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Accuracy of ancestral state 
reconstruction for non-neutral 
traits
Barbara R. Holland1 ✉, Saan Ketelaar-Jones1, Aidan R. O’Mara2, Michael D. Woodhams1 & 
Gregory J. Jordan1

The assumptions underpinning ancestral state reconstruction are violated in many evolutionary 
systems, especially for traits under directional selection. However, the accuracy of ancestral state 
reconstruction for non-neutral traits is poorly understood. To investigate the accuracy of ancestral state 
reconstruction methods, trees and binary characters were simulated under the BiSSE (Binary State 
Speciation and Extinction) model using a wide range of character-state-dependent rates of speciation, 
extinction and character-state transition. We used maximum parsimony (MP), BiSSE and two-state 
Markov (Mk2) models to reconstruct ancestral states. Under each method, error rates increased with 
node depth, true number of state transitions, and rates of state transition and extinction; exceeding 
30% for the deepest 10% of nodes and highest rates of extinction and character-state transition. Where 
rates of character-state transition were asymmetrical, error rates were greater when the rate away 
from the ancestral state was largest. Preferential extinction of species with the ancestral character 
state also led to higher error rates. BiSSE outperformed Mk2 in all scenarios where either speciation or 
extinction was state dependent and outperformed MP under most conditions. MP outperformed Mk2 
in most scenarios except when the rates of character-state transition and/or extinction were highly 
asymmetrical and the ancestral state was unfavoured.

Ancestral state reconstruction is a fundamental tool for exploring evolution because it provides estimates of 
otherwise unobservable processes1. Given a character – any heritable trait for which there is a reasonable hypoth-
esis that all states are homologous – ancestral state reconstruction estimates character states for both recent and 
deep time ancestors. Ancestral state reconstruction methods combine information about evolutionary relation-
ships from a phylogenetic tree with the observed state of a character for each tip (each terminal node, often an 
extant species). Many ancestral state reconstruction methods have been developed, including parsimony-based 
methods, which minimise the total number of changes of state across the tree, and a range of likelihood-based 
approaches that use stochastic Markov models of character change. Generally, ancestral state reconstruction is 
performed after a phylogenetic tree has been constructed, the one main exception to this being Bayesian phylo-
geography methods that attempt to co-estimate the tree and the ancestral geographical state2. Almost all methods 
for ancestral state reconstruction assume that the given tree is congruent with the phylogeny on which the char-
acter evolved3,4, and ancestral state reconstruction is known to be biased in cases where this is not true5.

Most methods of ancestral state reconstruction assume that the character under consideration is neutral, 
and that the evolutionary process has not changed across the phylogenetic tree. Although these assumptions 
make data analysis more straight-forward, they can impact on the accuracy and biological validity of findings6–8. 
Known sources of bias in both phylogenetic tree construction and ancestral state reconstruction include changes 
in rates and processes of evolution across the tree1,9–12, dependence between the state of a character and the like-
lihood of lineage extinction or speciation13,14, evolutionary convergence15–17 and hemiplasy18. In the specific case 
of ancestral sequence reconstruction, recombination19 and substitution-model misspecification20 are also known 
to bias results.

The assumption of neutrality has the important consequence that the estimate of the phylogenetic tree is inde-
pendent of the estimate of ancestral states. However, ancestral state reconstruction is often applied to functionally 
important traits, which are unlikely to be neutral. Such traits are likely to be susceptible to natural selection, and 
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the state of the trait may influence the probability of extinction or speciation. Systems that have undergone direc-
tional evolution – a non-random shift in the distribution of traits over time21 – and/or systematic extinction – in 
which species with one state go extinct at a greater rate than species with other states – are particularly problem-
atic because they may create systematic biases. These potential biases are likely to be important for traits influ-
enced by substantial and widespread temporal changes in environmental variables such as atmospheric CO2

22, 
temperature23, predominant vegetation type24,25, or aridity. Similarly, radiations of major groups of organisms 
(e.g. multicellular life, terrestrial vertebrates, mammals, angiosperms, as well as more local radiations) almost 
certainly induced major changes in the selective regimes for other groups of organisms present at those times. 
Numerous traits have been proposed to influence diversification26,27, this also has potential to bias ancestral state 
reconstruction.

The *SSE (*State Speciation Extinction) models for ancestral state reconstruction aim to overcome some of 
these problems by allowing rates of character-state transition, extinction and speciation to depend on the current 
state of a character28. The original BiSSE model29 dealt with a single binary trait that influenced speciation and 
extinction rates. The MuSSE and QuaSSE models30 provided extensions to multistate and quantitative characters 
respectively. There is some evidence that BiSSE provides better estimates of evolutionary parameters than models 
where character evolution occurs independently of the branching process31. However, the use of BiSSE models to 
test hypotheses of state-dependent evolution has been found to be prone to Type I error in cases where the trait 
considered does not affect speciation or extinction but other traits do32. To cope with this situation, the recently 
developed HiSSE model33 allows for diversification and extinction rates to depend on an unobserved state that 
may be correlated with the observed trait.

The effectiveness of BiSSE and the other *SSE models has been largely investigated with respect to inferring 
diversification dynamics31; their effectiveness for ancestral state reconstruction remains largely untested. There 
are some notable exceptions, the performance of BiSSE for ancestral state reconstruction in the context of testing 
for characters that evolve irreversibly has been examined34 and re-examinations of the BiSSE model in the context 
of reconstructing changes in parity mode in lizards found that ancestral state reconstruction was sensitive to 
model choice, rate heterogeneity, and the estimate of the underlying phylogenetic tree12,35. It is important to note 
that, inferring diversification dynamics (the most common use of *SSE models) cannot be accurate if ancestral 
state reconstruction is inaccurate.

In this paper, we conduct a simulation study to assess the accuracy of common methods of ancestral state 
reconstruction. We exploit the capacity of BiSSE to evolve characters and phylogenetic trees simultaneously, with 
state-dependent rates of character transition, speciation and extinction. In particular, by forcing the character 
state at the root of the tree to have a particular value, we can use BiSSE to generate characters that have undergone 
directional (i.e. non-stationary) evolution as well as systematic extinction. Because the true state of a character 
at each node in the tree is recorded in the trees generated by BiSSE, such trees provide an opportunity to test the 
accuracy of ancestral state reconstruction methods under far more realistic evolutionary scenarios than has been 
previously possible.

We therefore test scenarios with wide ranges of character-state conditional rates of speciation and extinction, 
and rates of character-state transition. The scenarios include ones in which rates of speciation, extinction, and 
character-state transition, range from equal to highly asymmetrical, but the rates are all empirically realistic and 
within theoretical limits on recoverability36. We assess both overall accuracy and how accuracy depends on node 
depth for three different approaches for inferring ancestral states: parsimony, likelihood under the Mk2 model37 
(henceforward Mk2), and likelihood under BiSSE29. Specifically, we address the questions: (1) How much does 
accuracy of ancestral state reconstruction decrease with increasing rates of character-state transition and increas-
ing node depth? (2) Does accuracy decrease with increasing rates of extinction? (3) Is accuracy lower when 
the ancestral state is unfavoured compared to otherwise comparable scenarios in which the ancestral state is 
favoured? This hypothesis is addressed by assessing the impacts of preferential extinction of species carrying the 
ancestral state (selective extinction), preferential transition from the ancestral to the derived state (directional 
evolution) and preferential speciation of the derived state. (4) Does BiSSE outperform maximum parsimony 
and Mk2 under conditions of asymmetrical state-dependent rates of speciation, extinction and character-state 
transition?

Methods
Simulation parameters.  Simulated phylogenetic trees were created using the Binary State Speciation and 
Extinction (BiSSE) model29, in which a tree and a binary character are evolved simultaneously. The initial state at 
the root of all trees was constrained to be 0 (so 0 is the ancestral state and 1 the derived state). The rates of specia-
tion (λ0 and λ1) and rates of extinction (µ0 and µ1) are each defined according to the state of the character, and the 
character changes state between states 0 and 1 at rates q01 (forward) and q10 (reverse).

We created trees with 400 tips for scenarios that included both symmetric and asymmetric rates of extinction 
and character-state transition. We note that Davis et al.31 found that more than 300 tips were required for accurate 
parameter inference with BiSSE models. 500 trees were created for each scenario. Extinction rates (µ0 and µ1) 
were taken from in the set {0.01, 0.25, 0.5, 0.8} (4 × 4 = 16 situations); character-state transition parameters (q01 
and q10) from {0.01, 0.05, 0.1} (3 × 3 = 9 situations); and speciation rates covered five pairs of values {(λ0 = 0.2; 
λ1 = 1.8),(λ0 = 0.5; λ1 = 1.5), (λ0 = 1; λ1 = 1), (λ0 = 1.5; λ1 = 0.5), (λ0 = 1.8; λ1 = 0.2)} (5 situations). This gave a 
total of 720 (16 × 9 × 5) different scenarios.

We constrained the average rate of speciation, (λ0 + λ1)/2, to be one. Rates of character-state transition and 
extinction were then chosen to be biologically reasonable relative to speciation. Rates of character-state transition 
were chosen so that they were high enough to produce non-constant characters in almost all trees, yet not so high 
that ancestral state reconstruction was impossible7. Thus, our modelling restricted λ

q
 to values of at least 10 
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because the accuracy of ancestral state reconstruction at the root is theoretically expected to drop off steeply when 
ratios of character-state transition to speciation rate λ( )q

 are less than 6 for parsimony methods or less than 4 for 
likelihood models36. Previous work has found evidence that in some groups of organisms the rate of extinction 
relative to speciation is close to one38,39, but we set our maximum extinction rate to 0.8; it is difficult to simulate 
trees for higher extinction rates as a large proportion of cases go extinct rather than reach the required number of 
tips.

Simulations were carried out using the function tree.bisse in the package diversitree40 in R41. Our computations 
made use of the Gnu parallel tool42. For each scenario we repeated the simulations until we had 500 trees, i.e. we 
conditioned on the process not going extinct. Overall, we conducted an average of 2565 extra simulations for each 
scenario to get 500 trees. Of the 720 simulation scenarios, 360 have the property that extinction rates µ0 and µ1 are 
strictly smaller than the corresponding state-dependent speciation rates λ0 and λ1, so that clades were expected 
to be constantly expanding. For expanding clade scenarios, the average number of extra simulations required was 
335 and for non-expanding clade scenarios the average was 4794.

For the purposes of simplifying the presentation of results and studying the effect of tree size, we define a set 
of “corner case” parameter settings, having q01 and q10 in {0.01, 0.1}, µ0 and µ1 in {0.01, 0.8} and µi ≤ λi. This gives 
32 parameter settings. For these corner cases, we in addition analysed 100 and 1600 tip trees (using only 200 trees 
per parameter set for 1600 tip trees, to save computation time).

Any trees in which the character was invariant at the tips were excluded from further analysis. Although, it is 
certainly possible to make mistaken inferences about ancestral states in these cases, they are not typically consid-
ered interesting enough to do ancestral state reconstruction on, so we chose to exclude them. On average 13 of 
the 500 generated trees were excluded for this reason (for the 360 expanding clade scenarios the average number 
of trees excluded was 5.3). The worst such parameter setting for expanding clade scenarios excluded 16% of trees 
(for λ0 = 1.8; λ1 = 0.2; µ0 = 0.01; µ1 = 0.01; q01 = 0.01; q10 = 0.1, i.e. with both speciation and mutation strongly 
biased to state 0).

Methods of ancestral state reconstruction.  For each tree we applied three methods of ancestral state 
reconstruction on the simulated character:

	(1)	 Maximum parsimony (MP) using the MPR function from the ape package43. This uses the method of 
Hanazawa et al.44 as modified by Narushima and Hanazawa45.

	(2)	 Likelihood under Mk237 using the functions make.mk2, find.mle (method = “subplex”) and asr.marginal 
from the diversitree package40. This method allows q01 and q10 to differ, but does not allow for state-depend-
ent extinction or speciation. To protect against the find.mle function getting trapped in a local optimum 
we performed optimization from three different random starting conditions. For each random start, the 
parameter estimates for q01 and q10 were initialised to their true values multiplied by a factor between 0.5 
and 1.5.

	(3)	 Likelihood under BiSSE using the functions make.bisse, find.mle (method = “subplex”) and asr.marginal 
from the diversitree package40. The parameter estimates for λ0, λ1, μ0, μ1, q01 and q10 were initialised to three 
different random starting values using the same scheme as described above and subsequently optimized.

Marginal reconstructions of ancestral states (as carried out by asr.marginal for all our simulations) focus on 
one node at a time, they assign probabilities of a node being in a particular state by looking at the relative likeli-
hood of the data when the node is fixed as state 0 versus 1. This is distinct from joint ancestral state reconstruction 
methods which attempt to reconstruct a complete history of transitions.

Assessing the error rates of methods.  We compared the true state (as recorded in the evolution of the 
simulated tree) with the state inferred by ancestral state reconstruction for all internal nodes in each tree. For 
binary characters, Mk2 and BiSSE yield a probability of the node having the state 1, whereas parsimony records 
a direct estimate of state (0, 1 or ambiguous) for each node. To compare the different methods of ancestral state 
reconstruction we used two metrics of error rates. In the first, we converted Mk2 and BiSSE probabilities for 
each node into 0, 1, or ambiguous with this rule: if the probability was greater than 0.7, then the node state was 
assigned as 1, if the probability was less than 0.3, the state was assigned as 0, probabilities between 0.3 and 0.7 
were considered as ambiguous. We then only considered “outright” errors, i.e. if the estimated and true states did 
not match. We refer to this as the quantised score. The second approach directly employed the node probabilities 
for Mk and BiSSE, and error scores of 0 (estimated and true values matched), 0.5 (ambiguous estimate) and 1 
(estimated and true values were different) for MP. For example, if a node was estimated to have a 0.15 probability 
of being in state 0 and the simulated value was truly 0 then this would count as an error of 0.15. We refer to this as 
the raw score. For both approaches, the analyses employed means of the error scores for quantiles of node depth 
per tree, or for parameter setting scenarios.

For the simulations on 400 tip trees, we used logistic regression models – implemented using the glm func-
tion in R41 – to assess the impact of parameters on the probability of errors in ancestral state reconstruction for 
individual trees. The glms had continuous fixed effects for µ0, µ1, q01, q10, and the (natural) log of the true number 
of transitions in the tree, and categorical fixed effects for method (BiSSE, Mk2 or MP) and λ0. λ0 was treated as 
categorical as the effect was not linear. λ1 was not included in the model because its value was determined by the 
value of λ0. The response variable was the presence/absence of errors in the tree (i.e. the outright errors under the 
quantised scoring method). We fit models of the form
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There were models with more interaction terms that gave better AIC scores, but as our prime concern was 
understanding interactions between methods and parameters we preferred to analyse these relatively simpler 
models.

Results
Reconstructions for moderate sized trees (400 tips).  For each of the MP, Mk2 and BiSSE reconstruc-
tion methods, ancestral state reconstruction performed worst for deep nodes in trees evolved under the highest 
rate of extinction of species with the ancestral state (µ0 = 0.8), and the highest rate of character-state transition 
from the ancestral to derived state (i.e. q01 = 0.1) (Figs. 1 and 2). Error rates of shallow nodes (i.e. those near the 
tips) were very low under all scenarios, but the basal 10% of nodes for the worst scenarios had mean error rates 
over 30% (Figs. 1 and 2).

As seen in Figs. 1 and 2, error rates showed asymmetry depending on whether the root node was in the unfa-
voured or favoured state. Thus, error rates were higher when µ0 > µ1 than when µ1 > µ0: i.e. accuracy was more 
affected by extinction of species with the root state than extinction of species with the derived state. Similarly, 
error rates when q01 > q10 were greater than under comparable scenarios when q10 > q01, which implies that evo-
lution favouring transitions to the derived state has a greater impact on accuracy than reversions to the root state. 
Error rates for very deep nodes (e.g. the basal 1% of nodes) were much greater again, roughly twice as great as 
those for the basal 10% of nodes for the same scenario (Supplementary Materials Fig. S1).

For MP in particular accuracy at the deepest nodes was reduced when the ancestral state was unfavoured due 
to both extinction and state-change asymmetry (Fig. 3). This makes sense as MP implicitly assumes that state 
change is symmetrical.

Asymmetry in speciation rates had a bigger effect on the accuracy of Mk2 than MP or BiSSE (Fig. 4). BiSSE 
was usually the most accurate method in scenarios with asymmetric speciation rates; there were scenarios 
(q01 = 0.01) where MP was slightly more accurate, but in these cases both methods were close to 100% accu-
rate. Rates of speciation had an unintuitive impact – many scenarios with asymmetrical rates of speciation (i.e. 
λ0 ≠ λ1) showed lower error rates than related scenarios in which λ0 = λ1. However, this appears to be linked to 
very unequal numbers of states 0 and 1 in the tips under scenarios with asymmetrical speciation: error rates were 
significantly higher when states 0 and 1 were more-or-less similarly represented among the tips than when one 
state dominated (Supplementary Materials Fig. S2).

Figure 1.  Accuracy (based on raw scores) for scenarios with equal rates of speciation (λ0 = 1) and high but 
symmetric rates of character transition (q01 = q10 = 0.1). Note that scenarios below the diagonal (running top-
left to bottom-right) have higher errors rates than those above the diagonal – these are scenarios in which the 
ancestral state is more likely to go extinct.
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Figure 2.  Accuracy (based on the raw scores) for scenarios with equal rates of speciation (λ0 = 1) and high 
but symmetric rates of extinction (µ0 = µ1 = 0.8). Note that scenarios below the diagonal (running top-left to 
bottom-right) have higher errors rates than those above the diagonal – these are scenarios in which transitions 
from the ancestral state are more frequent than transitions to the ancestral state.

Figure 3.  Accuracy (based on raw scores) for the deepest decile, for (left panel) scenarios with λ0 = λ1 = 1, 
µ0 = 0.8 and µ1 = 0.01 and (right panel) scenarios with λ0 = λ1 = 1, q01 = 0.1 and q10 = 0.01. The colour scale 
represents accuracy with greener shades representing higher accuracy, it is normalised separately for the left and 
right panels. Errors rates for MP are noticeably more affected by the q01 and µ0 transition rates than the q10 and 
µ1 transition rates.
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The results based on raw scores were supported by logistic regression models based on presence/absence of 
misidentified nodes in individual trees, i.e. outright errors in the quantised scores (Supplementary Materials S1)). 
For model (1), all main effects were significant (P < 0.001) and all interaction terms were significant (P < 0.05). 
The effect of µ0 exceeded that of µ1. MP’s predicted probability of making an ancestral state reconstruction error 
is more affected by q01 and μ0 than Mk2 or BiSSE (Fig. 5, Supplementary Materials Fig. S3). Mk2’s predicted per-
formance deteriorates fastest with increasing number of transitions (Supplementary Materials Table S1). Figure 5 
shows that different methods are predicted to perform best, in the sense of producing trees with no outright 
errors, for different scenarios. When q01 and μ0 are both low MP does well. For q01 = 0.1 Mk2 has the lowest prob-
ability of errors except for scenarios with many transitions. In the case where q01 and μ0 are both high BiSSE 
performs best.

The performance of the three methods (BiSSE, Mk2 and MP) did not vary greatly for low numbers of tran-
sitions (Fig. 6). However, BiSSE performed better than the other two methods at high numbers of transitions 
particularly when rates of speciation were asymmetrical (Fig. 6).

For analyses with the quantised scores, MP estimates had more ambiguous nodes than BiSSE or Mk2 
(Supplementary Materials Fig. S4, perhaps because relatively arbitrary thresholds (i.e. 0.3 < P < 0.7) were used 
to determine which nodes were considered ambiguous for BiSSE and Mk2. The quantised error rates for BiSSE 
and Mk2 may well be smaller than those of MP under a more relaxed threshold for identifying ambiguous nodes.

Effect of tree size.  Trees with 100 tips had significantly higher error rates (based on mean raw score per “cor-
ner case” scenario) than trees with 400 or 1600 tips (Supplementary Materials Fig. S5(A)), but there was no sig-
nificant difference in the performance ratio among methods. There was little difference in percentage error rates 
for trees with 1600 tips compared to trees with 400 tips (Supplementary Materials Fig. S5(B)). Mean depth of the 
simulated trees increased with number of tips (7.18, 9.22 and 11.09 units for 100, 400 and 1600 tips, respectively).

Discussion
This work has clear implications for ancestral state reconstruction of labile characters and characters under direc-
tional selection. It also has implications for *SSE methods that rely on accurate ancestral state reconstruction to 
infer diversification dynamics. Although maximum likelihood (Mk2), maximum parsimony and BiSSE-based 
ancestral state reconstruction were reliable for both shallow nodes and deep nodes under scenarios with few tran-
sitions and extinctions (Figs. 1 and 2), under high rates of character-state transition and/or extinction error rates 
were high for deep nodes, especially the deepest nodes (Supplementary Materials Fig. S1). For some scenarios, 
error rates approached 50%. Also, characters with high levels of evolutionary lability were difficult to reconstruct 
– error rates increased strongly with the true number of transitions (Fig. 5). These high error rates are important 
because the highest state transition rates used here (q = 0.1) were considerably lower relative to speciation rate 

Figure 4.  Mean accuracy (based on raw scores) for scenarios with unequal rates of speciation (λ0 = 1.8, 
λ1 = 0.2) and low extinction rates (μ0 = μ1 = 0.01). Increasing q01 has a greater impact on accuracy than 
increasing q10.
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Figure 5.  Predictions from a logistic regression model (Model 1) that fit the presence of an incorrect inferred 
state to the categorical main effect of method, the continuous main effects of log(#transitions), µ0, µ1, q01, q10 and 
interaction effects between Method and the other variables. The model was fit to data from 400 tip simulations 
across 500 repetitions of the 144 scenarios where λ0 = λ1 = 1. For predictions μ1= 0.25 and q10 = 0.05. Different 
panels show predictions for different values of µ0..

Figure 6.  Predictions from a logistic regression model (Model 2) that fit the presence of an incorrect inferred 
state to the categorical main effects of method and λ0, the continuous main effects of log(#transitions), µ0, µ1, 
q01, q10 and interaction effects between Method and the other variables. The model was fit to data from 400 tip 
simulations across 500 repetitions of all 720 scenarios. For predictions µ0 = μ1= 0.25 and q01 = q10 = 0.05. 
Different panels show predictions for different values of λ0. Note that λ0 = 1 is the symmetrical scenario where 
λ0 = λ1 (shown in greater detail in Fig. 5), in the asymmetrical scenarios BiSSE outperforms Mk2 and MP.
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than thresholds identified as posing problems for ancestral state reconstruction using maximum parsimony and 
maximum likelihood36. The high error rates observed for both the more basal nodes of the trees and for trees with 
relatively high numbers of transitions are important because many ancestral state reconstruction studies identify 
multiple transitions, including transitions in basal parts of trees (Supplementary Materials Fig. S6).

These simulations indicate that directional evolution and systematic extinction have substantial impacts on 
ancestral state reconstruction, and significant errors may be expected in reconstructing traits that have been 
influenced by substantial and widespread changes in environment. The greater influence of µ0 and q01 than µ1 
and q10 on the average accuracy (Figs. 1–4) and on the presence of errors (Figs. 5 and 6, Supplementary Materials 
Table S1) indicate that error rates were higher when there was preferential extinction of species with the ancestral 
state and/or preferential evolution towards the derived state over reversion to the ancestral state. It makes sense 
that higher rates of reversions (q10) have less effect on accuracy, as such changes will generally occur at shallower 
node depth (because the root state has to change to the derived state before reversions can occur) and shallower 
nodes tend to be easier to accurately infer. Similarly, higher rates of extinction for the derived state will preferen-
tially remove younger clades, and this younger part of the tree should be easier to infer even with reduced sam-
pling. Our results are consistent with studies of experimentally evolved viruses showing that directional selection 
can cause biased ancestral state reconstruction of continuous characters under both maximum parsimony and 
maximum likelihood46.

In terms of raw error rates, BiSSE outperformed Mk2 across all 400 tip scenarios (although the methods 
performed similarly except in cases where speciation was state-dependent). BiSSE had lower error rates than MP 
except for scenarios with low numbers of transitions when overall error rates were very low for all methods. MP 
does well across many of the scenarios we tested with the exception of scenarios where the rate from the ancestral 
to derived state, q01, is high relative to q10 (Figs. 2 and 3). The presence of state-dependent speciation particularly 
effected the accuracy of Mk compared to MP and BiSSE. These results are congruent with Goldberg and Igic34, 
who found that BiSSE tended to perform better at identifying irreversible trait evolution (the extreme case of 
state-dependent rates of character transition) than Mk2. Goldberg and Igic34 did not directly test errors in ances-
tral state reconstruction, also they only used simulations with symmetrical rates of state dependent speciation and 
extinction, and quite low rates of extinction.

The results of our simulation study quantify the error rates of common ancestral state reconstruction methods 
under the range of biologically reasonable scenarios. These error rates were uniformly low for internal nodes near 
the tips (<1% across all scenarios for the two shallowest deciles). They were also low for nodes of intermediate 
depth (<2% across all scenarios for all but the deepest two deciles) when state transition and extinction rates were 
all low to moderate ( ≤ .q 0 05 and μ ≤ .0 25, noting that this is relative to fixed speciation rates of 1). However, 
for the deep nodes in the tree, error rates were moderate to high for all methods, especially when rates of extinc-
tion and/or state transition were high. For scenarios with = .q 0 1 and μ ≥ .0 5 the mean error rates in the deepest 
10% of nodes were 13% for Mk2 and ~5% for BiSSE and MP. For the most challenging scenario 
(λ μ= = . = .q1, 0 8, 0 1) mean error rates in the deepest 10% of nodes were over 30% for all methods. Of the 
720 simulation scenarios, and considering only the deepest decile, there were 62 scenarios where Mk2 had accu-
racy <90%, 35 scenarios where MP had accuracy <90% and 17 scenarios where BiSSE had accuracy <90%.

For some evolutionary scenarios outside the range of conditions covered in this study, the error rates may 
be even greater. Very high rates of character-state transition relative to speciation are known to cause failure of 
ancestral state reconstruction36. In addition, our analyses only employed time homogeneous rates of transitions 
or extinctions. However, changes in selective regimes are likely to induce changes in rates of state transition, 
and rates of speciation and/or extinction in real systems vary greatly among clades, with for example, the single 
species Amborella trichopoda likely to be sister to all other angiosperms (~400,000 species)47. The impacts of such 
changes on ancestral state reconstruction are unknown but are likely to be bad unless rate heterogeneity is explic-
itly accounted for12. Although methods implemented in corHMM48 allow for variation in rates of character-state 
transition, no methods allow for variable rates of extinction. Our results hint at the possible consequences of one 
important scenario – clades in which extinction substantially exceeds speciation for some period. Since error 
rates increase with extinction rate, error rates may be very high when extinction exceeds speciation. Thus, current 
methods of ancestral state reconstruction may be poor predictors for deep nodes in many real world evolutionary 
systems, and past major environmental changes should be carefully considered when interpreting ancestral state 
reconstruction of functionally important traits.

Data availability
All data summary files generated or analysed during this study along with R code to reproduce the figures are 
included in the Supplementary Information files. Code for generating the raw data and producing summary files 
is available from https://github.com/MichaelWoodhams/bisse.
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