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ABSTRACT 

Purpose: To assess the correlation and differences between common amide proton transfer 

(APT) quantification methods in ischemic stroke diagnosis. 

Methods: Five APT quantification methods, including asymmetry analysis and its variants as 

well as two Lorentzian model-based methods, were applied on data acquired from six rats that 

underwent middle cerebral artery occlusion scanned at 9.4 T. Diffusion and perfusion weighted 

images, and water relaxation time maps were also acquired to study the relationship of these 

conventional imaging modalities with the different APT quantification methods. 

Results: The APT ischemic area estimates had varying sizes (Jaccard index: 0.544 ≤ J ≤ 

0.971) and had varying correlations in their distributions (Pearson correlation coefficient: 0.104 

≤ r ≤ 0.995), revealing discrepancies in the quantified ischemic areas. The Lorentzian methods 

produced the highest CNRs (1.427 ≤ CNR ≤ 2.002), but generated APT ischemic areas that 

were comparable in size to CBF deficit area; asymmetry analysis and its variants produced 

APT ischemic areas that were smaller than CBF but larger than ADC deficit areas although 

having lower CNRs (0.561 ≤  CNR ≤ 1.083). 

Conclusion: There is a need to further investigate the accuracy and correlation of each 

quantification method with the pathophysiology using a larger scale multi-imaging modality 

and multi-time point clinical study. Future studies should include the MTRasym results alongside 

the findings of their study, in order to facilitate the comparison of results between different 

centers and also the published literature. 
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1 Introduction 

During ischemic stroke, two major zones of injury occur – the infarct core and the penumbra 

(1). The infarct core contains tissue that is irreversibly damaged upon ischemia and cannot be 

salvaged. In contrast, the penumbra contains tissue surrounding the core that is at risk of 

infarction, but which may still be salvaged if timely reperfusion is performed. The aim of acute 

stroke therapy is to recover the ischemic penumbra using recanalization strategies to minimize 

the final area of infarction.  

The current imaging technique for identifying the ischemic penumbra is the spatial mismatch 

between diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) (2,3). 

However, the mismatch area always overestimates the penumbra and falsely includes regions 

of benign oligemia – a region of tissue that recovers spontaneously even without therapeutic 

intervention (4). This limitation highlights the critical need for a new imaging approach that is 

able to more accurately identify the ischemic penumbra to optimize treatment outcome.   

Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) 

technique in which contrast originates from exogenous or endogenous exchangeable protons 

or molecules (5,6). Through analyzing the CEST effects of various endogenous exchangeable 

protons, many studies have reported the potential of CEST MRI to be used for ischemic stroke 

imaging (7–12). In particular, amide proton transfer (APT) – a variant of CEST MRI relating to 

the labile amide protons of endogenous proteins and/or peptides resonating at 3.5 ppm 

downfield from water resonance, has been shown to be pH-sensitive owing to the base-

catalyzed chemical exchange process between amide and water protons (13–16). Since pH 

reduction is the last stage before cell infarction (17), it has been hypothesized that the ischemic 

lesion may be better identified via pH-sensitive imaging instead of the mismatch between DWI 

and PWI. This concept aligns with the pH-sensitive nature of APT imaging, allowing for its 

potential to serve as a non-invasive pH-weighted imaging technique, complementing perfusion 

and diffusion MRI for ischemic stroke diagnosis. To date, many publications on the potential 

use of APT imaging for stroke diagnosis (14,18,19), disease progression (20), and treatment 

monitoring (21,22) have been reported. However, in these studies, different experimental 

parameters and quantification methods were used for analysis. The lack of standardization in 

these experiments complicates comparison of results between the research centers.  

A previous study highlighted the discrepancies between different centers with regards to 

changes in CEST signal due to ischemia, with certain CEST effects reported to increase, 

decrease, or remain unchanged upon ischemia, depending on the time, acquisition 

parameters and quantification methods used (23). For APT, in terms of the general trend of 

signal changes in ischemic lesions, the majority of studies have reported a decrease in APT 



   

effect in ischemic infarction. Despite this, a few conflicting studies have reported no changes 

in APT signal within ischemic tissue, depending on the experimental parameters. One study 

found the contrast between ischemic and normal tissue to diminish at a certain saturation 

power (24), whilst a more recent study observed no visual or significant statistical differences 

regardless of low or high saturation power when imaged at the very high field strength of 21.1 

T (25). In publications on the delineation of the different zones of ischemic injury, some studies 

have reported that APT is able to differentiate between the ischemic core, penumbra, and 

oligemia (7,9), whilst one study reported no significant differences between the three regions 

(26). 

There are many possible explanations for the discrepancies observed between the research 

centers. One of the possible sources of inconsistency is the use of different quantification 

methods. In the current literature, different quantification methods have been used for analysis, 

including the more commonly used model-free methods, or more complex quantitative model-

based methods. The use of different quantification methods makes it difficult to compare these 

existing APT experiments in a meaningful manner. 

To facilitate the clinical translation of APT imaging, this study aims to analyze commonly used 

APT quantification methods for acute ischemic stroke in order to assess the differences and 

correlations between the quantification methods. CEST data from six rats that underwent a 

commonly used model of stroke were retrospectively analyzed using five APT quantification 

methods. The ischemic areas estimated by each method were compared, and the relative 

quantified APT effects in the ischemic and contralateral regions were analyzed. In addition, 

the advantages and limitations of the different quantification methods were briefly discussed 

in order to provide an overview on the suitability of the quantification methods for clinical 

ischemic stroke imaging and recommendations to ease the comparison of findings between 

research centers for future investigations. 

 

2 Methods and Materials 
 

2.1 APT Quantification Methods 

CEST data are collected by measuring the water signal amplitude of the subject when applying 

radio frequency (RF) pulse over a range of saturation frequencies, ω. The measured signal 

as a function of these saturation frequencies is commonly known as the z-spectrum. APT 

involves quantifying and analyzing the CEST effect at the resonant frequency of amide protons, 

around 3.5 ppm in the z-spectrum. 



   

Many quantification methods for APT effect analysis have been proposed. Supporting Table 

S1 in Supplementary Materials summarizes a list of APT quantification methods used for 

ischemic stroke imaging including the advantages and limitations of each method. In this study, 

only some of the most commonly used APT quantification methods were used for analysis 

(underlined in Supporting Table S1 and defined in the Supplementary Materials), i.e. 

magnetization transfer ratio asymmetry (MTRasym) (13), water relaxation time T1-normalized 

MTRasym (27–29), apparent exchange-dependent relaxation (AREX) (12,30,31), Lorentzian 

difference analysis (LDA) (12,25,26,32) and multi-Lorentzian fitting (27,33,34). Other methods 

were excluded due to unsuitable experimental parameters as this was a retrospective analysis. 

 

2.2 Animal Stroke Model 

The animal experiments were approved by the UK Home Office (Animals [Scientific 

Procedures] Act 1986) and conducted in accordance with the University of Oxford Policy on 

the Use of Animals in Scientific Research and the ARRIVE guidelines. Middle cerebral artery 

occlusion (MCAO) was induced in six Sprague Dawley rats (referred to as Animals 1 – 6) via 

intraluminal filament method by advancing a filament (Doccol, USA) up the internal carotid 

artery to block the MCA (35). The filament remained in place while imaging was performed. 

 
2.3 Magnetic Resonance Imaging 

All MR images of the animals were acquired using a 9.4 T field strength scanner (Agilent, CA, 

USA), including T1, T2, CEST, DWI, and PWI. All images were of 0.5 x 0.5 x 1 mm3 spatial 

resolution, acquired using spin echo EPI with a 64 x 64 matrix size. Briefly, T1-weighted images 

were acquired with repetition time (TR) of 10000 ms, echo time (TE) of 27.16 ms, and nine 

inversion times (TI) ranging from 13.14 – 8000 ms. T2-weighted images were obtained using 

TR = 5000 ms and ten TEs from 30 – 160 ms. DWIs were obtained at b-values of 0 and 1000 

s/mm2. For PWI, a multiphase pseudo-continuous arterial spin labeling (MP-PCASL) was 

implemented at 8 RF phase offsets ranging from 0º to 315º with TR = 4000 ms and TE = 28.68 

ms. The label plane was placed in the neck, perpendicular to the carotid arteries. The label 

duration was 1.4 s and comprised of a series of Hanning-shaped pulses each 600 µs long, 

separated by 600 µs. The post label delay was 0.55 s. Reference images for coil sensitivity 

and baseline signal intensity were acquired by omitting labelling pulses. PWI acquisition time 

was 1.48 min.  For CEST MRI, multi-slice images were obtained at frequency offsets -4.1, -

3.8, -3.5, -3.2, -2.9, -2.6, -2.3, -2, -1.7, -1.5, -1.2, -0.9, -0.6, -0.3, 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.6, 

1.7, 1.8, 1.9, 2, 2.1, 2.4, 2.7, 2.9, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.1, 5, 7, 9.7, 13.5, 

19, 26, 37, 51, 72, 100, and ±300 ppm (used as unsaturated images). Saturation was 



   

performed using 50 primary and 5 secondary Gaussian pulses of 20 ms pulse duration, 50 % 

duty cycle, and 184º flip angle, equivalent to an average power of 0.547 µT. The acquisition 

time of each CEST experiment was 8.67 min.  

 

2.4 Data Processing and Analysis 

Apparent diffusion coefficient (ADC) images were calculated as  ADC ൌ െ
ଵ

௕మି௕భ
ln ൬

𝑆௕మ
𝑆௕భ
൘ ൰ 

using DWIs at b = 0 and 1000 s/mm2. From the ADC maps, K-means clustering was used to 

automatically define the ischemic lesions and produce a binary lesion mask (9,11,18,36), with 

number of clusters, k = 2 and K-means++ algorithm for center initialization seeding. A 

contralateral mask was then manually drawn opposite to and having the same size as the 

ischemic lesion mask.  

T1 maps were generated via least-squares fitting of the measured signals, 𝑆, as a function of 

inversion times, TI : 𝑆 ൌ ቚ𝑎 ൅ 𝑐 ∙ exp ቀ െTI
T1
ൗ ቁቚ, where 𝑎  and 𝑐  are constants. Similarly, T2 

maps were obtained by fitting to a mono-exponential function of echo times, TE: 𝑆 ൌ

𝑆଴exp ቀ െTE
T2
ൗ ቁ. Cerebral blood flow (CBF) maps were calculated using a model-based fitting 

approach fully described elsewhere (37), but in brief supervoxel clustering was used to define 

regions with similar phase offsets in the raw multiphase data, these supervoxels were used to 

obtain high-SNR phase maps which were used to inform a Bayesian multiphase fitting 

approach to give calibrated CBF maps.  

The B0 field inhomogeneity of the CEST data was corrected voxel-wise via single-Lorentzian 

water pool fitting at frequency offsets assumed to have no other CEST effects besides direct 

saturation (32): within ±1.2 ppm and above/below ±6.0 ppm. The inhomogeneity-corrected 

CEST data were then processed using the five APT quantification methods: MTRasym, T1-

normalized MTRasym, AREX, LDA, and multi-Lorentzian fitting. The amide proton resonance 

was taken as the average of 3.5 ± 0.1 ppm, and opposite reference offsets were average of -

3.5 ± 0.3 ppm. MTRasym, T1-normalized MTRasym and AREX were calculated using the opposite 

offset signals as reference. In LDA, the frequency offsets used for the single-pool Lorentzian 

lineshape fitting were those assumed to have no other CEST effects except direct water 

saturation, similar to the offsets used for B0 correction. For multi-Lorentzian fitting, the number 

of pools modelled was 6 in total, including water at 0 ppm, MT at 0 ppm, amide at 3.5 ppm, 

NOE at -3.5 ppm, amine at 2 ppm, and NOE at -1.6 ppm. For Lorentzian lineshape fitting in 

LDA and multi-Lorentzian fitting, the Lorentzian lineshape model was first fitted to the 

averaged z-spectra of the brain to obtain its fitted parameters. Then, voxel-wise fitting was 



   

performed, allowing the fitting parameters to vary within 30% of the fitted parameters of the 

averaged z-spectra. 

To enable composite voxel-wise analysis across all six animals, relative quantified T1, T2, and 

APT effects were calculated by normalizing the quantified APT effect of the ischemic and 

contralateral tissue, by the absolute averaged signal in the contralateral tissue, that is, 

r𝑆ischem ൌ 𝑆ischem |meanሺ𝑆contraሻ|⁄  and r𝑆contra ൌ 𝑆contra |meanሺ𝑆contraሻ|⁄ , where 𝑆ischem refers to 

the signal in the ADC ischemic region and 𝑆contra is the signal in the contralateral region. A 

two-tailed paired t-test at 5% significance level was used to test for significant differences 

between the relative values in ischemic and contralateral regions. The coefficient of variation 

(CV) of the MR images was calculated using the composite relative values of the contralateral 

tissue of all six animals: CV ൌ SDሺr𝑆contraሻ/meanሺr𝑆contraሻ , where SD refers to standard 

deviation. In addition, the contrast-to-noise ratio (CNR) was also calculated using the 

composite relative values as CNR ൌ |meanሺr𝑆contraሻ െmeanሺr𝑆ischemሻ|/SDሺr𝑆contraሻ.  

To compare the ischemic lesion predictions of the T1, T2, CBF, and APT images with the ADC 

defined ischemic lesion, the same K-means clustering settings as the ADC processing was 

used to automatically segment the ischemic region from each of the generated images 

(9,11,18,36). In addition, for the APT images, the Jaccard index (J) – a measure of intersection 

between two binary images, was calculated to quantify the differences between areas of 

ischemic lesion predictions of the five quantification methods. The mathematical 

representation of the Jaccard index is written as: 

 
𝐽ሺ𝐴,𝐵ሻ ൌ

Area of Overlap

Area of Union
ൌ

|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

. (1) 

The Jaccard index between the APT ischemic area of each quantification method pair was 

separately calculated for every animal. Besides that, the Jaccard index between the APT 

ischemic area of each quantification method and the ADC ischemic area was also quantified 

for every animal. Kruskal-Wallis test was then used to compare the quantified Jaccard indices 

for significant differences.  

For comparing the APT signal variations, Mann-Whitney U test was used to test for significant 

differences between the relative quantified effects within the APT ischemic areas using the 

different methods. Lastly, Pearson’s correlation coefficient, r, between the relative quantified 

APT effects in the ADC ischemic lesion, r𝑆ischem was calculated to evaluate the correlations 

between distributions of the quantification methods.  

 

 

 



   

3 Results 

Figure 1 shows the ADC, T1, T2 and APT images of four representative animals (Animals 1 – 

4) subject to MCAO. The MR images of Animals 5 and 6 can be found in Supplementary 

Materials (Supporting Figure S1). The final row of Figure 1 shows the collective relative 

quantified values of all six animals (Animals 1 – 6) of each MR image. The composite relative 

quantified values of the MR images are summarized in Table 1. 

As shown in column 1 of Figure 1, it was observed that all the ADC maps showed a substantial 

deficit in the ischemic regions. In all six animals, the ADC deficit area had a composite relative 

ADC of 0.743 ± 0.066 while the contralateral tissue had relative ADC of 1.000 ± 0.066, 

corresponding to CV of 0.066 and CNR of 3.878. From the ADC maps, K-means clustering 

was used to define the ischemic lesion masks (red) and corresponding contralateral tissue 

masks (blue) were manually drawn for each animal, shown overlaid on the ADC images.  

The T1 and T2 maps of the animals are shown in the second and third column of Figure 1 

respectively. T1 was found to be hyperintense in the ischemic regions (composite relative T1 

= 1.159 ± 0.091) and significantly different from the contralateral tissue (composite relative T1 

= 1.000 ± 0.074), resulting in CV = 0.074 and CNR = 2.143. Conversely, there was no 

significant difference between the T2 values of ischemic and contralateral areas, although 

collectively, T2 was lower in the ischemic areas (ischemic area: composite relative T2 = 0.984 

± 0.079; contralateral area: composite relative T2 = 1.000 ± 0.160), similar to the results 

reported by Sun et al. (36). The T2 relative values produced a low CNR of 0.100 and CV of 

0.160. 

The last five columns in Figure 1 show the APT images generated using the different 

quantification methods. The quantified APT effect in ischemic tissue was consistently 

hypointense compared to non-ischemic tissue, observed in the APT images of all of the 

quantification methods, and in the composite relative values (Table 1), consistent with 

previous reports (13,38). Paired t-test at 5% significance level revealed the relative quantified 

APT effects in the ADC ischemic regions to be significantly different from those in the 

contralateral areas, indicating that all five methods were able to distinguish the ischemic area 

from the contralateral non-ischemic tissue.  

However, although all methods were able to differentiate between ischemic and non-ischemic 

tissue, for a given animal, it could be observed that the APT images generated by different 

methods had different patterns in the signal variations, describing different variations of 

heterogeneity. The APT images also had hypointense areas of varying sizes.  

Of the five quantification methods, LDA produced the highest CNR of 2.002 and lowest CV of 

0.143, followed by multi-Lorentzian fitting with CNR of 1.427 and CV of 0.152. Among the 



   

model-free methods, MTRasym
 produced the highest CNR of 1.083 and lowest CV of 0.590, 

followed by T1-normalized MTRasym with CNR of 0.655 and CV of 0.609. Lastly, AREX 

produced the lowest CNR of 0.561 and highest CV of 0.623. 

To compare between the APT ischemic area predictions of the different quantification methods, 

K-means clustering was used to segment the ischemic areas. Figure 2 shows the predicted 

ischemic areas of the APT images of the four representative animals (Animals 1 – 4), as well 

as the ADC and CBF maps. The predicted ischemic areas of Animals 5 and 6 can be found in 

Supplementary Materials (Supporting Figure S2). For each animal, the top row of images 

shows the ADC and APT images of different quantification methods. It was observed that the 

ischemic area estimated by each quantification method coincided well with the ADC lesion. 

However, the APT ischemic areas had noticeable variation in sizes. The binary masks of the 

ischemic areas of each APT quantification method were summed to produce a map of 

overlapping APT ischemic lesions, shown in the last column. From this overlap map, it was 

observed that the APT-predicted lesions had a high overlap within the ADC lesions and fewer 

overlap beyond the ADC deficit area. 

The CBF/APT/ADC mismatch images are shown in the bottom row for each animal in Figure 

2. In these mismatch images, it was observed that the CBF deficit areas were larger than that 

of ADC for all animals. For APT ischemic areas, it was found that MTRasym, T1-normalized 

MTRasym, and AREX produced APT ischemic lesion predictions that were larger than ADC 

lesion but smaller than CBF lesions. In contrast, the Lorentzian model-based methods – LDA 

and multi-Lorentzian fitting produced ischemic areas that were equal to or even larger than 

the CBF lesions for certain animals. 

The differences between the ischemic masks produced from each quantification method were 

compared by calculating Jaccard indices where J = 1 represents a complete overlap and J = 

0 indicates no overlapping. Figure 3 shows the comparison of a representative animal (Animal 

1). In the figure, each plot corresponds to the comparison of the ischemic area of a pair of 

APT quantification methods. The APT ischemic lesion estimates had large areas of overlap, 

but described lesions of varying sizes, evident in the variation in Jaccard indices (0.551 ≤ J ≤ 

0.928).  

The Jaccard indices of all six animals are shown in Table 2. The averaged Jaccard index 

comparing between the APT and ADC lesions ranged from 0.503 – 0.567, where a Kruskal-

Wallis test indicated the Jaccard indices to be insignificantly different with P = 0.9167, implying 

all the methods were able to pick up the ADC lesions. In contrast, the averaged Jaccard 

indices comparing between each pair of quantification methods, covered a wider range of 

0.544 – 0.971, with a Kruskal-Wallis test revealing the indices to be significantly different with 



   

P = 1.016 x 10-5, highlighting the variations in the quantified APT lesion areas. From the indices, 

it was observed that the ischemic areas of the model-free methods – MTRasym, T1-normalized 

MTRasym, and AREX shared the highest similarities (J ≥ 0.895 ± 0.051). This was expected as 

the model-free methods are based on MTRasym but with slight modifications or corrections. 

Apart from the differences in APT ischemic area sizes, the APT lesions were also observed to 

have different signal variations from one another. Mann-Whitney U test was used to test for 

significant differences between the relative quantified APT effects within the APT lesions using 

the different methods. The test was repeated for all six animals. The calculated P-values for 

each of the animals can be found in Supporting Table S2 of Supplementary Materials. In 

general, it was found that the relative quantified effects using the different methods were 

significantly different from one another (P < 0.05) in large majority of the animals, with the 

exceptions of the pairs: T1-normalized MTRasym and AREX, as well as LDA and multi-

Lorentzian fitting having no significant differences from one another.  

To analyze the correlation between the distributions of the different APT quantification 

methods within the ADC lesions, the Pearson’s correlation coefficient of the collective relative 

quantified APT effects were calculated, as shown in Figure 4. It was found that the model-free 

methods showed very strong correlation with one another, with 0.957 ≤ r ≤ 0.995. For the 

Lorentzian lineshape model-based methods, LDA had moderate correlation with multi-

Lorentzian fitting (r = 0.555), weak correlation with MTRasym (r = 0.282), and very weak 

correlations with T1-normalized MTRasym and AREX (r = 0.173, 0.104); multi-Lorentzian fitting 

had moderate correlations with MTRasym (r = 0.401), and weak correlations with T1-normalized 

MTRasym and AREX (r = 0.347, 0.311).  

 

4 Discussion 

To date, many quantification methods have been proposed for APT ischemic stroke 

experiments (Supporting Table S1). However, there is currently no standardized method for 

quantifying the APT effect in ischemic stroke, resulting in the comparison of results generated 

by different research groups becoming a non-trivial task. This present study sought to analyze 

the commonly used APT quantification methods for ischemic stroke imaging in order to assess 

the spatial differences and correlations of the ischemic lesion estimates of the different 

methods.  

From Figure 1, in terms of the conventional MR images, the T1 maps were able to distinguish 

between the ischemic and contralateral regions, while T2 was not able to pick up on any early 

stroke changes as the composite relative T2 did not produce significant differences between 



   

the tissues. This was in line with past publications in that T1 was found to be consistently 

hyperintense in ischemic tissue, while T2, although having overall changes in the signal, was 

not found to have significant statistical differences in early stroke imaging (36,39). The 

ischemic areas of the relaxation maps can be found in Supporting Figure S3 of Supplementary 

Materials. 

Comparing between the APT images, it was found that ischemic lesion areas predicted by the 

different APT quantification methods were different from one another, both in terms of lesion 

sizes (Figure 2 and Figure 3) and signal variations (Supporting Table S2 and Figure 4). This 

inconsistency may also be observed in previous publications that investigated the use of more 

than one APT quantification method. In those studies, the presented APT images of different 

quantification methods also had seemingly different signal patterns, in both animal models 

(18,27) and ischemic stroke patients (9,12,14,26). 

In this retrospective study, it was not possible to explain the differences in the different APT 

images or relate them to the underlying physiological changes of the tissue. In order to further 

verify the efficiency and accuracy of each quantification method for acute stroke diagnosis, a 

multi-parametric imaging and multi-time point investigation similar to the studies by Harston et 

al. (7), Heo et al. (9), and Msayib et al. (12) is needed to identify the sizes, heterogeneity, and 

changes in the core, penumbra, and oligemia across multiple time points. These three studies 

have shown APT imaging to have the potential for identifying the ischemic penumbra from the 

infarct core and benign oligemia (7,9,12), which is currently lacking in conventional imaging 

techniques.  

Two of these studies have investigated the use of different quantification methods in order to 

determine the most optimal method for ischemic stroke imaging at multiple time points (9,12). 

In the study by Msayib et al. (12), the quantitative APT ratio (APTR*) via Bloch-McConnell 

model fitting (40) was found to be the most optimal method. However, the computational time 

of APTR* analysis is beyond clinically feasible time for acute stroke diagnosis (41,42). Unless 

some form of compromise is used, such as continuous approximation (14,43), or if the 

processing time of the full Bloch-McConnell model fitting can be improved substantially, 

APTR* is unlikely to be an ideal method for acute stroke application. 

In addition, in the two mentioned studies, the main metrics used to determine the most optimal 

method were CV, CNR, or similar metrics for quantifying spatial variability and contrast 

between ischemic and non-ischemic tissue (9,12). Although these metrics would indeed 

determine the method that would provide the highest contrast between the ischemic and non-

ischemic tissue and the least spatial variability, this may not necessarily reflect the actual 

pathophysiology of the brain. As the results of this present study show, although LDA and 



   

multi-Lorentzian fitting produced the highest CNR and lowest CV among the tested methods, 

suggesting the Lorentzian model-based methods to be more optimal than the model-free 

methods, both Lorentzian model-based methods estimated ischemic areas that were 

comparable in size to the CBF lesions (Figure 2). These findings differed from previous studies 

that reported APT predicted ischemic lesions to be smaller than PWI deficits (9,18,19) and do 

not support the hypothesis that the APT hypointense area should be smaller than the PWI 

deficit area as it delineates between the ischemic penumbra and benign oligemia. Thus, CNR 

and CV calculations may be a good measure of the spatial variations of the brain but are less 

meaningful if they do not correlate with the physiology. Therefore, further work is needed to 

investigate more clinically viable quantification methods for their accuracy in describing the 

physiology of the ischemic cerebral environment, using a similar study design to the three 

mentioned studies (7,9,12). 

In this study, two Lorentzian model-based methods – LDA and multi-Lorentzian fitting were 

used. It should be noted that the use of LDA is more suited for low power saturations where 

MT effect is negligible and single-pool Lorentzian fitting of the direct water saturation is 

sufficient (32). For higher power experiments, single-pool Lorentzian fitting for LDA may cause 

fitting errors due to the presence of MT effect and broader saturation effect, resulting in non-

Lorentzian lineshape. When multi-Lorentzian fitting is used for high power data, the fitted 

amide pool may contain contaminations from nearby amines which have multiple components, 

broad peak width, and non-Lorentzian lineshape due to coalescence effect (44). Nevertheless, 

we found the direct water saturation and CEST effects to approximate Lorentzian lineshapes 

well in this study because a low power saturation (0.547 µT) was used. The average z-spectra 

of the ischemic and contralateral areas of the animals can be found in Supporting Figure S4.  

From the correlations of the APT effects quantified by the different methods in Figure 4, it was 

observed that among the model-free methods, T1-normalized MTRasym and AREX shared 

stronger correlation with one another compared with MTRasym. While T1-normalized MTRasym 

and AREX both compensate for T1, only AREX corrects for the MT effect. Thus, the stronger 

correlation between T1-normalized MTRasym and AREX compared with T1-normalized MTRasym 

and MTRasym suggests that it is not necessary to correct for MT, but necessary to compensate 

for T1 in acute stroke. This finding was in agreement with previous studies that reported nearly 

no changes in MT (45), but significant changes in T1 in acute stroke (36,39).  

It is also worth noting that previous studies have found that APT effect does not linearly depend 

on T1. Instead, the relationship between the two is dependent on the CEST acquisition 

parameters (46,47). As such, depending on the experimental parameters, normalizing the 

APT effect by T1 may cause an overcorrection and reduced APT contrast. This was found to 



   

be the case in brain tumour imaging, where the water proton concentration and T1 shared a 

linear correlation, which may cause an overcorrection when normalizing APT effect by T1 (48). 

The same study has not been conducted in ischemic stroke; a future study investigating this 

to improve detection of the penumbra will be worthwhile but is beyond the scope of the current 

work. 

To compare between the ischemic area predictions of each quantification method, K-means 

clustering was used to automatically segment the quantified APT effects into ischemic and 

non-ischemic tissue in this study. This approach was used because it is difficult to manually 

differentiate between the gray matter (GM) and white matter (WM) in rat brain as the brain 

volume is small and the image resolution is not high; this differs from the clinical gold standard 

of having experienced radiologists to draw the ischemic region of the interest (ROI). The 

segmented clusters of the quantified APT effect in each of the six animals using the k-means 

clustering can be found in Supporting Figure S5 of Supplementary Materials; it was able to 

segment the quantified APT effects into two clusters – the hypointense ischemic tissue and 

the non-ischemic tissue. 

So far, in terms of the general trend of APT signal change during ischemia, although the 

majority of studies have reported a decrease in APT signal, there have been a few conflicting 

reports compared to the majority (24,25). These inconsistent findings may be the result of 

differing image acquisition parameters, the physiology of the disease itself, or the 

quantification method used during analysis, as demonstrated in this study. It is not currently 

possible to directly compare the results and determine the true source of the discrepancies, 

as there are many variables between the experiments. However, since APT imaging of stroke 

is still in its development stages and further work is still required to determine the optimal APT 

quantification method, it may still be too early to standardize APT experimental parameters 

and quantification methods.  

As such, to enable the comparison of results from studies conducted by different centers, this 

paper presents three recommendations. Particularly, authors should report (whenever 

possible): (1) the overall trend of change of relative MTRasym(~3.5 ppm) in ischemic tissue 

(significantly decreased, increased, or no significant changes), (2) the CEST acquisition 

parameters used, and (3) the ROI(s) in which the APT effects were investigated, e.g. DWI 

deficit, PWI deficit, follow-up FLAIR, etc. We make these recommendations as it would help 

different research groups compare the changes of APT signal during ischemic stroke within 

the defined ROI, when imaged using certain acquisition parameters. Relative MTRasym is 

suggested in this case as it has a historical dataset in the literature, being the most commonly 



   

used method in ischemic stroke experiments (Supporting Table S1), and is easy to calculate, 

report and interpret, with minimum conflicting variation between centers. 

To aid in the comparison of existing reports on APT imaging of stroke, Supporting Table S3 

and Supporting Table S4 in Supplementary Materials summarize reports in the current 

literature on the changes of MTRasym(~3.5 ppm) during ischemia and the corresponding 

acquisition parameters used as well as the ROIs in which the APT effects were investigated. 

Albeit not a direct comparison, this would simplify the comparison of results between centers 

as it would exclude the quantification method as the potential source of any discrepancies. 

This summary of MTRasym(~3.5 ppm) results and experimental parameters may also provide 

useful information for future CEST experiments as it presents the list of experimental 

parameters that are known to produce positive results and are useful for ischemic stroke 

imaging, as well as experimental parameters that should be avoided. 

 

5 Conclusion 

The five tested APT quantification methods were all able to distinguish the ischemic region as 

hypointense compared to non-ischemic tissue. However, the estimated ischemic areas of the 

methods varied in sizes and heterogeneity within the tissue. In the current literature, there 

have been a few inconsistencies on the trends of APT signal during ischemia. To fully 

investigate the accuracy and correlation of each quantification method on its description of 

ischemic pathophysiology, a larger scale multi-imaging modality and multi-time point clinical 

study is needed. As further work is still needed before optimizing and standardizing 

experimental and quantification methods for APT imaging in ischemic stroke, it is proposed 

that future studies should report the results of MTRasym alongside other APT quantification 

methods used in the study, in order to enable comparison between results of different centers 

and the published literature.  
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List of Tables 

Table 1. Relative quantified values of the MRIs within the ADC ischemic lesion and contralateral 
normal region of the six animals undergoing MCAO. * indicates a significant difference at 5% 
significance level (P < 0.05). 

Images 
Contralateral 

Area 
Ischemic 

Area 

Difference 
(Ischemic – 

Contralateral) 
P-value CV CNR 

ADC 1.000 ± 0.066 0.743 ± 0.066 -0.257* 0 0.066 3.878 

T1 1.000 ± 0.074 1.159 ± 0.091 0.159* 1.362 x 10-99 0.074 2.143 

T2 1.000 ± 0.160 0.984 ± 0.079 -0.016 0.051 0.160 0.100 

MTRasym -1.000 ± 0.590 -1.639 ± 0.697 -0.639* 9.342 x 10-42 0.590 1.083 
T1-

normalized 
MTRasym 

-1.000 ± 0.609 -1.399 ± 0.627 -0.399* 1.485 x 10-20 0.609 0.655 

AREX -1.000 ± 0.623 -1.349 ± 0.625 -0.349* 4.326 x 10-16 0.623 0.561 

LDA 1.000 ± 0.143 0.715 ± 0.168 -0.285* 1.286 x 10-97 0.143 2.002 
Multi-

Lorentzian 
fitting 

1.000 ± 0.152 0.783 ± 0.144 -0.217* 1.592 x 10-77 0.152 1.427 

 

 

 

Table 2. Jaccard indices between the ischemic lesion areas of all six animals estimated using the 
different quantification methods, shown as mean ± standard deviation. 

Quantification 
Method 

MTRasym 
T1-

normalized 
MTRasym 

AREX LDA 
Multi-

Lorentzian 
Fitting 

MTRasym 0.567 ± 0.171 0.905 ± 0.036 0.895 ± 0.051 0.576 ± 0.090 0.591 ± 0.198 

T1-normalized 
MTRasym 

 0.516 ± 0.154 0.971 ± 0.027 0.545 ± 0.090 0.563 ± 0.210 

AREX   0.517 ± 0.170 0.544 ± 0.087 0.556 ± 0.212 

LDA    0.503 ± 0.110 0.691 ± 0.156 

Multi-
Lorentzian 

Fitting 
    0.549 ± 0.108 

 

 

 

 



         

Figure Captions 

Figure 1.  MR images of the four representative rats (Animals 1 – 4) subject to MCAO shown in 
the first four rows respectively. The first column shows the ADC images (µm2/ms), overlaid with 
the ischemic (red) and contralateral (blue) regions of interest (ROI). The second and third column 
show the T1 (s) and T2 maps (ms); subsequent columns correspond to APT images generated 
using different quantification methods: MTRasym, T1-normalized MTRasym, AREX, LDA, and multi-
Lorentzian fitting (%). The final row shows the relative quantified APT effects of all six animals (n 
= 6) within the contralateral and ischemic tissues of each quantification method; * indicates a 
significant difference between the two tissues at 5% significance level. 

Figure 2. ADC (µm2/ms), CBF (mL/100g/min), and APT (%) images of four representative animals 
(Animals 1 – 4), with the respective ischemic areas outlined: ADC – white, APT – blue and CBF 
– green.  For every animal, the ADC and APT images are shown in the top row along with the 
binary ischemic area overlaps of all five APT methods in the last column, where higher intensity 
indicates a higher overlap. The bottom row shows the CBF map as well as the CBF/APT/ADC 
lesion mismatches of every APT quantification method; the display priority in the mismatch plots 
is white > blue > green.  

Figure 3. Comparison of the ischemic regions as predicted by the different APT quantification 
methods of a representative animal (Animal 1). Each plot corresponds to the comparison of a pair 
of quantification methods. The white region indicates overlap between the two ischemic masks; 
purple represents areas present only in the top legend method, and green represents areas 
present only in the left legend method. The Jaccard index J is displayed in the top left corner of 
each plot. J in the off-diagonal plots (white font) correspond to the comparison between each pair 
of quantification method; J in the diagonal plots (yellow font) correspond to comparison of the 
APT lesion and ADC lesion. 

Figure 4. Pearson’s correlation coefficients between the relative quantified MTRasym, T1-
normalized MTRasym, AREX, LDA, and multi-Lorentzian fitting. Each plot corresponds to the 
correlation between a pair of quantification methods; the correlation coefficient is shown in the 
top left corner of the plot, where red, green, blue, and black font indicated “very strong”, 
“moderate”, “weak”, and “very weak” correlations respectively.  



         

Supplementary Figure and Table Captions 

Supplementary Figures 

Supporting Figure S1. MR images of Animals 5 and 6 that were subject to MCAO. The first 
column shows the ADC images (µm2/ms), overlaid with the ischemic (red) and contralateral (blue) 
regions of interest (ROI). The second and third column show the T1 (s) and T2 maps (ms); 
subsequent columns correspond to APT images generated using different quantification methods: 
MTRasym, T1-normalized MTRasym, AREX, LDA, and multi-Lorentzian fitting (%). The final row 
shows the relative quantified APT effects of all six animals (n = 6) within the contralateral and 
ischemic tissues of each quantification method; * indicates a significant difference between the 
two tissues at 5% significance level. 
 

Supporting Figure S2.  ADC (µm2/ms), CBF (mL/100g/min), and APT (%) images of Animals 5 
and 6, with the respective ischemic areas outlined: ADC – white, CBF – green, and APT – blue. 
For every animal, the ADC and APT images are shown in the top row along with the binary 
ischemic area overlaps of all five APT methods in the last column, where higher intensity indicates 
a higher overlap. The bottom row shows the CBF map as well as the CBF/APT/ADC lesion 
mismatches of every APT quantification method; the display priority in the mismatch plots is white 
> blue > green. 

 
Supporting Figure S3. ADC (µm2/ms), T1 (s), and T2 (ms) maps and corresponding ischemic 
areas of the six animals. For each animal, the ADC lesion is shown in red line, overlaid on all 
images; T1 and T2 predicted ischemic lesions are shown in blue lines. 

 
Supporting Figure S4. Average z-spectra within the ADC ischemic (red) and contralateral (blue) 
areas of Animals 1 – 6. 

 
Supporting Figure S5. K-means clustering of the quantified APT effects of the different APT 
quantification methods. The quantified values were segmented into two clusters – ischemic tissue 
(red) and non-ischemic tissue (blue). 

 
Supplementary Tables 

Supporting Table S1. Summary of APT quantification methods for ischemic stroke imaging. The 
most commonly used methods based on literature are shown in bold font; quantification methods 
used in the present study are underlined. The white shaded entries are model-free methods; gray 
shaded entries are model-based methods. 

Supporting Table S2(a) – (f). P-values of Mann-Whitney U test between the relative quantified 
effects (values) in the APT ischemic lesions of Animals 1 – 6 using the different quantification 
methods. Bold font indicates a significant difference (P < 0.05). 

 
Supporting Table S3. Reported changes in quantified MTRasym(~3.5 ppm) in ischemic stroke. 

 
Supporting Table S4. Experimental parameters of the studies reporting MTRasym(~3.5 ppm) 
results.



         

Figures 

 

Figure 1. MR images of the four representative rats (Animals 1 – 4) subject to MCAO shown in 
the first four rows respectively. The first column shows the ADC images (µm2/ms), overlaid with 
the ischemic (red) and contralateral (blue) regions of interest (ROI). The second and third column 
show the T1 (s) and T2 maps (ms); subsequent columns correspond to APT images generated 
using different quantification methods: MTRasym, T1-normalized MTRasym, AREX, LDA, and multi-
Lorentzian fitting (%). The final row shows the relative quantified APT effects of all six animals (n 
= 6) within the contralateral and ischemic tissues of each quantification method; * indicates a 
significant difference between the two tissues at 5% significance level. 



         

 

Figure 2. ADC (µm2/ms), CBF (mL/100g/min), and APT (%) images of four representative animals 
(Animals 1 – 4), with the respective ischemic areas outlined: ADC – white, APT – blue and CBF 
– green.  For every animal, the ADC and APT images are shown in the top row along with the 
binary ischemic area overlaps of all five APT methods in the last column, where higher intensity 
indicates a higher overlap. The bottom row shows the CBF map as well as the CBF/APT/ADC 
lesion mismatches of every APT quantification method; the display priority in the mismatch plots 
is white > blue > green. 



         

 

Figure 3. Comparison of the ischemic regions as predicted by the different APT quantification 
methods of a representative animal (Animal 1). Each plot corresponds to the comparison of a pair 
of quantification methods. The white region indicates overlap between the two ischemic masks; 
purple represents areas present only in the top legend method, and green represents areas 
present only in the left legend method. The Jaccard index J is displayed in the top left corner of 
each plot. J in the off-diagonal plots (white font) correspond to the comparison between each pair 
of quantification method; J in the diagonal plots (yellow font) correspond to comparison of the 
APT lesion and ADC lesion. 



         

 

Figure 4. Pearson’s correlation coefficients between the relative quantified MTRasym, T1-
normalized MTRasym, AREX, LDA, and multi-Lorentzian fitting. Each plot corresponds to the 
correlation between a pair of quantification methods; the correlation coefficient is shown in the 
top left corner of the plot, where red, green, blue, and black font indicated “very strong”, 
“moderate”, “weak”, and “very weak” correlations respectively.  

 


