses
(Edwards & Hernandez-Carmona 2005, Vasquez et
al. 2006).
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Despite the importance of assessing short-term
dynamics of M. pyrifera in relation to climate fluctu-
ations, few studies have been able to assess multi-
decadal trends, in part due to a lack of long-term
data. The release of free satellite imagery by the US
Geological Survey (USGS) in 2008 has made avail-
able a data source of unprecedented spatial and tem-
poral resolution, dating back to 1982. A prominent
use of this data archive was the work of Cavanaugh
et al. (2011), who used a 25 yr time-series of images
to investigate biomass dynamics in giant kelp popu-
lations in the Santa Barbara Channel (California,
USA). They revealed significant correlations be-
tween biomass and annual and inter-annual climate
signals at regional scales, but little overall change in
biomass over the entire time period. These results
are echoed in ongoing research using the same
Landsat archive in this and the broader Californian
region (e.g. Bell et al. 2020), but whether these long-
term trends and links between biomass and climate
signals are similar in other locations around the
world is unknown.

The coastal waters of the state of Tasmania repre-
sent the most extensive giant kelp habitat in Aus-
tralia. Large and dense forests have historically cov-
ered significant areas of the nearshore reef habitat
and formed a key and characteristic component of
coastal ecosystems, particularly in eastern Tasmania,
but significant declines have been recorded in east-
ern Tasmania in recent decades. In one of the first
long-term assessments of abundance in the state,
Johnson et al. (2011) reviewed aerial photographs of
7 sites along the east coast, and reported up to 98 %
declines in canopy cover between 1946 and 2007.
This was the first study to quantify the loss of giant
kelp in Tasmania, and prompted the 2012 listing of
the giant kelp community through the Federal Envi-
ronment Protection and Biodiversity Conservation
Act as an ‘endangered marine community type'.
Given this listing, the first ever of a marine commu-
nity in Australia, a state-wide assessment of trends in
giant kelp canopy cover is of particular importance to
address conservation concerns.

In the present study, we used satellite imagery to
quantify the extent of giant kelp surface canopies
for the entire coastline of Tasmania over 30 yr, from
1986-2015. We relate the spatial and temporal
variability in surface cover of M. pyrifera to ocean
environmental conditions known to affect giant
kelp populations (temperature, exposure), and
quantify whether these factors influence the pres-
ence of M. pyrifera canopies in this region. Our
primary aim was to assess space-time variability

in this ecologically important and iconic kelp habi-
tat, filling a gap in knowledge for the region and
contributing to a growing global dataset on the
ecology of giant kelp.

2. MATERIALS AND METHODS
2.1. Study area

Tasmania is an island state located off the south-
east corner of Australia (Fig. 1). The waters sur-
rounding Tasmania offer a highly variable environ-
ment in terms of oceanic regimes, with different
areas of the coastline subject to different ocean cur-
rent and exposure conditions that vary according to
seasonal and inter-annual ENSO cycles. The most
dominant oceanic currents to impact Tasmania are
Australia's east and west continental boundary cur-
rents, the East Australian Current (EAC) and the
Zeehan Current (ZC; the southern-most extension of
the Leeuwin Current). Both currents are charac-
terised by warmer, high-salinity but nutrient-poor
water that flows southwards along the east (EAC)
and west (ZC) coasts (Ridgway & Condie 2004,
Oliver & Holbrook 2018). In Tasmania, the EAC is an
erratic eddy-driven flow that is strongest in summer,
while the ZC demonstrates a more consistent flow
that peaks in winter (Oliver & Holbrook 2018). In
transitional stages where neither current dominates,
the influence of incursions of the Antarctic Circum-
polar Current (ACC) are recognised by its cold and
relatively nutrient-rich signature (Buchanan et al.
2014).

Seasonal cycles in temperature and nutrients are
superimposed onto inter-annual cycles correspon-
ding to the ENSO. ENSO describes changes to the
circulation of the South Pacific Gyre, which cycles
through El Nino and La Nina events every 8-12 yr.
La Nina events result in a strengthening of the EAC
and ZC and subsequent warming of coastal waters
off Tasmania, while El Nino events are characterised
by weakened currents and cooler waters (Feng et al.
2003, Oliver & Holbrook 2018).

Exposure conditions also vary across the state. The
west and south coasts are subject to frequent and
intense weather systems originating in the Southern
Ocean that produce strong winds and large waves
(Hill et al. 2010). The north coast is offered some pro-
tection from within Bass Strait, but experiences
strong tidal currents and wind-generated waves
(Porter-Smith et al. 2004). The east coast is subject to
variable weather conditions (Porter-Smith et al. 2004,
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A threshold NDVI value was se-
lected such that when it was exceeded
in a given pixel, that pixel was classi-
fied as containing 100% giant kelp
canopy floating at the surface. Al-

NDVI= (1)

Hill et al. 2010), with occasional storm events gener-
ated from low pressure systems to the east.

2.2. Quantifying the extent of and trend in surface
canopies of Macrocystis pyrifera

2.2.1. Satellite estimation of M. pyrifera canopy

Giant kelp can form large and dense floating
canopies at the sea surface. These canopies are
photosynthetic and have spectral properties very
similar to those of terrestrial vegetation, namely a
low reflectance in the visible range and a high
reflectance in the near infrared (NIR). Water absorbs
almost all of the incoming NIR wavelengths, and it is
this contrast that enables identification of M. pyrifera
canopies in satellite imagery.

The presence of surface canopies of M. pyrifera
was estimated from Landsat TM, ETM+ and OLI Sur-

though this method does not provide a

quantification of the specific canopy
area within a given pixel, it provides identification of
the presence of surface canopies within the area and
an adequate means to assess spatio-temporal trends
in forest habitat. The threshold was chosen based on
how well it delineated canopies that were observed
in the false-colour satellite image, across multiple
images. Although numerous canopy-forming kelps
exist in Tasmania (e.g. Ecklonia radiata, Phyllospora
comosa, Durvillaea potatorum), giant kelp is the only
surface canopy-forming species in waters at 5-40 m
depths, making identification of this species unam-
biguous.

The slight differences in the band designations be-
tween Landsat 4/5 TM, Landsat 7 ETM+ and Landsat
8 OLI has minimal effect on the NDVI (Ke et al. 2015,
T. Bell pers. comm.). Strong positive relationships
(1> > 0.994) in kelp cover fractions derived from the
different sensors have also been demonstrated using
the MESMA technique (Bell et al. 2020). Considering
that the focus of this work is on detecting presence or
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absence of surface canopy cover, and not a quantita-
tive analysis of NDVI, no correction to the NDVI was
required.

In the marine environment, the reflectance signal,
and thus the NDVI value, can be affected by sun glint,
breaking surface waves, phytoplankton blooms, dis-
solved organic matter and sediment run-off. In such
cases where this leads to noise being introduced into
the classification product, manual interpretation is
necessary, and in our case was validated against the
presence of canopy cover as observed in the false-
colour satellite image. Although a reasonably simple
means of validation, the use of NDVI for mapping kelp
surface canopies has been applied and validated in
other regions worldwide and is considered an effective
means of mapping trends in canopy extent through
time (Cavanaugh et al. 2010, Nijland et al. 2019).

The region of each image that was examined for M.
pyrifera canopies was between 30 and 1000 m hori-
zontal distance from the shoreline. This defined the
area within which it was likely for M. pyrifera to oc-
cur. The inshore limit of 30 m was chosen because al-
though M. pyrifera often occurs within 30 m of the
coast, there are other algal species that form cano-
pies in the intertidal and shallow subtidal zone (e.g.
D. potatorum) that might potentially lead to misinter-
pretation, particularly if the image was taken at low
tide. The offshore limit of 1000 m defines the outer
extent of probable giant kelp habitat, as beyond this,
water depths are typically >30 m where surface light
penetration is inadequate for growth in most cases
(Schiel & Foster 2015). The zone was delineated
using a mask generated in ArcGIS (ESRI 2014).

The 4 km wide (and shallow) channel between
Acteon Island and mainland Tasmania is well known
for dense surface canopies of giant kelp; however, as
this region is situated outside of the delineated zone
(i.e. >1000 km offshore), the mask was extended in
this location to ensure that this important area for
giant kelp forests was included in the analysis (see
Fig. 1).

2.2.2. Time-series compilation

2.2.2.1. Data collection. The extent of and trend in
surface canopies of giant kelp were assessed using
(1) an inventory of canopy cover across the entire
coastline at a coarse (3 yr) temporal resolution, and
(2) a fine-scale (2 wk to 12 mo) time-series of canopy
cover collated for 24 individual sites distributed
around the state. For (1), the 3 yr temporal resolution
was necessary to ensure complete cloud-free cover-

age of the coastline during the period of maximum
canopy development between July and December.
2.2.2.2. State-wide extent of canopy cover. Eight
maps at 3 yr intervals, commencing in 1987, were
generated to show the extent of dense surface
canopies around the entire state through time
(herein referred to as the state-wide analysis). Only
images taken between 1 July and 30 December were
considered, as this represents the period of maxi-
mum canopy growth in this region. Where more than
1 cloud-free image existed for an area, preference
was given to images with high quality ratings that
were as close to September (the spring growth maxi-
mum) as possible. The 90 Landsat scenes selected for
this analysis and associated metadata are outlined in
Table S1 in the Supplement at www.int-res.com/
articles/suppl/m653p001_supp.pdf.

2.2.2.3. Trends in abundance of canopy cover.
Trends in the abundance of giant kelp canopy cover
were investigated through building a time-series at a
much finer temporal resolution. We chose 24 spa-
tially defined sites around the state based on the
presence of M. pyrifera canopy in the state-wide
analysis (Fig. 1). Due to the small total area of kelp
canopy observed on the northern Bass Strait coast in
the state-wide analysis, this region (corresponding to
the Otway, Boags and Flinders bioregions; see Fig. 1)
was not investigated at this finer temporal and spa-
tial scale. The final number of sites across the state
reflected the number of localised areas where M.
pyrifera canopies were observed with reasonable
recurrence through time in the state-wide analysis.
All cloud-free images between July and December
were considered. This fine-scale analysis produced a
total of 1068 observations of surface canopy cover
across the 24 sites from 1986-2015. Landsat scenes
selected for this analysis and associated metadata are
outlined in Table S2.

The selected images were classified and analysed
using ENVI version 5.2 (Exelis Visual Information So-
lutions) and ArcGIS (ESRI 2014) softwares. Once clas-
sified, the area of M. pyrifera canopy was calculated,
and canopy locations were sorted into the 7 bioregions
of Tasmania, defined by the Integrated Marine and
Coastal Regionalisation for Australia (IMCRA Techni-
cal Group 1998). The IMCRA bioregionalisation
is based on characteristics of marine community as-
semblages that correlate with exposure and ocean
regimes.

2.2.2.4. Assessing sensitivity to tide height. Tide
height can affect the extent of canopy present at the
ocean surface (Britton-Simmons et al. 2008). We exa-
mined effects of tide on the area of kelp canopy ob-
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served by comparing pairs of images taken at the
same site that were close in time (16 d apart, the min-
imum time it takes for Landsat satellites to pass over
the same location). Hourly tide height estimates were
obtained for each individual site in the fine-scale
analysis for the period of the study from the FES2012
tide model. Pearson's correlation coefficient was
used to validate model-derived tide heights against
observations obtained by the Bureau of Meteorology
at Spring Bay on the east coast of Tasmania over
the same time period (r371751 = 0.99, p < 0.001). FES
2012 tide height was extracted for each observation
by rounding the time of Landsat image capture to the
nearest hour to match tide height predictions.
Heights were categorised into either low, mid or high
tide by first calculating the difference (d) in maxi-
mum to minimum tide height at each site. Low tide
was classified as the lowest third of tide heights (min
+ % d), mid tides as the middle third (values between
min + % d and max —% d), and high tide as the highest
third (max —% d). Paired images were divided into 2
groups based on whether there was a difference in
tide height category between the initial observation
and the second image 16 d later, or whether the tide
height category was the same for the first and second
image. The percentage change in canopy area from
(1) lower tide to higher tide, or (2) earliest obser-
vation to latest observation was calculated. Students
t-tests were used to test (1) whether the percentage
change in canopy area (from highest tide category to
lowest tide category) was significantly different from
zero when there was an observed change in tide
height category, and (2) whether the average per-
centage change in canopy area differed significantly
between the 2 groups (i.e. when there was a change
in tide height category, and when there was not a
change in tide height category). Table S2 lists tide
heights, estimated as above, at the time of image
acquisition.

2.3. Environmental variables
2.3.1. Sea surface temperature (SST)

SST is important in influencing survival and
growth of giant kelp in its own right, but in many
cases can also be considered as a proxy for nutrient
availability, particularly nitrate, which also affects
the growth and cover of surface canopies of giant
kelp. Daily time-series of SST for each site were
extracted from the NOAA National Climate Data
Centre Optimally Interpolated AVHRR product for

the period 1981-2016 at a 1/4° grid resolution (Opti-
mum Interpolation Sea Surface Temperature, www.
ncdc.noaa.gov/oisst). Stobart et al. (2016) performed
a comparison of in situ and satellite SST data in Tas-
mania, and concluded that satellite-derived meas-
urements provided an adequate estimation of sub-
surface conditions.

To assess spatial and temporal variability in SST
around the state, it was necessary to remove seasonal
variation from each time-series to prevent it from
confounding any potential difference between bio-
regions. Each time-series was de-trended by fitting a
linear model to each bioregion, and subtracting the
slope of the regression from the original data. A sine
curve was fitted to the de-trended data, and the re-
sulting function was subtracted from the original
data, leaving a daily time-series of mean SST for
each bioregion with the long-term trend but without
seasonal variation. Long-term trends in SST were as-
sessed using ANCOVA, with time as a covariate.

2.3.2. ENSO

The Southern Oscillation Index (SOI) gives a meas-
ure of the strength and severity of ENSO in Australia.
Strong ENSO events alter nutrient, temperature and
exposure regimes over periods of 4-7 yr, and each of
these variables is important in controlling the bio-
mass dynamics of giant kelp across the globe (Gra-
ham et al. 2007). Although there is inherent correla-
tion between SST and ENSO, in southeast Australia,
the relationship is typically weak (r ~ 0.3, although
statistically significant at the 95% confidence inter-
val; Holbrook & Bindoff 1997).

A monthly time-series of historic SOI was sourced
from the Bureau of Meteorology (www.bom.gov.au/
climate/current/soihtm1.shtml). The Bureau calcu-
lates the SOI as the standardised anomaly of the mean
sea level pressure difference between Tahiti and Dar-
win. The SOI value is calculated on a monthly basis
for the whole Australian continent, including Tasma-
nia, and this value was used directly in this analysis.

2.3.3. Exposure

Exposure was estimated at each site using a wave
energy model (Keane et al. 2019). Briefly, points
were generated at 200 m intervals along any stretch
of coastline that was within 200 m of observed giant
kelp canopy. For each point, 48 radiating fetchlines
were generated, spaced at 7.5°, and extended to
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a maximum length of 650 km unless intersected
by land. Data on swell direction, significant wave
height and wave period were then extracted from a
30 yr high-resolution wave hindcast model available
from the Bureau of Meteorology (www.bom.gov.au/
climate/data-services/ocean-data.shtml). This model
produced an hourly time-series of wave parameters
in a 4 arc-minute gridded output, where wave statis-
tics included both wind and swell components of the
wave. Bathymetry was also taken into account in the
calculations. For each point and each hourly time
step, the model-derived wave parameters were ex-
tracted from the bilinear interpolation of the 4 grid
cells nearest to that point. The direction of the swell
was then rounded to the same set of 48 x 7.5° lines
as used for the fetchlines. The normalised fetchline
length (normalised to 1) was taken from the fetchline
matching the rounded swell direction and multiplied
by the derived wave energy (WE = 0.57 x hs? x tp,
where hs = significant wave height [m] and tp = wave
period [s]) to give a wave energy index (WEI). We
used this final hourly WEI to generate a mean daily
time-series of exposure for each site.

2.4. Model building: predicting
presence/absence of giant kelp

The data collected in the fine-scale analysis were
used to construct binomial models to predict the
presence of giant kelp canopy cover across the state
as a function of SST, the state of ENSO and exposure
conditions. Given the nature of the data, the model
was designed to assess whether there was any over-
all consistency in the presence or absence of giant
kelp forest habitat at regional scales associated with
these physical variables; importantly, it was not
appropriate with these data to attempt a model to
correlate individual spikes or drops in canopy ex-
tent to particular disturbance events or tempera-
ture anomalies. Several modelling techniques were
investigated, including generalised linear models
(GLMs), least absolute shrinkage and selection oper-
ator (LASSO; Tibshirani 1996) and random forest
(Breiman 2001). Each of these methods produced
very similar results, but the LASSO was considered
the most appropriate because it is intended for use
with large numbers of correlated variables and pro-
duces much simpler and more stable results com-
pared to other variable selection techniques (Tibshi-
rani 1996). In the presence of strongly correlated
predictors, the coefficients of a GLM are only weak-
ly determined. To address this, the LASSO nor-

malises the predictors so they are of comparable
scale and adds a penalty of the form:

AY B (2)
i=1

to the usual GLM negative log likelihood, where f;
are the regression coefficients for the rescaled pre-
dictors and A is a regularization parameter. This has
the effect of shrinking the fitted coefficients towards
zero at the expense of model fit; the larger the regu-
larization parameter the greater the shrinkage, with
weakly determined coefficients more strongly im-
pacted. In this way, LASSO produces sparse fits, and
has been shown to be robust in the presence of corre-
lated predictors (Oyeyemi et al. 2015).

Random forests are also robust in the presence of
correlated predictors. A random forest draws many
bootstrap samples from the original data, and then
fits a classification tree to a random subset of the pre-
dictors for each bootstrap sample (Friedman et al.
2001). Predictions for the model are made by averag-
ing the predictions from the many bootstrap samples.
Random forests are robust to the presence of corre-
lated predictors because the correlated predictors
are spread at random across the many trees so that
each predictor contributes to the final prediction.

For these reasons, while all 3 models were fitted,
we only report on the results of the LASSO and ran-
dom forest.

2.4.1. Model parameters

Model parameters included daily mean SST esti-
mates for each site (as in Section 2.3.1), monthly
state-wide SOI (as in Section 2.3.2) and a 'storm’
index. For exposure, and with the expectation that
only the more extreme energy events would impact
giant kelp populations (Jones et al. 2015), the WEI
time-series was used to develop a storm index. The
index was generated by determining how much the
wave energy at a particular site exceeded a certain
threshold, which was defined as a 'storm' event. The
threshold was determined as the 90" percentile of
the WEI time-series for that site. If the daily wave
energy was below the threshold, it was given a value
of zero (i.e. not a storm); thus storms were described
by their intensity (the magnitude of the WEI above
the 90™ percentile threshold) and duration (number
of contiguous days above the threshold). The reason-
ing behind using a site-specific threshold is that
giant kelp morphology is plastic and to some extent
correlated with site-specific conditions (Demes et al.
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2009). The model accounts for this by making the de-
finition of a storm relative to the range of exposures
typically experienced within each site.

2.4.2. Model construction

The presence of a surface canopy of giant kelp on
any given day is reliant to some extent on environ-
mental conditions prior to that day. Therefore, statisti-
cal modelling used SST, exposure and SOI at several
time lags. For each observation of kelp canopy, the
average SST and SOl were calculated over contiguous
90 d blocks preceding the date on which the image
was taken. Mean values were used because our ques-
tions relate to long-term trends in average conditions,
as opposed to specific acute events. For the exposure
index, values were summed to give a number that
represented both the severity and duration of storm
activity in each contiguous 90 d block. Previous re-
search has shown that the importance of ocean condi-
tions in affecting giant kelp cover and biomass ex-
tends at least as far back as 3 yr prior to observation
(Cavanaugh et al. 2011), and thus these lagged terms
were calculated for the 4 yr prior to each satellite ob-
servation being captured. For example, if kelp canopy
was observed on 1 September 2000, the value for the
first SST lag (3 mo) was the average of the daily SST
from 1 June to 1 September 2000, the second SST lag
was the average from 1 March to 1 June 2000 (i.e. also
a 3 mo period, but beginning 6 mo prior to the day of
observation of kelp surface canopy cover), and so on.
The number of lags totalled 15 for both SST and expo-
sure variables (= 4 yr), while historic data for SOI
allowed for 20 lags (= 5.25 yr).

The potential for multiple correlated predictors in
this model is high, and thus the best we may expect
from our model is that it assigns larger coefficients to
variables that are correlated with variables that are
truly predictive of the outcome. While this may be
the case, our view is that the model is robust and use-
ful if it includes relevant predictors, reproduces ob-
served responses well, can be explained by a set of
physical processes, and where the interpretation is
consistent with other evidence and observations in
the current literature.

Due to a large proportion of zeros (where an obser-
vation was possible but no canopy was observed),
canopy observations were converted to a binary
presence/absence classification, and the LASSO
analysis took the form of a logistic regression. All
variables were normalised prior to fitting the model
sequence using the inbuilt function of the 'glmnet’

package in R. Coefficients are reported on the origi-
nal scale. LASSO solutions were computed for a
range of values of A, and the best-fit and the simplest
models were selected using cross-validation by year.
The best-fit model (A.min) refers to the model where
the value of A gives the lowest cross-validation error,
while the simplest model (A.1se) refers to the model
that has the fewest predictors but where the value of
A gives a cross-validation error within 1 SE of the
best-fit model. The simplest model thus cannot be
distinguished from the best-fit model in terms of
error, given the uncertainty associated with the
cross-validated estimate of error of the best model.

Random forest modelling used the same set of
lagged predictors and binary response of kelp sur-
face canopy. Three thousand trees were generated.
Variable importance plots were used to assess the
importance of each predictor variable, and partial
dependence plots were used to provide graphical
representation of the marginal effect of the 16 most
important variables on the probability of canopy
absence.

Cross-validation by year was chosen because one
of the issues inherent in collating this type of data is
that observations are not wholly independent, and a
degree of temporal auto-correlation exists. Once a
giant kelp canopy has established, it is likely that it
will still exist in observations over the following
months, and in many cases, in subsequent years.
Cross-validating by year enabled verification that
the models were robust to auto-correlation.

All statistical analyses were conducted in R 4.0 (R
Core Team 2020). LASSO analyses were undertaken
using the package ‘glmnet’ (Friedman et al. 2010),
and figures were plotted using ‘ggplot’ (Wickham
2016).

3. RESULTS

3.1. Trends in the abundance and distribution
of giant kelp

3.1.1. State-wide extent of canopy cover

The state-wide time-series shows that the distribu-
tion of dense surface canopies varies spatially, with
the most extensive canopies occurring in the south-
east region of the state. A state-wide peak in canopy
cover was driven predominately by dense surface
canopies occurring in the Bruny bioregion (Fig. 2B),
which accounted for 274.6 ha (65 %) of the maximum
cover observed through the time-series. Canopy ex-
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Fig. 2. Trends in the area of giant kelp canopy in Tasmania from 1987-2015,
obtained from Landsat images pooled into 3 yr intervals. (A) Total state-wide
canopy cover and (B) canopy cover in 6 of the 7 Tasmanian IMCRA bioregions
(see Fig. 1). No giant kelp canopy was observed in the Flinders bioregion. The
3 yr time periods are not marked, but points indicate the dates on which the

Landsat scenes were acquired

tent in the Davey bioregion reached a maximum of
70.8 ha in 1997-1999, while the Freycinet and Frank-
lin bioregions contributed relatively little to the state-
wide total, with a maximum of <45 ha being re-
corded in each over the entire time-series. The Boags
and Otway bioregions had <5 ha collectively at any
one time, while no cover was observed in the
Flinders bioregion; due to this low or absent cover,
the Boags, Otway and Flinders bioregions were
excluded from further analysis.

This time-series also showed that the total extent of
giant kelp canopies across Tasmania varied signifi-
cantly through time (Fig. 2A). The first 2 decades
within the time-series were characterised by periods
of higher canopy cover, while over the last decade
there was relatively little surface canopy of giant kelp.
Peaks in the total state-wide extent of surface canopy
were observed over the time periods from 1994-1996
and 1997-1999, with a maximum area of 422.2 ha
reached during 1997-1999. The total state-wide ex-
tent during all other periods was typically <100 ha. By
2015, total cover had fallen to <10 ha.

3.1.2. Trends in abundance of canopy cover

The broad patterns from the fine-scale time-series
reflected those obtained in the state-wide analysis

In general, short periods of surface
canopy growth and expansion are
followed by rapid decrease or disap-
pearance in canopy area occurring
over monthly and annual time-scales.
Major peaks in surface canopy extent
are often simultaneous between sites
and bioregions, and occurred in 1987, 1995, 1998
and 1999, with lesser peaks observed in 1993, 2005
and 2006.

3.1.3. Canopy cover estimates are not sensitive
to tide height

A 1-sample t-test on paired images demonstrated
that the percentage change in canopy area did not
differ significantly from zero when there was a
change in tide height category (t33 = -0.51, p = 0.63).
A 2-sample t-test showed that the average percent-
age change in canopy area did not differ significantly
between pairs where there was a difference in tide
height category and pairs where there was no differ-
ence in tide height category (fg; = 1.13, p = 0.26).

3.2. Environmental variables
3.2.1. SST

All bioregions showed distinct annual cycles of
SST, which were superimposed upon longer-term
cycles coinciding with those of the ENSO (Fig. 4).

An ANCOVA revealed that the slope of SST
through time differed between bioregions (F; 51020 =
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Fig. 3. Time-series of the area of dense surface canopies of giant kelp observed at each site within the 4 IMCRA bioregions
(see Fig. 1) of Freycinet, Bruny, Davey and Franklin. Colours indicate the different sites and points indicate the dates of image
(observation) acquisition

19.53, p < 0.001). Pairwise comparisons were used to
identify the bioregions where the rate of change was
different. All bioregions differed significantly from
each other, except for Freycinet and Bruny biore-
gions (ANCOVA, Fj 5510 = 0.0036, p = 0.953). In
Freycinet and Bruny bioregions, SST was signifi-
cantly affected by time (ANCOVA, F, 75511 = 3749.3,
p < 0.001), with the slope of the relationship increas-
ing at 0.029°C yr~! (linear regression, F, 25511 = 7150,
p < 0.001, r? = 0.36). Average SST also differed sig-
nificantly between the 2 bioregions (ANCOVA,
Fi 25511 =10550.9, p < 0.001), with mean temperatures
in Freycinet approximately 1°C warmer than those
in Bruny.

In the Davey bioregion, SST increased significantly
with time (linear regression, Fj j5755= 1147, p < 0.001,
r? = 0.08,) at a rate of 0.023°C yr~!. In the Franklin
bioregion, SST also increased significantly through
time (linear regression, Fy j5755 = 1493, p < 0.001, r’=
0.10) at a rate of 0.027°C yr~..

3.2.2. ENSO

The oscillations of the ENSO climate cycle (i.e. time
to cycle through an El Nino and a La Nina), ranged
from 2 to 6 yr, and both positive (La Nina) and negative
(El Nino) extremes were observed over the time-series.
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Fig. 4. (A) Monthly Southern Oscillation Index (SOI). Sus-

tained periods where SOI values are above +8 indicate La

Nifna conditions, while periods of sustained values below -8

indicate El Nino conditions. (B) Seven-day running mean of

average sea surface temperature across all sites within each
bioregion, and associated trend lines

Five El Nino events occurred between 1986 and 2016,
with particularly strong occurrences in 1987-1988,
1991-1992, 1997-1998 and 2015-2016. Three consec-
utive events occurred from 1991-1995, and individual
events occurred in 2002-2003, 2006-2007 and 2009-
2010. La Nina events occurred in 1988-1989, 1998-
2001, 2007-2009 and in 2010-2012. The events in
1988-1989 and 2010-2012 were the strongest.

3.2.3. Exposure

Different bioregions demonstrated different aver-
age wave exposures, with the Bruny bioregion
being the most protected and sites in the Franklin
bioregion being the most exposed (Fig. 5). The
most exposed bioregions (Franklin and Davey) had
the most pronounced seasonal signal in exposure,
although no long-term trends were clear (Fig. ).
Variation in exposure among sites within biore-
gions was also high, and some sites were clearly
more exposed than others to the same high wave
energy events (see Text S1 and Figs. S1-S4).

125 { A) Freycinet
100

B) Bruny

1 C) Davey

Wave energy index

200
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Fig. 5. A 14 d rolling maximum of the average daily wave energy index (WEI) for each of 4 bioregions: (A) Freycinet, (B)
Bruny, (C) Davey and (D) Franklin. The WEI was calculated according to Section 2.3.3. Note the different y-axis scales
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3.3. Modelling canopy presence using
environmental correlates of canopy change

Binomial models were constructed using LASSO
with the purpose of predicting the presence or
absence of giant kelp canopy across the state based
on historic SST, exposure and SOI conditions.

SST variables dominated both the best-fit and sim-
plest LASSO solutions. In both models, SST variables
had coefficients 1-2 orders of magnitude greater than
SOI variables, and 2—-4 orders of magnitude larger
than exposure variables (Table 1). In the best-fit
model, the 3 most important variables were SST at
lags of 15, 36 and 39 mo, with coefficients of —0.554,
—0.400 and —0.154, respectively (Table 1). The next
highest coefficients were —0.059, —0.053 and -0.046
for SST lags of 27, 48 and 45 mo, respectively.

In the simplest model, SST lags of 15 and 36 mo,
and SOI lag of 63 mo, were the only variables re-
maining in the model. SST 15 and 36 had coefficients
of —0.215 and -0.128 respectively, and SOI 63 had a
much smaller value of —0.009.

A boxplot of predicted vs. fitted values shows that
these models performed well (Fig. 6). For a site
where canopy was absent, in 75% of cases the best
fit model had a probability of predicting presence of

Table 1. Coefficients of variables in the best-fit model
(A.min), in which the shrinkage parameter (A) gives the min-
imum average cross-validation error. Cells marked with a
dash (-) indicate those variables whose coefficient was
shrunk to zero and therefore are not considered to be a pre-
dictor of Macrocystis pyrifera canopy presence or absence

Lag (mo) SST SOI Exposure
3 _ _ -

6 _ - -

9 — — —

12 - - 0.0034
15 —-0.5544 - 0.0002
18 - -0.0134 0.0022
21 - -0.0195 -

24 - —-0.0041 0.0014
27 0.0593 - -
30 - -0.0128 -

33 - - -0.0019
36 —-0.3993 - -
39 -0.1544 - -

42 - -0.0434 -
45 —-0.0461 - -
48 -0.0529 -0.0027 —-0.0002
51 - - -

54 - - -

57 - -0.0108 -

60 - -0.0210 -

63 - -0.0105 -

1.00 g E e

0.751

0.50 1

0.25 1

Fitted probability of presence

0.00 -

T T
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Fig. 6. Distribution of fitted probabilities from the LASSO re-
gression within each observed class (present or absent) for
the best-fit model (A.min), in which the shrinkage parameter
(A) gives the minimum average cross-validation error, and
for the simplest model (A.1se), in which A gives a cross-vali-
dation error within 1 SE of the cross-validated error of the
best-fit model. The lower and upper limits of the box repre-
sent the 25" and 75™ percentiles, respectively (the in-
terquartile range, IQR), while the lower and upper whiskers
extend no further than the value that is closest or equal to
1.5x the IQR below/above the box limits. Outliers are shown
as circles, and the centre bold line represents the median
(50" percentile)

43 %, while for a site where canopy was present, the
best fit model had a probability of predicting pres-
ence of 80 %.

Random forest models produced similar results
(see Text S2 and Figs. S5 & S6).

4. DISCUSSION

Population dynamics in giant kelp are influenced by
a complex array of abiotic and biotic variables. Repro-
duction, recruitment, growth and mortality are all in-
fluenced by waternitrate concentrations, temperature,
wave disturbance, light levels and grazing (Graham et
al. 2007), as well as by human impacts such as harvest-
ing (Vasquez 2008) and waste pollution (Foster &
Schiel 2010). The dependence of growth and mortality
on these environmental conditions results in a species
that demonstrates a high propensity for both rapid de-
cline and rapid recovery. The forests of Tasmania are
no exception, and the results presented in both our
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fine-scale and state-wide analyses show a high degree
of spatial and temporal fluctuation in cover. Notably,
this study records a clear shift through time in the
abundance and distribution of giant kelp in Tasmania,
and when taken in the context of previous work
(Sanderson 1987, Seacare 1999, 2019, Johnson et al.
2011, Steneck & Johnson 2014), an overall and persist-
ent state-wide reduction in surface canopies is clear,
with the data in the present work representing the tail-
end of the decline. Our models suggest a strong associ-
ation of kelp forest disappearance with SST.

These results are in contrast to other studies of
Macrocystis pyrifera at regional scales. Reed et al.
(2011) established that net primary production (as a
function of biomass) in giant kelp forests was deter-
mined more by regional differences in wave distur-
bances than by nutrient supply (correlated with SST)
and/or grazing, while Cavanaugh et al. (2011) found
no net change in biomass of giant kelp in the Santa
Barbara Channel over the 25 yr period from 1984-
2009. Similarly, Friedlander et al. (2020) found no
long-term trends in kelp canopy area from 1998-
2020 at the southernmost tip of the South American
continent. These differences highlight the dynamic
nature of giant kelp populations at a global scale, and
contribute to understanding how global, climate-dri-
ven changes can interact with regional influences to
alter the structure and function of coastal ecosystems
(Krumhansl et al. 2016).

4.1. Importance of SST

The importance of SST in driving population dy-
namics of giant kelp is well established (reviewed by
Schiel & Foster 2015). It is difficult, however, to un-
equivocally separate the effects of SST from the nu-
merous factors with which temperature is correlated
in natural systems, e.g. nutrient loading (Zimmerman
& Kremer 1984) and, in some cases, salinity (Ridgway
2007a). Arguably the most important of these relation-
ships in the context of giant kelp is the common in-
verse relationship between temperature and nitrate
(Zimmerman & Kremer 1984). M. pyrifera sporophytes
have alimited capacity to store nitrogen (Gerard 1982),
a nutrient essential for photosynthesis, and reduced
nitrate levels (<1 pM ambient nitrate) can severely
impact growth (Brown et al. 1997), reproduction (Reed
et al. 1996), development of early life-history stages
(Carney & Edwards 2010) and recruitment success
(Ladah & Zertuche-Gonzalez 2007) in this species.

Knowledge of the independent effects of tempera-
ture and nitrate availability on M. pyrifera comes from

manipulative experiments. North & Zimmerman
(1984) investigated the effect of artificial nitrogen
fertilisation on mature M. pyrifera exposed to a range
of temperatures above its typical range (>18°C) and
found that sporophytes lost their canopy at tempera-
tures of 18-23°C unless nutrients (nitrate and phos-
phate) were added, in which case the canopy thrived.
Similarly, Herndandez-Carmona et al. (2001) found in-
creased recruitment and survival of juveniles trans-
planted to nutrient-fertilised areas relative to un-
fertilised controls during periods of high temperatures
(up to 28°C). Conversely, recent laboratory experi-
ments with juvenile M. pyrifera sporophytes in Tas-
mania using a fully factorial design indicated greater
sensitivity to warming (within observed ranges) than
to nutrient depletion (Mabin et al. 2019). Certainly
higher temperatures can lead to higher metabolic
rates (Burdett et al. 2019), increasing the demand for
and use of nitrate supplies (Staehr & Wernberg 2009,
Buschmann et al. 2014). The overall picture to emerge
from these observations is that in worst cases, recruit-
ment, growth and survival of M. pyrifera sporophytes
are negatively impacted by warm water outside the
typical range experienced by a given population, but
that the deleterious effects can be ameliorated to
some extent by elevated nutrient levels. This is con-
sistent with current observations in eastern Tasmania,
where nitrate concentrations in surface waters are
often <1 pM, and typically reach 0 pM (i.e. unde-
tectable) in late summer (Rochford 1984), and remnant
M. pyrifera individuals are typically only associated
with a local source of nutrient input, e.g. sewage out-
falls and stream or river mouths.

4.2. Broad-scale variability

The effect of SST around Tasmania appears to be
expressed predominately through ENSO cycles, and
specifically El Nifio events. Our data showed that all
peaks in canopy cover corresponded with El Nino
events, which occurred in 1987-1988, 1991-1992,
1993-1994, 1994-1995, 1997-1998, 2002-2003, 2006—
2007, 2009-2010 and 2015-2016. In Australian mar-
ine environments, an El Nino event is characterised
by cooler than average water temperatures and
reduced storm activity (Harris et al. 1988). Weakened
east—west trade winds reduce the supply and trans-
port of warm, nutrient-poor surface waters south-
wards along Australia's east coast to Tasmania, and
allow for increased influence of colder (and more
nutrient-rich) Southern Ocean water masses (Harris
et al. 1988). Together these create a favourable envi-
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ronment for the growth and development of giant
kelp. Larger than normal decreases in SST occurred
during the El Nino events of 1987-1988, 1991-1992
and particularly that of 1997-1998 (Australian
Bureau of Meteorology, www.bom.gov.au/climate/
enso/enlist/), and this is reflected in some of the most
extensive increases in canopy area.

Inter-annual variability of giant kelp populations
is closely linked to the ENSO cycle around the globe
(Bell et al. 2020, Friedlander et al. 2020). The most
commonly documented impacts are widespread
mortalities and canopy loss in the eastern Pacific
that result from increased wave activity and temper-
ature regimes associated with El Nino conditions,
i.e. the opposite effect to that which occurs in Aus-
tralia during El Nino events (Zimmerman & Robert-
son 1985, Hernandez-Carmona et al. 2001, Edwards
& Herndndez-Carmona 2005). The period from 1993—
1999 in Tasmania saw 5 years with cooler, nutrient-
rich El Nifio conditions, which provided a consistent
and favourable environment for growth, canopy de-
velopment, reproduction and recruitment, and re-
sulted in an extended period of dense and relatively
abundant canopies around the state (although note
that in eastern Tasmania this represented only ~30 %
of the peak canopy cover since 1946; see Steneck &
Johnson 2014). Outside of El Nino periods, however,
dense surface canopies have become increasingly
sparse, as background water conditions become
warmer and more nutrient-poor.

4.3. Regional variability

At a bioregional level, the effect of SST on the
cover of dense surface canopies is consistent with
ongoing changes to coastal waters that are occurring
in the region. The east coast of Tasmania is a hotspot
for oceanographic change on decadal time scales,
with an estimated rate of ocean warming at 3—4 times
the global average (Ridgway 2007a). This is due to
the increased influence of EAC water in eastern Tas-
mania (Oliver & Holbrook 2014), and reflected in
marked shifts in the temperature and salinity re-
gimes (Ridgway 2007a). The EAC is a warm, rela-
tively saline (Ridgway 2007a) and nutrient-depleted
current with nitrate levels <1 nM (Harris et al. 1987),
which is limiting to M. pyrifera growth.

This study represents the tail-end of a long-term
and persistent decline in surface canopy area, partic-
ularly on the east coast of the state. In this context,
the data in the present work reveal a near-complete
loss of canopy cover in the Freycinet and Bruny

bioregions. As the northern-most bioregions on the
east coast, Freycinet and Bruny are those most influ-
enced by the EAC. Statistical analysis of SST re-
vealed both bioregions to be warming at a rate of
0.029°C yr~', with temperatures in Freycinet bio-
region on average 1°C warmer than in the Bruny bio-
region. This long-term increase in temperature and
simultaneous decreases in nitrate concentrations will
have affected the growth and survival of M. pyrifera,
particularly in the Freycinet bioregion, leading to
poor recruitment and recovery following summer
canopy losses and disturbance events. Research by
Hollarsmith et al. (2020) also suggests that the in-
crease in temperature may be influencing production
of eggs or progression to the diploid life-history stage
in microscopic gametophytes.

Although the southern extension of EAC water is
likely the cause for the long-term decline in canopy
area on the east coast, it is not possible to isolate the
relative importance of the different environmental
factors associated with this change. Alongside the
effects of increased temperature and decreased
nutrients, there is also increased salinity. Although
Buschmann et al. (2004) suggested that giant kelp
populations may have differentiated responses, and
in some cases broad tolerance, to variable salinity
levels, the majority of literature has investigated this
only for salinities lower than typical oceanic concen-
trations (<34 %o; e.g. North et al. 1986, Peteiro & San-
chez 2012). While it has been suggested that the
salinity changes associated with the EAC are un-
likely to be sufficiently large to significantly influ-
ence the population dynamics of M. pyrifera in Tas-
mania (Johnson et al. 2011), this may warrant further
investigation.

The transport of warmer waters associated with the
EAC has also enabled the establishment of a number
of new species in Tasmania, including the long-
spined sea urchin Centrostephanus rogersii (Johnson
etal. 2005, Ling et al. 2009). C. rogersii has the ability
to catastrophically over-graze kelp, and as popula-
tions have increased, they have reduced large tracts
of once healthy shallow rocky reef habitat to so-
called ‘urchin barrens’ (Johnson et al. 2005). While
the long-term declines of giant kelp on the east coast
of Tasmania have not been directly linked to the
establishment of these urchins, it is likely they have
contributed to canopy losses, perhaps by preventing
recovery of populations through grazing of gameto-
phytes, recruits and juvenile sporophytes.

The detrimental impact of the EAC on giant kelp
populations is also highlighted by the less pro-
nounced shifts in the abundance and extent of sur-
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face canopy cover observed on the south and west
coasts. Statistical analyses of SST data showed that
the Davey and Franklin bioregions had average tem-
peratures and warming trends that statistically dif-
fered from all other bioregions. In these regions, the
EAC has little influence, and the oceanographic
environment is instead dominated by the ZC
(Franklin bioregion) and the influence of Southern
Ocean water masses (Ridgway 2007b).

4.4. Importance of time-lagged eifects

The time lags selected by the LASSO models as the
best predictors of canopy presence/absence were
SST lagged at 15, 36 and 39 mo (best-fit model; the
same variables were also selected using a random
forest model) and SST lagged at 15 and 36 mo and
SOI at 63 mo (simplest model). Together these corre-
spond to time lags of ~1, 3 and 5 yr.

The annual signal is presumably driven by canopy
development associated with the spring growth max-
imum, with subsequent deterioration over summer.
As elsewhere, growth of M. pyrifera in Tasmania is
highly seasonal. The only thorough assessment in
Tasmanian waters was conducted by Cribb (1954),
who observed that maximum growth rates occurred
during May-September, with the densest canopies
developing in September once winter storms had
subsided and light levels began to rise while nitrate
was relatively available. Similar results have been
recorded in New Zealand, where growth rates of M.
pyrifera show a significant decline in summer result-
ing from limiting nitrate conditions (Brown et al.
1997), and also in southern Australia, where a bio-
mass accumulation in laminarian species has been
shown to peak in spring (Fairhead & Cheshire 2004).
A dense canopy that forms in winter/spring may sig-
nificantly deteriorate over the latter part of summer,
but given favourable conditions will rapidly re-form
in the next winter/spring from subsurface sporo-
phytes (although we note the case of annual popula-
tions in protected areas of Chile, which show a differ-
ent dynamic; Buschmann et al. 2006).

The importance of SST at a 3 yr time lag is consis-
tent with results found by Cavanaugh et al. (2011) in
a similar study applied to kelp forest biomass in the
Santa Barbra Channel. It also agrees with observa-
tions of post-disturbance recovery periods of ~2-3 yr
in forests along the entire east Pacific coast (Graham
et al. 1997, Edwards & Hernandez-Carmona 2005,
Edwards & Estes 2006, Vasquez et al. 2006). This lag
possibly reflects the period required for recruitment

and recovery following disturbance events and the
mortality of entire sporophytes.

Previous research has demonstrated that condi-
tions immediately following disturbance events play
a critical role in determining community structure
and dynamics through their influence on recruitment
and growth of juvenile sporophytes. Tegner et al.
(1997) compared growth and survival of 2 different
cohorts of giant kelp in contrasting oceanographic
conditions, and found that cooler and nutrient-rich
conditions led to competitive dominance by M. pyri-
fera, while in warmer and nutrient-poor conditions,
the cohort was characterised by poor growth, sur-
vival and canopy formation. These effects on com-
munity structure lasted the entire life-span of the
cohort, even after oceanic conditions returned to the
‘neutral’ state. Thus, a disturbance event followed by
favourable conditions will allow recruitment of juve-
nile sporophytes within a year, and over the next 2—
3 yr, for these to grow and mature to form dense
canopies.

5. CONCLUSIONS

Our results are an example of region-specific sig-
nals of global change acting synergistically with local
stressors to result in trends that may not be represen-
tative of other parts of the world (Krumhansl et al.
2016). In an extensive review of the biology and eco-
logy of kelp forests, Schiel & Foster (2015) showed
that giant kelp still occupies much of its post-glacial
distribution. The long-term decline in the surface
cover of giant kelp in Tasmania beginning in the
1970s and 1980s is an exception, driven largely by
the extraordinary changes in ocean climate associ-
ated with changes in the behaviour of the EAC
(Ridgway 2007a, Oliver & Holbrook 2014), and,
more recently, exacerbated by the establishment and
build-up of an introduced urchin population (John-
son et al. 2005). Importantly, this scenario has played
out at the southern limit of the range of M. pyrifera in
Australia, and there are no shallow reefs further to
the south within dispersal distance to act as a refuge
for the species in this region. In this sense, southeast
Australia in general, and Tasmania in particular, rep-
resents a geographic trap for M. pyrifera (and other
cool-temperate species; Edgar et al. 1991). Given the
significant decline in cover of M. pyrifera in Tasma-
nia, which is the Australian stronghold of the species,
and the problem of the geographic trap, the Federal
listing in August 2012 of giant kelp as an endangered
marine community type in Australia is justified.



16 Mar Ecol Prog Ser 653: 1-18, 2020

While it may be comforting to know that the status of
giant kelp is stable at a global scale (Schiel & Foster
2015), our research highlights the potential for future
declines in local areas or regions at risk of ocean
warming. Anthropogenic impacts are increasing in
areas where M. pyrifera habitat is proximal to urban
areas, so in many areas, the response of this species
to the complexity of multiple stressors is difficult to
predict with certainty.
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