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72

73 Abstract

74 Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle 

75 scenarios to support climate-change studies. It is imperative to increase confidence in long-term 

76 predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC 

77 simulated from an ensemble of 26 process‐based C models by comparing simulations to 

78 experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark 

79 (two sites), France, Russia, Sweden, the United Kingdom. The decay of SOC in these plots has 

80 been monitored for decades since the last inputs of plant material, providing the opportunity to 

81 test decomposition without the continuous input of new organic material. The models were run 

82 independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no 

83 calibration (Bln) and with three calibration scenarios, each providing different levels of 

84 information and/or allowing different levels of model fitting: a) calibrating decomposition 

85 parameters separately at each experimental site (Spe); b) using a generic, knowledge-based, 

86 parameterisation applicable in the Central European region (Gen); and c) using a combination of 

87 both a) and b) strategies (Mix). We addressed uncertainties from different modelling approaches 

88 with or without spin-up initialisation of SOC. Changes in the multi-model median (MMM) of 

89 SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved 

90 adequate in describing changes in SOC, with MMM equal to average SOC (and standard 

91 deviation) of 39.2 (±15.5) Mg C ha-1 compared to the observed mean of 36.0 (±19.7) Mg C ha-1 

92 (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5±16.7 

93 Mg C ha-1) and Spe (36.8±19.8 Mg C ha-1) provided only marginal gains in accuracy, but 

mailto:roberta.farina@crea.gov.it


This article is protected by copyright. All rights reserved

94 modellers would need to apply more knowledge and a greater calibration effort than in Gen, 

95 thereby limiting the wider applicability of models.

96

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol/abbreviation
Long version Explanation

System variables

C Carbon
Chemical element with atomic 

number 6

SOC Soil organic carbon Carbon stored in soil organic matter

SOM Soil organic matter

The fraction of the soil that consists 

of plant, animal or microbial tissue 

in various stages of decomposition

N Nitrogen
Chemical element with atomic 

number 7

Experimentation

LTE Long-term field experiment

Research facility providing data for 

monitoring trends and evaluating 

different agricultural management 

strategies over time

LTBF 
Long-term bare-fallow 

experimental site

Research facility providing data for 

monitoring trends on bare-fallow 

soils

S1 Site 1 Askov (Denmark) – location 1

S2 Site 2 Askov (Denmark) – location 2

S3 Site 3 Grignon (France)

S4 Site 4 Kursk (Russia)

S5 Site 5 Rothamsted (United Kingdom)

S6 Site 6 Ultuna (Sweden)

S7 Site 7 Versailles (France)

Modelling

M01, …, M34 Model 01, …, model 34
Simulation models (M) 

anonymously coded from 1 to 34
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Bln Blind Uncalibrated simulations (blind test)

Gen Generic Generic simulation scenario

Mix Mixed Mixed simulation scenario

Spe Specific Specific simulation scenario

SP Spin-up

Process of running the model from a 

set of conditions to initialise the 

state of C pools

NS No spin-up

Any function (or analytical 

procedures) to make an initial 

partition of C pools (alternative to 

spin-up runs)

Statistics

SD Standard deviation Variation amount of a set of data

MMM Multi-model median
Median value of simulated data 

from different models

Obs Observations Observed data

RRMSE
Relative root mean square 

error

Aggregate magnitude of the errors 

in predictions relative to the mean 

of observations

EF Modelling efficiency
Predictive power of a model with 

respect to the mean of observations

R2 Coefficient of determination

Proportion of the variance in the 

modelled data that is predictable 

from the observations

r
Pearson’s correlation 

coefficient

Degree to which predictions and 

observations are linearly related

P(t)

Paired

Student t-test

probability of I-type error

Probability to reject the true null 

hypothesis of equal means of two 

samples of paired data (i.e. 

predictions and observations)

d Index of agreement

Ratio of the mean square error and 

the potential error represented by 

the largest value that the squared 
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difference of each 

prediction/observation pair can 

attain

z z-score transformation

Number of standard deviations by 

which the value of a raw score is 

above or below the mean value of 

the variable of interest

sd Standard deviation
Standard deviation units expressing 

z-scores

sdobs
Standard deviation of 

observations

Variation amount of a set of 

observed values

P Predicted value
Value of a variable that is generated 

using a model

O Observed value
Value of a variable that is actually 

observed

n
Number of predicted or 

observed values
Number of predicted/observed pairs

i
ith predicted or observed 

value

Subscript index of each 

predicted/observed pair

O Mean of observed values
Arithmetic mean of actually 

observed data

P Mean of predicted values
Arithmetic mean of actually 

observed data

D Mean difference

Arithmetic mean of the differences 

between predicted and observed 

values

SD
Standard deviation of the 

differences

Variation amount of a set of 

differences between predictions and 

observations

p Probability of I-type error

Probability to reject the true null 

hypothesis of null correlation 

between two variables

Agro-climatic metrics
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Tamp Temperature amplitude
Difference between the highest and 

the lowest temperature in a year

Tmax Maximum air temperature
Average of the highest daily 

temperatures in a year

Prec Precipitation Annual precipitation total

ba
De Martonne-Gottman 

aridity index

Indicator of aridity including both 

annual and monthly temperature 

and precipitation

hwa Heatwave frequency

Number of at least seven 

consecutive days when the 

maximum air temperature is higher 

than the average summer (June, July 

and August) maximum temperature 

of a baseline value +3 °C

97 a Supplementary material.
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98 1. INTRODUCTION

99 The ability of soils to sequester and store large amounts of carbon (C) is well known (e.g. 

100 Lehmann and Kleber, 2015). Soil organic carbon (SOC) stocks are crucial for maintaining soil 

101 fertility and preventing erosion and desertification, and they positively influence the provision of 

102 ecosystem services at the local as well as the global scale (e.g. Lal, 2004, 2014). For these 

103 reasons, farmers aim to establish and maintain high organic C stocks in agricultural soils, which 

104 have often been depleted trough historical land use practices (Fuchs et al., 2016; Gardi et al., 

105 2016; Chenu et al., 2018). The continuing studies on SOC sources and biogeochemical processes 

106 in the soil environment provide key insights into climate-C feedbacks, and help prioritizing C 

107 sequestration initiatives (Gross and Harrison, 2019). In light of the climate change issue, the 

108 storage of C and additional sequestration of atmospheric C have received increasing attention 

109 recently (Rumpel et al., 2018; Whitehead et al., 2018; Lavallee et al., 2020), promoting land 

110 management, and agro-ecosystems in particular, as a key mitigation option (e.g. the ‘4 per mille 

111 Soils for Food Security and Climate’ initiative, Minasny et al., 2017; Soussana et al., 2017). 

112 However, the slow response of SOC to changes in management and environmental factors 

113 hampers our understanding of how SOC can be increased in a sustainable manner, especially 

114 under changing climatic conditions. Long-term field experiments (LTEs), in which SOC 

115 responses have been observed over several decades, provide this information and deliver 

116 reference data on SOC content for knowledge gain and model development (Johnston and 

117 Poulton, 2018). However, LTEs are costly to maintain, and it is generally difficult to extrapolate 

118 experimental results across space and time (Debreczeni and Körschens, 2003; Mirtl et al., 2018). 

119 Simulation models play a prominent role in SOC research because they provide a mathematical 

120 framework to integrate, examine and test the understanding of SOC dynamics (Campbell and 

121 Paustian, 2015). They can also be used to extrapolate from micro- (e.g. carbohydrate production 

122 during photosynthesis) to macro-scale dynamics (e.g. global C cycling) (e.g. Gottschalk et al., 

123 2012; Sitch et al., 2003). In particular, complex agricultural and environmental models 

124 incorporate a mechanistic view of processes and system interactions, in which the soil 

125 components are often represented by different, operationally defined, pools of different sizes and 

126 with different properties (e.g. Parton et al., 2015). The concept of multiple C-N pools represents 

127 C-N dynamics with an idealised description (Hill, 2003). The relative proportion of C and N (and 

128 sometimes lignin to N ratio) in the plant residue is the primary mode to divide plant inputs (from 

129 e.g. leaf litter and root exudates) into fresh litter pools, which then decompose into SOC (or 

130 SOM, i.e. soil organic matter) pools, each being modelled with different residence (or turnover) 

131 times, varying from months for labile products of microbial decomposition to hundreds to 
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132 thousands of years for organic substances with firm organic-mineral bonds (e.g. Yadav and 

133 Malanson, 2007; Dungait et al., 2012). Plant material and animal manures are often modelled to 

134 enter the soil environment as either readily decomposable (carbohydrate-like) or resistant (lignin 

135 and cellulose-like) materials. A varying number of pools (often including inert and slow-

136 decomposing organic matter, and microbial biomass) linked by first-order equations is usually 

137 simulating both C and N fluxes within and between each pool (Falloon and Smith, 2010). 

138 However, different models vary considerably in the underlying assumptions and C processes in 

139 current models, e.g. regarding number of pools, type of decomposition kinetics used and 

140 processes regulating SOC retention (Manzoni and Porporato, 2009; Cavalli et al., 2019).

141 Each model offers a distinctive synthesis of scientific knowledge (Brilli et al., 2017) and 

142 multi-model ensembles developed from several models may reduce uncertainties in biological 

143 and physical outputs that occur over large scales, such as regions and continents (e.g. Rötter et 

144 al., 2012; Asseng et al., 2013; Ehrhardt et al., 2018). The advantage of using ensemble estimates 

145 over individual models is that caused by compensation of errors across models, and a broader 

146 integration of model processes (Martre et al., 2015). It has been recommended to use model 

147 ensembles for reducing uncertainties in simulations of agricultural production (Asseng et al., 

148 2013; Bassu et al., 2014; Challinor et al., 2014; Li et al., 2015; Ruane et al., 2016; Maiorano et 

149 al., 2017) and other biophysical/biogeochemical outputs (Sándor et al., 2017, 2018a; Ehrhardt et 

150 al., 2018). However, after the pioneering study of Smith et al. (1997), who evaluated nine SOC 

151 models using 12 datasets from seven LTEs, other modelling studies targeting SOC dynamics 

152 have often been limited in scope. Smith et al. (2012) used four models to assess the effect on 

153 SOC of crop residues’ removal in 14 experiments in North America. Todd-Brown et al. (2013, 

154 2014) performed global estimates of SOC changes with 11 Earth system models. Kirschbaum et 

155 al. (2015) used one simulation model and two years of eddy covariance measurements collected 

156 over an intensively grazed dairy pasture in New Zealand to better understand the drivers of 

157 changes in SOC stocks. Puche et al. (2019) performed a similar study in France. Using multi-

158 model ensembles in scenario studies at eight sites worldwide, Basso et al. (2018) highlighted the 

159 importance of soil feedback effects (C and N) on the prediction of wheat and maize yield. We are 

160 not aware of any recent model inter-comparison studies specifically assessing soil C dynamics 

161 with several models across a range of experimental sites. This is a field where there is a need for 

162 standardised guidance to estimate C stocks at various spatial scales (Bispo et al., 2017). A 

163 difficulty in testing and comparing various models (and interpreting model outputs) lies in the 

164 interaction between soil and plant processes so that any of the model-data discrepancies could be 

165 due to errors in either component (e.g. Ehrmann and Ritz, 2014). A rigorous model testing and 
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166 comparison would require different model components, e.g. plant and soil modules, to be 

167 assessed separately. Bare-fallow plots offer such an opportunity in that they are plots maintained 

168 for decades without any plant inputs. The changes in SOC stocks therefore result only from 

169 decomposition processes. To assess the function of soil-model components without interaction 

170 with plant processes, we conducted a model inter-comparison using a dataset from long-term 

171 bare-fallow experiments where plant inputs were zero. In this study, we refer to bare-fallow plots 

172 that were kept free of plants by manual and/or chemical means for several decades. We used 

173 seven bare-fallow treatments included in six long-term agricultural experiments (>25 years), all 

174 located in Europe (Denmark, France, Russia, Sweden and United Kingdom). In these plots, the 

175 soils became progressively depleted in the more labile SOM components, as they decomposed, 

176 and relatively enriched in more stable SOM (Barré et al., 2010). The soil C concentrations 

177 determined at given years in these sites represented a unique opportunity to follow the decay of 

178 SOC from a multi-model ensemble perspective, without any interference from new plant C 

179 inputs, and conduct a multi-model ensemble comparison. The model inter-comparison included 

180 26 process‐based models from an international modelling community. Some models only 

181 accounted for soils  and used C input from plants as an external input where others were full 

182 agro-ecosystem models that explicitly simulate plant growth and resulting C input into soils. 

183 These models all simulate interactions between the soil-atmosphere continuums in different 

184 ways, but for this comparison all models were run assuming no input of fresh plant-derived C, 

185 allowing the comparison of just the soil components of the models.

186 Here, we assess the models, by comparing multi‐decadal simulations to experimental data 

187 from seven sites in Europe. The primary goal of this study was to assess the multi-model 

188 ensemble in simulating SOC dynamics across bare-fallow sites in Europe. To achieve this goal, 

189 model evaluation against actual measurements was performed before and after model calibration. 

190 In addition, deficient areas in models and their processes were identified, paving the road for 

191 future research directions.

192

193 2. MATERIALS AND METHODS

194 2.1.  Simulation models

195 The ensemble of models consisted of 26 process-based models, mainly developed for crop or 

196 grassland ecosystems (or focussing just on soils) and covering a broad variety of approaches 

197 (Table 1). While they are mostly based on first-order decay kinetics of multiple C pools (where 

198 C losses are proportional to SOC stocks with additional modifiers to represent the effects of 

199 other factors), ESOC1 simulates C fluxes with second-order kinetics equations based on 
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200 concepts applied in Schimel and Weintraub (2003) and reviewed in Wutzler and Reichstein 

201 (2008). In this case, organic matter decomposition includes reactions between SOC and 

202 decomposers (i.e. a microbial or enzyme pool). These different approaches depend mainly on 

203 alternative ways in which the C pools are linked. For instance, MONICA is one of the most 

204 complex models, considering three types of organic matter in six conceptual pools, viz. newly 

205 added organic matter, living soil microbial biomass and native non-living soil organic matter, 

206 each sub-divided into fast and slowly decomposing sub-pools. It simulates the turnover of C 

207 pools by applying first-order degradation to each pool due to microbial growth and maintenance 

208 respiration (after Abrahamsen and Hansen, 2000). Then, like other models (e.g. CenW), 

209 MONICA also includes a coupled N-cycle and sophisticated temperature and water-balance 

210 calculations that act as modifiers of degradation and respiration rates. The decomposition rates of 

211 individual pools in such multi-pool SOC models are typically controlled by vastly different 

212 reaction coefficients that can result in highly nonlinear behaviour of the overall system (e.g. 

213 Caruso et al., 2018). The initial list included 34 models, but eight of them were excluded from 

214 further analysis because they showed severe limitations to run properly either under bare-fallow 

215 soils or under the given climate conditions. For all models, estimates of SOC were compared 

216 with measured SOC data.



This article is protected by copyright. All rights reserved

217 Table 1. The process-based simulation models used. Model names were anonymised in the 

218 reporting of simulation results using model codes from M01 to M34, from the initial list of 34 

219 models, the order of models not being identical to that used in the table.
220

Model name Version
C 

poolsa
Spin-up URL or contact for documentation/description References

AMG 2 2 to 3 None

https://www6.hautsdefrance.inra.fr/agroimpact/Nos-

dispositifs-outils/Modeles-et-outils-d-aide-a-la-

decision/AMG-et-SIMEOS-AMG/AMG-model-description

Andriulo et al. (1999); 

Saffih-Hdadi and Mary 

(2008); Clivot et al. (2019)

Apsim 7.9-

r4044

None

Simulation from start of climate 

record (no additional simulation 

period)
APSIM

7.10 r4158

3

Yes

http://www.apsim.info Keating et al. (2003); 

Holzworth et al. (2014)

CANDY_CIPS

1.0 (but 

always 

implemented 

in newest 

version of 

CANDY 

29.06.2018

4 None
https://www.ufz.de/export/data/2/95948_CANDY_MANUAL.

pdf

Kuka, (2005); Kuka et al. 

(2007)

CCB 2019.1.16 3 None https://www.ufz.de/index.php?en=44046 Franko et al. (2011); Franko 

and Spiegel (2016); Franko 

https://www6.hautsdefrance.inra.fr/agroimpact/Nos-dispositifs-outils/Modeles-et-outils-d-aide-a-la-decision/AMG-et-SIMEOS-AMG/AMG-model-description
https://www6.hautsdefrance.inra.fr/agroimpact/Nos-dispositifs-outils/Modeles-et-outils-d-aide-a-la-decision/AMG-et-SIMEOS-AMG/AMG-model-description
https://www6.hautsdefrance.inra.fr/agroimpact/Nos-dispositifs-outils/Modeles-et-outils-d-aide-a-la-decision/AMG-et-SIMEOS-AMG/AMG-model-description
http://www.apsim.info
https://www.ufz.de/export/data/2/95948_CANDY_MANUAL.pdf
https://www.ufz.de/export/data/2/95948_CANDY_MANUAL.pdf
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and Merbach (2017)

Century 4.0 5 to 7 Yes
https://www2.nrel.colostate.edu/projects/century/MANUAL/ht

ml_manual/man96.html Parton et al. (1987, 1994)

CenW 4.2 5

Uses an automatic spin-up routine to 

find equilibrium conditions under 

given environmental variables and 

specified system properties

http://www.kirschbaum.id.au/Welcome_Page.htm
Kirschbaum (1999); 

Kirschbaum and Paul 

(2002)

C-TOOL 2014 3
None 

(can be run also with spin-up)

http://envs.au.dk/fileadmin/Resources/DMU/Luft/emission/SI

NKS/C-TOOL_Documentation__2015_.pdf

Taghizadeh-Toosi and 

Olesen (2016); Taghizadeh-

Toosi et al. (2014a, b, 

2016)

4.5 2010 Yes

 Daily 

DayCent

4.5 2013

Daily 

DayCent 

August 2014
Daily DayCent 

4.5 2013

5 to 9 http://www.nrel.colostate.edu/projects/daycent-home.html
Parton et al. (1994, 1998); 

Del Grosso et al. (2001, 

2002)

DNDC CAN 6 Yes http://www.dndc.sr.unh.edu Li et al. (2012); Smith et al. 

http://www.kirschbaum.id.au/Welcome_Page.htm
http://envs.au.dk/fileadmin/Resources/DMU/Luft/emission/SINKS/C-TOOL_Documentation__2015_.pdf
http://envs.au.dk/fileadmin/Resources/DMU/Luft/emission/SINKS/C-TOOL_Documentation__2015_.pdf
http://www.nrel.colostate.edu/projects/daycent-home.html
http://www.dndc.sr.unh.edu/


This article is protected by copyright. All rights reserved

(10 years recommended) (2020)

DSSAT … 5

Yes, 

20 years prior to beginning of the 

experiment to estimate the 

proportions of carbon in each organic 

matter pool

http://dssat.net 

Jones et al. (2003); Porter et 

al. (2009); Gijsman et al. 

(2002); White et al. (2011); 

Thorp et al. (2012)

ECOSSE 5.0.1 5 None

https://www.abdn.ac.uk/staffpages/uploads/soi450/ECOSSE%

20User%20manual%20310810.pdf Smith et al. (2007, 2010a, 

b); Bell et al. (2010)

ESOC1 1.0 3 Yes

https://doi.org/10.5281/zenodo.3539484

fmoyano@uni-goettingen.de Moyano et al. (2018)

Exp 1 None -

Exp + inert 2 None -

Lorenzo Menichetti 

(lorenzo.menichetti@slu.se)

ICBM … 2 None

martin.bolinder@slu.se

https://www.slu.se

Andrén and Kätterer 

(1997); Andrén et al. (2008)

MONICA 2.0.2 7 None http://monica.agrosystem-models.com
Nendel et al. (2011); 

Specka et al. (2016); Stella 

et al. (2019)

https://www.abdn.ac.uk/staffpages/uploads/soi450/ECOSSE%20User%20manual%20310810.pdf
https://www.abdn.ac.uk/staffpages/uploads/soi450/ECOSSE%20User%20manual%20310810.pdf
https://doi.org/10.5281/zenodo.3539484
mailto:fmoyano@uni-goettingen.de
mailto:martin.bolinder@slu.se
https://www.slu.se
http://monica.agrosystem-models.com
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ORCHIDEE 2.0 3 Yes
https://vesg.ipsl.upmc.fr/thredds/fileServer/IPSLFS/orchidee/

DOXYGEN/webdoc_2425/annotated.html Krinner et al. (2005)

RothC10N

RothC

26.3

4 to 5 None https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc Coleman and Jenkinson 

(1999); Farina et al. (2013)

STICS 9.0 2 to 4 None http://www6.paca.inra.fr/stics
Brisson et al. (1998, 2003, 

2008); Coucheney et al. 

(2015)

YASSO15 15 5 Yes https://en.ilmatieteenlaitos.fi/yasso Tuomi et al. (2009)

221 a Some models/model versions include options for varying C pools (this varying number may depend on the fact that the full 

222 set of pools including fresh C can be optionally simplified in the case of bare-fallow treatments).

https://vesg.ipsl.upmc.fr/thredds/fileServer/IPSLFS/orchidee/DOXYGEN/webdoc_2425/annotated.html
https://vesg.ipsl.upmc.fr/thredds/fileServer/IPSLFS/orchidee/DOXYGEN/webdoc_2425/annotated.html
https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc
https://en.ilmatieteenlaitos.fi/yasso
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223 2.2. Experimental sites

224 We used data from a network of six long-term bare-fallow experimental sites (LTBF) in Europe 

225 (with two fields located in Askov, Denmark; Barré et al., 2010), to test the ability of the models 

226 to represent SOC dynamics. The sites were located at a range of latitudes between 48° to 59° 

227 North (Table 2; Fig. 1a), with experiments running for at least 28 years, which were used as a 

228 test bed for the models to represent SOC dynamics. Table 2 shows the main characteristics of 

229 each site and provides a brief description of the historical land use and management of the area 

230 (more details are given by Barré et al., 2010 and references therein). The documented history of 

231 the experimental sites referred to the presence of agricultural areas (grassland or cropland), 

232 without woodlands. Soil texture provides evidence of variability in soil physical properties, with 

233 a gradient of intermediate situations between the sandy loam of Askov (Denmark) and the clay 

234 loam of Ultuna (Sweden). Water relations (precipitation minus reference evapotranspiration) 

235 indicate positive climatic water balance for the two North Atlantic sites only (Askov in Denmark 

236 and Rothamsted in the United Kingdom). Mean annual temperatures vary from ~6 °C in the 

237 Sweden and Russian sites (Ultuna and Kursk, respectively) to near 11 °C in the two French sites 

238 (Grignon and Versailles). Annual air temperature amplitudes - from about 14 °C in Rothamsted 

239 to near 30 °C in Kursk - indicate that the study sites span a broad thermal gradient (Fig. 1b), 

240 which likely leads to different soil thermodynamics (e.g. Zhu et al., 2019). Two widely used 

241 metrics (aridity index and frequency of heatwaves; Sándor et al., 2017, 2018a, b) were also 

242 calculated to complete the climatic analysis of study sites (Fig. A, supplementary material).

243
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244

245 Table 2. Long-term bare-fallow experimental sites. Table A in the supplementary material 

246 contains the summary description of the experimental sites.
Experimental sites (country)

General description
S1, S2

Askov

(Denmark)

S3

Grignon

(France)

S4

Kursk

(Russia)

S5

Rothamsted 

(United Kingdom)

S6

Ultuna

(Sweden)

S7

Versailles

(France)

Coordinates Latitude 55.28 48.51 51.73 51.82 59.49 48.48

Longitude 9.07 1.55 36.19 0.35 17.38 2.08

Soil Sand/Silt/Clay (%)
78/12/10

(sandy loam)

16/54/30

(silty clay loam)

5/65/30

(silty clay loam)

13/62/25

(silt loam)

23/41/36

(clay loam)

26/57/17

(silt loam)

Bulk density (Mg m-3) 1.50 1.20 1.13 0.94 1.44 1.30

Bare-fallow years 1956-1985 1959-2007 1965-2001 1959-2008 1956-2007 1929-2008
Experimental 

period
N. of 

data/replicates
30/4, 29/4 11/6 6/0 14/4 18/4 9/6

Initial/final carbon stocks (Mg C ha-1) 52.1/36.4 41.7/25.4 100.3/79.4 71.7/28.6 42.5/26.9 65.5/22.7

Climatea Climate typeb
Dfb (humid 

continental)
Cfb (oceanic)

Dfb (humid 

continental
Cfb (oceanic)

Dfb (humid 

continental
Cfb (oceanic)

Mean annual precipitation total (mm) 890 584 482 723 457 608

Mean annual cumulative evaporation 

(mm)c
578 662 602 630 546 668

Mean annual air temperature (°C) 7.4 10.7 6.2 9.4 6.0 10.7

Mean annual air temperature range 

(°C)d
17.6 16.8 29.8 14.4 22.8 16.7

Vegetation ANPP (g C m-2 yr-1) 1.7 1.1 0.9 1.3 0.9 1.2
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(historical 

period)e
TNPP (g C m-2 yr-1) 3.3 2.2 1.7 2.5 1.7 2.2

247 a Climatic analysis was performed on longer periods than the experimental periods: 1956-1987/1929-2008/1944-

248 2003/1856-2006/1956-1999/1929-2008.

249 b Köppen-Geiger climate classification (Kottek et al., 2006).

250 c Mean values over the bare-fallow period. Reference evaporation was estimated based on the Thornthwaite (1948) 

251 equation.

252 d Mean difference in temperature between the warmest and the coldest month of the year.

253 e Estimates of aboveground (ANPP) and total (TNPP) net primary productivity based on the precipitation levels of 

254 each site, as provided by Del Grosso et al. (2008) for non-tree dominated systems.
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255

256 (Fig. 1 here)

257
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259 2.3. Study design

260 Model simulations were carried out independently by each modelling team (which included 

261 model developers and users, and field experts of soil C dynamics) on commonly formatted data 

262 using their own approaches and technical background. Harmonising calibration techniques was 

263 out of scope of the inter-comparison exercise. The SOC outputs from each model were compared 

264 to data from the study sites before and after calibration. Calibration mostly focussed on 

265 parameters related to substrate use, C partitioning among pools and decomposition processes. 

266 However, rate equations for C pools often required the calibration of a large number of 

267 parameters, which are at the core of key processes responsible for differences among models in 

268 the understanding and interpretation of SOC processes (number of pools and type of 

269 decomposition kinetics used to represent C turnover). For the uncalibrated (blind test, Bln) 

270 simulations, the models were run for each site using the available data of weather, soil texture 

271 and bulk density (model inputs), and the initial SOC values, with no parameter adjustment other 

272 than initialisation based on historical management and land use. With this information, Bln 

273 reflects the ability of the models to simulate SOC decomposition after plant inputs has stopped, 

274 using the original parameter settings and calibration, simply by removing their components 

275 related to new C inputs. At this stage, default values were mostly used for all decomposition 

276 rates. C-pool fraction sizes were adjusted based only on C-input estimates from the information 

277 on land use prior to the establishment of the bare-fallow treatments.

278 After the blind simulations were completed, SOC measurements taken during the bare-

279 fallow period were supplied to each modelling group for the calibration work. Details on 

280 management (tillage), which may have influenced the SOC dynamics before the bare-fallow 
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281 treatment, were also provided to improve the initialisation process. It was requested that each 

282 modelling group adjust soil parameters to improve the simulations based on the observed data, 

283 using whatever techniques they normally use, and to document the changes. At this stage, 

284 models were split into two categories: a) with spin-up (SP) and b) without spin-up (NS). Both SP 

285 and NS models require an initial estimate for SOC content and/or an adjustment of parameters 

286 towards balancing the split between soil C pools. The two classes of models work in the same 

287 way using information about plant residues and root growth that provide the C substrate for SOC 

288 dynamics simulations. NS-type models (e.g. DNDC and RothC) use the initial measured SOC 

289 value, where estimates of C inputs in the background of model runs are obtained with various 

290 methods (e.g. Keel et al., 2017) in order to initialise the SOC pools, which can sometimes be 

291 calculated analytically. In order to keep the legacy effect of previous land-use and past 

292 management practices, in SP models (e.g. DayCent) SOC pools are routinely initialised by 

293 running the models to achieve their own states of equilibrium, where change in C stocks is 

294 minimised (e.g. Lardy et al., 2011; Huntzinger et al., 2013). However, if soils are not at 

295 equilibrium (e.g. after a sudden disturbance), spin-up runs may not always be valid with the risk 

296 of starting simulations with biased initial values (e.g. Wutzler and Reichstein, 2007; Nemo et al., 

297 2017) but a fuller discussion on the “spin-up problem” (Reynolds et al., 2007) is not within the 

298 scope of this paper. Carbon inputs are usually estimated through sub-models calculating total net 

299 primary production (TNPP). As it was not possible to derive TNPP data from local sources at 

300 each study-site, TNPP estimates were obtained at each site (Table 2) based on precipitation 

301 levels according to the approach of Del Grosso et al. (2008). In this way, the creation of the 

302 TNPP database used by modellers was based on an identical methodology, which is widely used 
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303 worldwide, though the uncertainty in quantifying productivity across ecosystems is highlighted 

304 (e.g. Wieder et al., 2014).

305 The distinction between SP and NS models can appear somewhat arbitrary as virtually any 

306 model with more than one C pool could be spun-up or, alternatively, a function (or analytical 

307 procedures) can be used to make an initial pool partition. We refer here to common modelling 

308 practice, as performed by users within the constraints imposed by packaged (operational) 

309 solutions of SOC models (for which spin-up procedures may be operationally more difficult) or 

310 relying on the procedure suggested by previous experience. For instance, although spin-up 

311 equilibrium runs are documented for RothC (e.g. Herbst et al., 2018), it is common practice to 

312 initialise three C pools for subsequent simulations through an internal routine over 10,000 years, 

313 with limited model inputs including clay fraction and weather, and a pre-defined ratio of 

314 decomposable over recalcitrant plant material (e.g. Xu et al., 2011; Weihermüller et al., 2013). 

315 Modellers were left to choose one option or the other when both were available for use in their 

316 models (e.g. C-TOOL). About 40% of the models (10 models) in the study did not use SP 

317 processes and set the initial SOC values manually (using the initial SOC observation).

318 For each model category (SP and NS), two main modelling approaches were identified: 

319 site-specific versus generic (single set of parameter values for all the sites). For the site-specific 

320 approach, at each site users informed models about historical management practices and land 

321 uses such as grassland or cropland (with both SP and NS models), SOC decomposition 

322 parameters (only for SP models) or the partitioning of C among different soil pools (only for NS 

323 models). With the generic (not site-specific) approach, model calibration was not applied 

324 separately for each experimental site but simultaneously on all available multi-location datasets 
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325 to find for each model parameter values that would be applicable at regional scales. In this case, 

326 multi-location calibration was used to capture generic model parameter values so that the models 

327 could still perform well across a range of climate and management conditions in Europe 

328 (Dechow et al., 2019). Site-specific and non-site-specific approaches were variously combined 

329 with factors affecting model initialisation/parameterisation (Table 3) to create simulation 

330 scenarios Gen (generic), Mix (mixed) and Spe (specific).

331 Scenario Mix uses a site-specific approach for the initialisation of C pools with both SP 

332 and NS models and, for each model, a unique calibration of decomposition parameters. Fixed 

333 decomposition rate parameters (but not rate modifiers) were maintained at a constant value 

334 throughout all sites (e.g. the maximum passive pool decomposition rate in M25 was set to 0.003 

335 yr-1 at all sites), while site-specific climate and soil textural conditions provided supplementary 

336 factors driving the actual decomposition curve (likely in the uncalibrated blind simulations as 

337 well). In scenario Spe, decomposition rates could be changed separately at each experimental 

338 site, which constrained the modelling to a fitting exercise, but made it possible to explore the 

339 spatial variability of model parameters. Scenario Gen ignored base histories of each site: arable 

340 crops and grasslands were not distinguished, past climate conditions were disregarded, and this 

341 translated into discounting the variability in the TNPP levels among sites affecting the starting 

342 SOC level.

343

344 Table 3. Modelling approaches and simulation scenarios for spin-up and no spin-up models 

345 (Gen: generic; Mix: mixed; Spe: specific).
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Calibration 

scenariosaModel category Factors Approaches

Gen Mix Spe

Site-specific X X
Historical management/land use

Non-site-specific X

Site-specific X

Spin-up (SP) 

based models 
Decomposition processes

Non-site-specific X  X

Site-specific X X
Partitioning of C pools

Non-site-specific X

Site-specific X

No spin-up (NS) 

based models 
Decomposition processes

Non-site-specific X  X

346 a The term ‘generic’, which refers to calibration, here means ‘ubiquitous’ or ‘universal’, since the aim of any model 

347 is to work well under all conditions, without the need to adjust decomposition coefficients. In this case, the model 

348 correctly represents the main processes and integrates the main factors to accurately simulate the C cycle. The 

349 ‘specific’ calibration, which aims at improving the model performance, implicitly suggests an incomplete 

350 knowledge of the SOC turnover. The ‘specific’ calibration allow exploring the spatial variability of model 

351 parameters, but this amplitude (which is not discussed or reported here) may indicate the extend of degree of the 

352 knowledge gap in soil processes (i.e. model parameters might need a huge adjustment across sites)

353

354 Twenty-six modelling teams participated in the blind test. At calibration stage, 17 teams 

355 completed scenarios Spe and Mix, and 16 the scenario Gen. Some model packages are set to 

356 restrict access to individual parameter values, which did not allow users to carry out some site-

357 specific scenarios (Mix and Spe). The same outputs were obtained with some models (e.g. 
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358 RothC, DNDC), which run blind and generic simulations with non-specific information like the 

359 previous land-use type (arable crop or grassland) and the historical climate. When results from 

360 the blind test were exactly equal to outputs from Gen scenario, they were not included for further 

361 analysis. Estimated and observed SOC values (Mg C ha-1) were compared at blind test and for 

362 each calibration scenario. The agreement between simulations and observations was evaluated by 

363 the inspection of time series graphs and, numerically, through a set of performance metrics 

364 (Table 4) combining difference- and correlation-based metrics (e.g. De Jager et al., 1994; 

365 Moriasi al., 2007; Confalonieri et al., 2009; Bellocchi et al., 2002, 2010).

366

367 Table 4. Model performance metrics (P, predicted value; O, observed value; n, number of P/O 

368 pairs; i, each of P/O pairs; , mean of observed values; , average of the differences between O D

369 predicted and observed values; SD, standard deviation of the differences between estimated and 

370 observed values).

Performance 

metric
Equation Unit Value range and purpose

RRMSE, relative 

root mean square 

error

(Jørgensen et al., 

1986)

RRMSE = 100·

∑n
i = 1(Pi ― Oi)2

n

O
%

0 (optimum) to positive infinity: the 

closer the values are to 0, the better the 

model performance
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EF, modelling 

efficiency

(Nash and 

Sutcliffe, 1970)

EF = 1 ―
∑n

i = 1(Pi ― Oi)2

∑n
i = 1(Oi ― O)2 -

negative infinity to 1 (optimum): the 

closer the values are to 1, the better the 

model

R2 =
∑n

i = 1(Pi ― Oi)·(Oi ― O)

∑n
i = 1(Pi ― P)2·∑n

i = 1(Oi ― O)2

0 (absence of fit of the regression line) 

to 1 (perfect fit of the regression line): 

the closer the values are to 1, the better 

the model

Coefficient of 

determination 

(R2) of the linear 

regression 

estimates versus 

measurements / r, 

Pearson’s 

correlation 

coefficient of

the estimates 

versus 

measurements

(Addiscott and 

Whitmore, 1987)

r = R2

-

-1 (full negative correlation) to 1 (full 

positive correlation): the closer the 

values are to 1, the better the model

P(t), Paired

Student t-test

probability of

means being

equal

P(t) = Probability( D
SD

n
) -

0 (absence of agreement) to 1 (perfect 

agreement): the closer the values are to 

1, the better the model
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d, index of 

agreement

(Willmott and 

Wicks, 1980)

d = 1 ―
∑n

i = 1(Oi ― Pi)2

∑n
i = 1(|Pi ― O| + |Oi ― O|)2 -

0 (absence of agreement) to 1

(perfect agreement): the

closer the values are to 1, the better the 

model

371

372 2.4.  Multi-model and ensemble assessment

373 We first focussed on the quantification of model-data discrepancies and then assessed the 

374 uncertainty of the individual models in comparison with the multi-model ensemble. The 

375 modelling teams provided deterministic model simulation results according to the protocol 

376 established, which meant that: 1) one run was provided for each site; 2) the spread of model 

377 results due to parameter uncertainty was not specifically addressed. The latter would have 

378 dramatically increased the range of model outputs used within the study and would have 

379 confounded the uncertainty in calibrated parameters with the uncertainty in model structure 

380 (Wallach and Thorburn, 2017). While the uncertainty in model predictions could be due to 

381 parameterisation, model calibration from different users (i.e. ensemble of users within ensemble 

382 of models) cannot be regarded as the solution to estimate uncertainty due to parameterization 

383 (Confalonieri et al., 2016). As well, different calibration techniques do not seem to be primarily 

384 responsible for differences in model performance (Wallach et al., 2020) and the contribution of 

385 the initialisation to the uncertainty in SOC changes can be negligible compared to the uncertainty 

386 related to the model itself and simulated systems characteristics (Dimassi et al., 2018). As 

387 uncertainty could not be associated with any individual simulation, we focussed on the analysis 

388 of model residuals. We documented the variability of the multi-model simulation exercise across 
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389 two stages (blind test and alternative calibration scenarios), while inspecting how the multi-

390 model median (MMM) converged to the observations. We used box-plots to compare the 

391 variability of estimates by different models (with focus on multi-year averages) to the observed 

392 variability, and we represented model ensembles with MMM, which has the advantage to 

393 exclude distinctly biased model members with a disproportionate influence on the mean 

394 (Rodríguez et al., 2019). The advantage of using MMM was established in practical studies in 

395 crop and grassland modelling but also on a theoretical basis (Wallach et al., 2018).

396 We also quantified the relationship among standardised model residuals of SOC, based on 

397 uncalibrated (Bln) and calibrated (Gen, Mix, Spe) simulations. Moreover, we quantified the 

398 relationship between residuals of agro-climatic metrics (annual values): temperature amplitude, 

399 mean maximum temperature and annual precipitation. Arrays of pairwise scatterplots (scatterplot 

400 matrices) were generated with the panel plot option in the R language and environment for 

401 statistical computing (‘panel.smooth’, https://stat.ethz.ch/R-manual/R-

402 devel/library/graphics/html/panel.smooth.html), which also overlaid a local non-parametric 

403 smoother curve (locally estimated scatterplot smoothing) on each plot to give some indication of 

404 trends (after Cleveland, 1979).

405 To explore how MMM varied with the number of models in the ensemble, we performed a 

406 calculation for each z-score transformed MMM, , which was obtained by dividing the 𝑧 =
𝑀𝑀𝑀 ― 𝑂

𝑠𝑑𝑜𝑏𝑠

407 multi-model data deviation from the mean of observations ( ) by the standard deviation of the 𝑂

408 observations (sdobs) (Sándor et al., 2020). A z-score can be placed on the normal distribution 

409 curve to indicate how much it deviates from the mean of the distribution. The units of a z-score 

https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/panel.smooth.html
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/panel.smooth.html
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410 are sd units: zero equals the mean, positive z-scores exceed the mean, and negative z-scores are 

411 less than the mean. A z-score allows comparisons to be made between combinations of models 

412 with different distribution characteristics, i.e. different  and sdobs (used here as practical 𝑂

413 descriptors of time-series central tendency and spread). As illustrated in Fig. 2, different sites 

414 occupy distinct zones in the sdobs versus  space. Low variability and low mean SOC 𝑂

415 observations were found at Askov (S1, S2), Grignon (S3) and Utuna (S6). The variability was 

416 higher at Rothamsted (S5) and Versailles (S7), while the mean was the highest at Kursk (S4). 

417 None of the site occupies the upper right quadrant, i.e. high variability and high mean.

418

419 (Fig. 2 here)

420

421 We calculated z-scores for all possible combinations of sets of k out of n=26 models (k=2, … n). 

422 The minimum number of models providing plausible estimates at each site was that for which 

423 the z-scores lay within the ranges -1 to +1 or -2 to +2. The arbitrary choice of these thresholds 

424 was due to a conventional rule, for which values falling within 1 and 2 times the standard 

425 deviation approximate the 68% (|z|=1) and 95% (|z|=2) confidence limits of a normal 

426 distribution, respectively (after Ehrhardt et al., 2018). R software (https://cran.r-project.org) was 

427 used for statistical analysis and graphical visualization.

428

429 3. RESULTS

430 3.1.  Evaluation of SOC dynamics

https://cran.r-project.org
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431 Fig. 3 show the range of model results (represented by the shaded area) for each scenario and the 

432 multi-model median (MMM hereinafter) together with the measured values. In general, the 

433 greatest spread of model results was found under the Bln scenario, followed by the Gen scenario. 

434 In some cases, the multi-model median of Bln and Gen scenarios overestimate observations (e.g. 

435 at S5, S6 and S7 sites). As expected, the tightest range of model results (simulation envelope) 

436 was found with site-specific simulations. MMM simulations of Spe came closest to the 

437 observations. All the MMM lines were remarkably close to the observations at sites S1, S2 and 

438 S3 (Fig. 3), despite the much wider spread of the individual simulations, while the MMM at 

439 other sites differed more substantially from the observations (e.g. S5, S6 and S7, Fig. 3). Overall, 

440 most of the simulations (Bln, Gen and Mix) tended to overestimate the amount of SOC (e.g. S5, 

441 S6 and S7, Fig. 3).

442 SOC stocks decreased under all bare-fallow sites during the investigated period. At S1, 

443 S2, S3, S4 and S6 (Fig. 3) sites, the decrease in SOC stock was from minimum to moderate 

444 whereas at S5 and S7 (Fig. 3) SOC loss in the top 0.20 m was more rapid, with initial SOC 

445 halved during ~30 years. The decay tended to be more rapid in the first years and then the rate of 

446 loss decreased (e.g. at S7 site between 1929 and 1962, Fig. 3).

447 (Fig. 3 here) 

448

449 3.2.  Ensemble performance by site

450 Fig. 4 shows a high variability in the multi-model spread of responses at different sites. The 

451 results show that Kursk (S4) soil, which stored the highest amount of SOC, 91.8 Mg C ha-1, was 

452 approximated well by the models, mainly with calibration scenario Spe, with a MMM value of 
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453 90.1 Mg C ha-1. For calibration scenario Gen, some underestimation is apparent (84.2 Mg C ha-

454 1). Site S4 had the narrowest variability in the measured values, whilst the Bln simulation and 

455 calibration scenario Gen had the highest variability. Measured SOC was well estimated at S1, S2 

456 and S3, including with blind simulations, despite several outlying dots, mainly with Bln and Gen 

457 scenarios. The MMM tended to overestimate the measured SOC at S5 (42.5 Mg C ha-1) and S7 

458 (33.0 Mg C ha-1) with some scenarios: Bln, S5: 56.7 Mg C ha-1, S7: 44.49 Mg C ha-1; Mix 

459 scenario, S5: 50.0 Mg C ha-1, S7: 35.5 Mg C ha-1; Gen scenario, S5: 52.1 Mg C ha-1, S7: 40.0 Mg 

460 C ha-1. On the other hand, the MMM of Gen scenarios showed the closest values to the observed 

461 median at S5 and S7 (Fig. 4.).

462 Overall, with some exceptions, the MMM of calibrated runs were within the range of the 

463 25th and 75th percentiles of observations. The Spe scenario provided the best MMM estimation.

464 (Fig. 4 here) 

465 3.3. Individual models versus multi-model ensemble

466 The scatterplot analysis for both each model and the MMM shows that SOC estimates were 

467 improved when moving from the Bln runs (Fig. 5) to the calibration Spe scenario (Fig. 6). Model 

468 performances for calibration Mix and Spe scenarios also showed better simulation results than 

469 the Bln simulations (see also Appendix A and Appendix B). Considering all the sites and years, 

470 the predictions of some of the models (e.g. M02, M13, M22, M24 and MMM) were close to the 

471 observations even for the blind level simulations (correlation coefficient >0.9, Fig. 5). 

472 Simulations improved even further (correlation coefficient >0.98 for half of the models, Fig. 6) 

473 under scenario Spe.
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474 All the correlation coefficients of the simulations by other models also considerably improved 

475 with the site-specific data and got closer to the 1:1 line. For instance, for M31, the spread of 

476 simulation data in the blind simulations (Fig. 5) was mainly caused by incorrect initial SOC 

477 estimates for the different sites. When the model was re-run with correctly set initial SOC 

478 amounts (Fig. 6), the subsequent drawdown of SOC over the bare-fallow period was estimated 

479 fairly well.

480 Even with blind simulations, MMM gave results in agreement with the observations (R2=0.94). 

481 This level of agreement was only exceeded by M22 (R2=0.95) and approached by M02 

482 (R2=0.92) and M13 (R2=0.90). The MMM simulations continued to give the closest agreement 

483 with the observations even under the full site-specific calibrations (R2=0.99) with several other 

484 models performing equally well (i.e. M02, M05, M09, M13, M23, M26). Overall, with some 

485 specific information for model calibration, many models did remarkably well in reproducing the 

486 observed patterns of SOC loss over time.

487

488 (Fig. 5 here)

489

490 (Fig. 6 here)

491

492 3.4. Analysis of model residuals

493 The plots of the discrepancy between MMM and observations (Fig. 7) as a function of time 

494 shows a limited scatter (within ±1) at each site. While Bln, Gen and Mix scenario overestimated 

495 the SOC decomposition rate at Kursk (where the highest SOC content was measured), the 
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496 standardized residuals were around zero at Grignon and both Askov sites during the whole of 

497 experimental period. However, the departure from observations may increase over time 

498 especially with Bln and Gen scenarios at some site (e.g. at Rothamsted, Ultuna, Versailles) 

499 indicating that models underestimate decomposition rates after a few years/decades.

500

501 (Fig. 7 here) 

502

503 Model residuals displayed one versus the other can help establish relationships by exploring the 

504 correlation of residuals from different modelling scenarios, both among them and with external 

505 drivers. Residuals of blind test and calibration scenarios calculated from MMM (Fig. 8) and 

506 individual models (Figs. B1-26 in the supplementary material) were correlated with the mean 

507 annual climate indicators such as the precipitations, maximum temperatures and temperature 

508 amplitudes. When considering the MMM, residuals of Bln were strongly correlated with Gen 

509 (r=0.90) and with Mix (r=0.59) residuals, but less with Spe (r=0.25) residuals, indicating a higher 

510 similarity of the first three approaches, while residuals of Spe were more correlated with those of 

511 Mix (r=0.65) than of Gen (r=0.39).

512 The most prominent effect of annual climate indicators was found at the blind test stage, whose 

513 residuals were negatively correlated with precipitation (r=-0.17) and positively correlated with 

514 Tmax (r=0.41). Combinations of high maximum air temperature and low precipitation values 

515 may thus generate greater errors in blind SOC simulations. Calibration scenario Gen did not 

516 show significant correlations to climate indicators. However, calibration scenario Spe and Gen 

517 had opposite correlations. The annual precipitation positively correlated with Spe residuals 
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518 (r=0.26) and with scenario Mix (r=0.15). Annual maximum temperature and scenario Spe 

519 negatively correlated (r=-0.10). These correlations with climate indicators hint that the site-

520 specific calibration (scenario Spe) is more sensitive to precipitation than to maximum 

521 temperatures. On the contrary, Bln and Gen simulation residuals showed greater sensitivity to 

522 maximum temperatures.

523 Residuals of individual models were approximately equally influenced by precipitation and 

524 temperature drivers, but with differences among models and scenarios (Figs. B1-26 in the 

525 supplementary material). In most of the cases, model residuals were positively correlated with 

526 annual maximum temperatures and negatively correlated with annual precipitation totals (e.g. 

527 M03, M09, M18, M22 for Bln). In some cases, e.g. M09 (Fig. B8 in the supplement), the 

528 correlations among SOC residuals for different scenarios were both positive and negative (r 

529 values ranged from -0.043 to 0.36), and even the effect of climate indicators were different (e.g. 

530 for Tmax, r values ranged from -0.096 to 0.65). In other cases, e.g. M25 (Fig. B18 in the 

531 supplement), SOC residuals were more similar to each other (r-values 0.17-0.80) and the effect 

532 of precipitation and temperature drivers was often important (with r>0.4). It is interesting in this 

533 respect that the Spe residuals had near-zero correlations with climatic drivers, showing a lesser 

534 influence of these factors on model results with this scenario, whereas the Bln scenario showed 

535 some correlations with Tamp (r=0.13), Tmax (r=-0.44) and precipitation (r=0.40). For M25, Gen 

536 scenario residuals (Fig. B18 in the supplement) appeared unrelated with precipitation (r-value 

537 near zero), but not with temperature amplitude (r=0.50) and maximum air temperature (r=-0.56).

538
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539 (Fig. 8 here) .

540

541 3.5. Minimum ensemble size

542 We attempted to identify the minimum number of models required to obtain reliable results for 

543 Bln and calibration scenarios Mix, Spe and Gen (Fig. 9 and Appendix C-E). We observed that 

544 there could be large differences in the z-scores obtained across sites with different ensemble sizes 

545 and scenarios. Overall, Bln is characterised by greater z-scores than the calibration scenarios. 

546 Our analysis suggests that the ensemble size could be reduced to four models (or even fewer) at 

547 S3, S6 and S7. For the other sites (e.g. S4), only ensemble sizes of at least 9-10 models reduced 

548 z-scores to within the range from -2 to +2, but this number should be raised to 20 or higher to 

549 comply with the most stringent criterion of z=|1|. A minimum ensemble size of 9-10 models was 

550 also identified with Gen at S4 (Fig. 9), while with Mix and Spe scenarios the number of models 

551 could be reduced down to 7 and 3, respectively (up to about 14 [Gen], 8 [Mix] and 4 [Spe] to 

552 comply with z=|1|) (Appendix C-E).

553

554 (Fig. 9 here) 

555

556 4. DISCUSSION

557 4.1.  Scenarios of ensemble SOC estimates

558 For Bln, Mix, Gen and Spe scenarios, the overall differences between the simulated and the 

559 observed first-year SOC values were −0.46, +3.49, +2.40 and +1.92 Mg C ha-1, respectively, for 
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560 the NS models, and +0.58, -0.29, +0.95 and -0.12 Mg C ha-1, respectively, for the SP models. 

561 Despite manually setting the initial SOC values (magnitude of first SOC observation for the 

562 simulation period), the NS models mostly overestimated SOC content in the initial year of the 

563 model run. In first-year estimates of the calibrated (mainly with Spe and Mix scenarios), SP 

564 models deviated less from observations than NS models that overestimated SOC stocks for the 

565 first year with the exception of M25 (+8.4 Mg C ha-1 for Gen), M29 (+18.6, +21.1 and +23.7 Mg 

566 C ha-1 for Spe, Gen and Mix, respectively) and M31 (+25.2 Mg C ha-1 for Gen). In the case of 

567 M25, the model was run with a generic grassland spin-up (i.e. 7,000 years), which was applied to 

568 all sites. Thus, a generic history was simulated without considering the cropping history at each 

569 site. This spin-up protocol affected the simulated SOC, showing the poor ability of Gen scenario 

570 to produce results consistent with observations, which questions the practicality of spin-up 

571 processes under generic calibration. With M31, there was a greater difference between simulated 

572 and observed SOC values in the initial simulation year and the model gave results that did not 

573 correspond to the observations at all sites (Appendix F), especially under the Bln and Gen 

574 scenarios. Though M31 used the initial SOC observation as default parameter, it failed to 

575 reproduce the LTBF dynamics between sites because of large differences in C input to the soil 

576 from the former vegetation during the spin-up period. Consequently, the starting points of the 

577 LTBF simulations differed greatly from the observations, which were overestimated at S1, S2, 

578 S3 and S6, and underestimated at S4. Overall, Mix and Spe calibrations showed better 

579 performance indices than the Gen scenario (Appendix F). We note, however, that M13, for 

580 which the SOC pool sizes (humads and humus) were generically calibrated across sites, 

581 produced low RRMSE for Gen (5.7%).
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582 The improved calibration knowledge obtained with the site-specific information also improved 

583 model accuracy. Moving from Bln (with knowledge of weather and soil texture, historical land 

584 use and management, and initial SOC; section 2.3) to the Gen scenario, we reproduced SOC data 

585 in a number of European bare-fallow experimental sites with a single set of calibrated, regional-

586 scale parameter values (regardless of the possible soil, climate and past land-use dissimilarities 

587 between different sites). According to performance indicators in Appendix F, in the Bln 

588 simulations the NS models performed better than the SP models. For instance, average RRMSE 

589 and EF were 19.44% and 0.60, and 26.94% and 0.24, for NS and SP models, respectively. 

590 Compared to the Bln scenario, the discrepancy between the measured and estimated SOC values 

591 under the Gen scenario was slightly reduced with NS models and increased with SP models. 

592 Multi-site calibration can be characterised by lower uncertainty than site-specific calibration, 

593 because more data contribute to the calibration process (e.g. Minunno et al., 2014; Ma et al., 

594 2015). The availability of a variety of detailed data from multiple sites thus offers the possibility 

595 of a genuine multi-location calibration of the model, assuming that a single calibration across 

596 sites is appropriate. The limit of the Gen scenario calibration was that it did not make it possible 

597 to explore the spatial variability of model parameters. The latter was done with scenarios Mix 

598 and Spe, for which a basic requisite is that model parameters are not hard coded but 

599 configuration files are left open to the users. From Gen to Mix, parameters describing initial 

600 values of each pool were determined separately for each site. Moving from Mix to Spe, the 

601 decomposition parameters became site-specific. Hence, modellers needed to invest increasingly 

602 more knowledge (and more time-demanding calibration effort) than in Gen. Under these 

603 conditions, the improvement of simulations in SP models was evident (up to 70% for some 
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604 indicators, e.g. RRMSE and EF). On the contrary, NS models only had a slight improvement in 

605 accuracy of simulations from Bln (RRMSE=21.5%; EF=0.58) to Mix (RRMSE=18.6%, 

606 EF=0.55) or Gen (RRMSE=20.5%; EF=0.45). In our analysis, the two types of models (NS and 

607 SP) appear to be suitable for different sets of data. NS-type models, in most cases, can perform 

608 well even when data are limited to climate, initial C and historic land use, while SP models 

609 generally benefit from the availability of more detailed data. All metrics related to the 

610 performance of the SP models were improved with calibration. There were some differences in 

611 model performance among the sites, but site-specific soil or climatic conditions cannot easily 

612 explain such differences.

613 Overall, across the seven LTEs and using simulated and observed SOC data at the end of the 

614 experimental period we observe that the greatest and least differences from observations were 

615 approximately +14.3% with Bln and +2.2% with Spe (Fig. 10). The Gen scenario achieved 

616 almost half the error (+8.9%) of is closest competitor, i.e. the Bln scenario. More than one-third 

617 of the Bln-scenario error is achievable with the Mix scenario (+4.0%).

618

619 (Fig. 10 here) 

620

621 This study has shown that it is difficult to define an a priori criterion that could be used to select 

622 a subset of models that would perform better than others would. In terms of the minimum 

623 number of models required to obtain reliable results, our study indicates that the suggested 

624 minimum ensemble size (~10 models) proposed by Martre et al. (2015) for crop growth could be 

625 a reference also when model ensembles are implemented to blindly simulate SOC in bare-fallow 
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626 soils, which can be reduced down to 3-4 models with a site-specific calibration. These sizes are 

627 lower than that found by Sándor et al. (2020) to provide reliable C-flux estimates in croplands 

628 and grasslands (i.e. ~13 models). While the current study applied the same methodology as 

629 Sándor et al. (2020), but as the present study focuses on one output variable only, SOC, 

630 evaluated in simplified systems (bare-fallow soils), its relative ease of simulation offers great 

631 advantages for scenario analyses in the absence of vegetation cover and plant residues, nor 

632 farming practices (only occasional tillage operations occurred at some sites and were considered 

633 by models which can simulate this option). This is reflected in the several z-scores within the 

634 range of -2 and +2, as obtained with a limited number of models, showing that reduced ensemble 

635 sizes can satisfactorily estimate the SOC content in bare-fallow systems, mainly when site-

636 specific calibration is possible. However, our analysis of the Russian site (S4), which had low 

637 observed variability and high mean (sdobs=6.9, =91.8 Mg C ha-1), is challenging because it 𝑂

638 showed that model ensembles that are too small might not always guarantee sufficient accuracy 

639 in SOC estimates of C-rich soils. An application to the peatlands located on the Mid‐Russian 

640 Upland (e.g. Shumilovskikh et al., 2018) should thus be considered with caution.

641

642 4.2.  Possibilities for model inaccuracies

643 We presented an approach that uses a correlation matrix (with graphical representation) to 

644 account for possible correlations between Bln, Mix, Gen and Spe residuals and, additionally, 

645 climatic factors (mean air temperature amplitude, maximum air temperature and precipitation 

646 total). This residual analysis helps find correlations among alternative scenarios, which might 

647 indicate comparable scenarios in which error propagation within models is similar, though the 
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648 way of error propagation cannot be easily retrieved from the correlation matrix. This is the case 

649 of Bln, Gen and Mix, whose residuals are highly correlated, while the weak correlations between 

650 Spe and other scenarios highlight the distinct behaviour of the latter. This analysis can also help 

651 find correlations between the SOC output and external drivers, and thus suggest additional 

652 predictors that may need to be included in the models (e.g. Medlyn et al., 2005). This need 

653 emerged especially when specific models were run under Bln, Gen and Mix scenarios, for which 

654 some correlations (r>|0.4|) were obtained between model residuals and drivers of thermal and 

655 moisture conditions. A weaker but significant correlation (r=0.26, p=0.02) was also obtained 

656 between Spe residuals and precipitation. These correlations indicate some limitations related to 

657 the response functions of SOC decomposition to soil temperature and soil moisture, though the 

658 relative uncertainties of our model ensemble are attenuated by the presence in the models of 

659 physical and chemical processes that explain the intra- and inter-annual variability of SOC. We 

660 add that such biophysical conditions affect the microbial activity (e.g. Blagodatskaya and 

661 Kuzyakov, 2008; Guenet et al., 2010; Wutzler and Reichstein, 2013), and care should be taken 

662 when extrapolating our results over long time frames (especially without locally calibrated 

663 models, Fig. 7) if no corroborating field evidence for long-term decay rates can be obtained (e.g. 

664 on how models are dealing such situations in which microbes become increasingly C limited as 

665 no new C input by plants occurs; Kuhry and Vitt, 1996).

666

667 5.      CONCLUSIONS AND FUTURE DIRECTIONS

668 This paper on SOC modelling offers a tentative answer to the questions about: (i) whether and to 

669 what extent an ensemble of models performs better than single models, (ii) the minimum 
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670 ensemble size that is required to reduce the error below a given threshold, and (iii) the set of data 

671 required to prepare and substantiate ensemble estimates. This study presents a framework for 

672 interpretation of model performance and uncertainties obtained with a set of process-based 

673 biogeochemical models (individually and in an ensemble) simulating soil C contents in bare-

674 fallow experimental systems at a variety of European sites. One of the features of SOC 

675 modelling today is the huge amount and variety of models available. Although our analysis did 

676 not take into account all sources of uncertainty (e.g. the influence of the unique choices made by 

677 modellers), it enabled the integration of several modelling teams into an ensemble protocol. 

678 Classifying and comparing different approaches have revealed great model diversity, and is the 

679 basis for the development of dedicated ensemble protocols. In this model inter-comparison, the 

680 need to accommodate challenges experienced by modellers (including C pools of different 

681 nature, and optional initialisation and calibration procedures) was reflected in the co-creation 

682 (with modellers and data providers) of alternative calibration scenarios (Mix, Gen, Spe). As far 

683 as we are aware, no previous multi-model inter-comparison studies have examined differences in 

684 such calibration scenarios or differences between models with or without spin-up.

685 In our study, we did not aim to identify the best model(s) for simulating SOC dynamics for bare-

686 fallows and no probability of success was assigned to prove the suitability of using one model 

687 rather than another. Overall, we showed that a calibration scenario with generic system 

688 knowledge was adequate for providing sufficiently reliable output, but additional site-specific 

689 knowledge can further improve results under certain circumstances. This is operationally 

690 relevant because the effort required to gather calibration data might no longer be feasible for 

691 modelling scenarios moving from single sites to increasingly larger spatial scales. Site-specific 



This article is protected by copyright. All rights reserved

692 calibration could help refine model estimates. However, geographical locations have 

693 characteristics (e.g. soil and climate conditions, past history) that require specific model 

694 structures and local optimisation, and the application of models may be limited by the ability to 

695 provide representative parameter values. Soil-C model inter-comparisons including more models 

696 and experimental data from other regions should be continued to improve our ability to simulate 

697 biogeochemical processes with acceptable accuracy. Additional assessments are also 

698 recommended to complete the analysis of model behaviour in the long term (like thousands of 

699 years) with constant inputs. While the various models evaluated here did not include all available 

700 modelling approaches used to simulate soil C dynamics, the present model inter-comparison was 

701 large compared to other studies. As such, it is a distinct improvement over previously published 

702 quantitative approaches because it represents a reasonable sub-population of common and 

703 current approaches. In this, we offer a method to allow a broad ensemble of models to be 

704 implemented using existing datasets and current modelling practices. Overall, this multi-model 

705 ensemble sets a precedent for key progress in soil C modelling because it provides essential 

706 information about SOC modelling and opens a path to a more in-depth analysis of the response 

707 of individual models and their uncertainties against soil and climate drivers. Now that we have 

708 examined SOC decomposition in-depth without the difficulties of C input uncertainties, a similar 

709 modelling study should be conducted on LTEs that examine both plant derived C inputs as well 

710 as C inputs from manures and other organic materials recycled in agroecosystems. In fact, under 

711 field conditions, the amount of C input is not only an important factor driving the changes in 

712 SOC stocks (including the changes due to tillage), but the amount of C input also drives the 

713 mineralization rate of the SOC (Mary et al., 2020). How simulation models compare under such 
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714 conditions is important for improving our ability to evaluate and achieve climate C goals. With 

715 increasing availability of data and computational resources, there are many opportunities for the 

716 SOC modelling community to enrich its offering and to keep up with evolving methodologies, 

717 which would significantly increase transparency of the underpinning science and modelling 

718 practice. A number of recent actions are ongoing under the guidance of international initiatives 

719 such as the European Joint Programme (EJP) on Soil (https://projects.au.dk/ejpsoil). Started in 

720 2020, the EJP-Soil is undertaking a detailed inventory of models and all available data sources 

721 (e.g. world soil maps, satellite images, downscaled weather data), and appears as an ideal arena 

722 to facilitate the exchange of information and to further explore SOC model developments and 

723 practice.
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