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ABSTRACT

Molecular phylogenetics plays a key role in com-
parative genomics and has increasingly significant
impacts on science, industry, government, public
health and society. In this paper, we posit that the
current phylogenetic protocol is missing two criti-
cal steps, and that their absence allows model mis-
specification and confirmation bias to unduly influ-
ence phylogenetic estimates. Based on the poten-
tial offered by well-established but under-used proce-
dures, such as assessment of phylogenetic assump-
tions and tests of goodness of fit, we introduce a
new phylogenetic protocol that will reduce confirma-
tion bias and increase the accuracy of phylogenetic
estimates.

INTRODUCTION

Molecular phylogenetics plays a pivotal role in the analysis
of genomic data and has already had a significant, wide-
reaching impact in science, industry, government, public
health and society (Table 1). Although the science and
methodology behind applied phylogenetics is increasingly
well understood within parts of the scientific community
(1,2), there is still a worryingly large body of research where
the phylogenetic analysis was done with little attention to
the consequences of a statistical misfit between the phylo-
genetic data and the assumptions that underpin the phylo-
genetic methods.

One reason for this is that phylogenetics relies extensively
on statistics, mathematics and computer science, and many
users of phylogenetic methods find the relevant sections of
these disciplines challenging to comprehend. Another rea-
son is that methods and software often are chosen because
they already are popular and/or easy to use, rather than be-

cause they are the most appropriate for the scientific ques-
tions and phylogenetic data at hand. A third reason is that
much of the phylogenetic research done to date has relied on
phylogenetic protocols (3–8), which have evolved to become
a standard to which it seems sensible to adhere. Although
these protocols vary, they have, at their core, a common set
of sensible features (i.e. procedural steps) that are linked in
a seemingly logical manner (see below).

Here we posit that, although the current phylogenetic
protocol has many useful features, it is missing two crucial
components whereby the quality of fit between the data and
models applied is assessed. This means that using the phy-
logenetic protocol in its current form may lead to biased
conclusions. We suggest a modification to the protocol that
will make it more robust and reliable, and that will identify
where new methods are needed to enable ease of use and
statistical accuracy in the field.

The current phylogenetic protocol

Phylogenetic analysis of alignments of nucleotides or amino
acids usually follows a protocol like that in Figure 1. Ini-
tially, the phylogenetic data are chosen on the assumption
that they will allow the researchers to solve a particular sci-
entific problem. This choice of sequence data is often based
on prior knowledge, developed locally or extracted from
the literature. Then, a multiple sequence alignment (MSA)
method is chosen, often on the basis of prior experience
with a specific method. The sequences are then aligned, the
aim being to obtain an MSA, wherein homologous charac-
ters (i.e. nucleotides or amino acids) are aligned. In prac-
tice, it is often necessary to insert alignment gaps between
some of the characters in some of the sequences to obtain
an optimal MSA––in some cases, there may be characters
in different sequences that cannot be aligned reliably.

Then follows the task of selecting sites that will be used
to infer the phylogenetic tree. The rationale behind doing
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Table 1. Examples of phylogenetic research, divided into areas, based on impact and/or relevance

Area Examples

Science Provide accurate estimates of the evolution of, for example, species (9–12)
Provide accurate estimates of evolutionary processes at the molecular level (13,14)
Addressing macro-evolutionary questions pertaining to birds and mammals (15,16)
Understand biogeographic patterns and diversity (17,18)
Reconstruction of ancestral states (19,20)

Industry Facilitate the design and engineering of novel enzymes (21) and drugs (22–24)
Government Reveal likely sources and dispersal routes of agricultural pests and pathogens (25–29)

Assign conservation priorities to species or biogeographic regions based on estimates of genetic diversity
(30–32)

Public health Reveal the origin and spread of human pathogens (33–36)
Predict the evolution of human influenza A (37)
Identify the natural reservoir of the virus causing COVID-19 (38–40)
Reveal the origin and evolution of cancers (41,42)

Society Reveal the evolution of human language (43,44)
Map the relationship among ancient texts (45), tales (46) and music (47)
Reveal evolution of humans since their divergence from other primates (48–52)

Figure 1. The current phylogenetic protocol. Solid arrows show the order
of actions normally taken during a phylogenetic analysis. Dashed arrows
show feedback loops often employed in phylogenetic research. For details,
see the main text.

so is to maximize the signal-to-noise ratio in the MSA. By
omitting poorly aligned and highly variable sections of the
MSA, which are thought to create noise due to the diffi-
culty of establishing true homology for each site (defined
as similarity due to historical relationships by descent (53)),
it is hoped that the resulting sub-MSA will retain a strong
historical signal (defined as the order and timing of diver-
gence events (54)) that will allow users to obtain an accurate
phylogeny. The choice of sites to retain is made by visual
inspection of the MSA or by using purpose-built software
(55–65). The automated ways of filtering MSAs have been
questioned (66).

Having generated a sub-MSA, the next step in the proto-
col is to select a phylogenetic method. The choice of phylo-
genetic method implies accepting the assumptions on which
the method rests. For example, irrespective of whether the

data comprise nucleotides, codons, or amino acids, it is of-
ten assumed that the sequences evolved along a single bi-
furcating tree and that the evolutionary processes operating
at the variable sites in the sequences are independent and
distributed identically (in a probabilistic sense). If model-
based molecular phylogenetic methods are chosen, the un-
derlying assumption usually is that the evolutionary pro-
cesses operating at the variable sites can be approximated
accurately by using Markov models that are stationary, re-
versible and homogeneous (67–69) over time (the assump-
tion of evolution under SRH conditions) (for more details
about the most common phylogenetic assumptions, see Ap-
pendix 1). In practice, the choice is one between methods
assuming that the underlying evolutionary processes can be
modeled using a Markov model of nucleotide or amino-
acid substitutions (i.e. distance methods (70–75), likelihood
methods (70,72,74–80), Bayesian methods (81–88)) or non-
parametric phylogenetic methods (i.e. parsimony methods
(70,72,74,75,89–91)). In reality, many researchers analyze
their data using a range of model-based phylogenetic meth-
ods, and reports that only use parsimony methods are
increasingly rare. Depending on the chosen phylogenetic
method, researchers may have to select a suitable model of
sequence evolution (i.e. a model that combines the substitu-
tion model and the rates-across-sites model) to apply to the
sub-MSA. This choice is often made by using model selec-
tion methods (14,92–103).

Having chosen a phylogenetic method and, in relevant
cases, a suitable model of sequence evolution, the next step
involves obtaining accurate estimates of the tree and evo-
lutionary processes that led to the data. Phylogenetic meth-
ods are implemented in many software packages (70–86,89–
91) and, depending on the methods chosen, users often also
obtain the non-parametric bootstrap probability (104) or
clade credibility (105) to measure support for divergence
events in the phylogeny.

Having inferred the phylogeny, the final step in the proto-
col is to interpret the result. Under some conditions––most
commonly, the inclusion of out-group sequences––the tree
may be drawn and interpreted as a rooted phylogeny, in
which case the order of divergence events and the lengths
of the individual edges may be used to infer, for exam-
ple, tempo and mode of evolution of the data. Often, the
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inferred phylogeny confirms earlier reported or assumed
evolutionary relationships. Often, too, there are surprises,
which are difficult to understand and explain. If the phylo-
genetic estimate is convincing and newsworthy, the discov-
eries may be reported, for example, through papers in peer-
reviewed journals.

On the other hand, if the surprises are too numerous or
unbelievable, the researchers may begin the task of finding
out what may have ‘gone wrong’ during the phylogenetic
analysis. This process is depicted as dashed feedback loops
in Figure 1. The researchers may analyze their data dif-
ferently (e.g. use other Markov models, use other phyloge-
netic methods, use a different sub-MSA, align the sequences
differently, use a different alignment method or use an-
other dataset), and given enough patience, they may reach
a conclusion about their data and attempt to publish their
results.

Problems with the current phylogenetic protocol

Although the current phylogenetic protocol has led to many
important discoveries, it also has left many scientists with
strong doubts about or, alternatively, undue confidence in
the estimates. The literature is rife with examples where
analyses of the same data have led to disagreements among
experts about what is the ‘right’ phylogeny (cf. e.g. (106–
108)). Such disagreements are confusing, especially for non-
experts and the public. To understand why these disagree-
ments might arise, it is necessary to understand the chal-
lenges that applied phylogenetic research still faces.

While it is clear that the right data are needed to answer
the scientific question at hand, making that choice is not al-
ways as trivial as it might seem. In some cases, the sequences
may have evolved too slowly and/or be too short, in which
case there may not be enough information in the data, or
they have evolved so fast that the historical signal has largely
been lost (109). In rarely reported cases, the data are not
what they purport to be (110).

Next, there is no consensus on what constitutes an op-
timal MSA. In simple terms, what is required is an accu-
rate MSA where every site is a correct homology statement.
Currently, there is no automatic procedure for assessing
homology (53). Frequently, different methods return dif-
ferent MSAs, implying different homology statements, but
they cannot all be right. Averaging MSAs has been pro-
posed as a solution (111). Producing an MSA will often
involve manual modifications following visual inspection,
which introduces subjectivity and a lack of reproducibility.
One way to mitigate this problem is to rely on reviews and
simulation-based comparisons of MSA methods (53,112–
119), but these reports seem to have had less impact than
deserved. It is clear that poor MSAs can cause problems
for downstream analyses, such as inference of positive se-
lection (120), ancestral state reconstruction (121) and esti-
mates of phylogeny (122).

Having identified an MSA, the choice of poorly aligned
and/or highly variable sites to omit (a process commonly
referred to as masking (65)) depends not only on the MSA
method used but also on how difficult it is to detect these
sites––it is impractical to visually inspect MSAs with more
than ∼50 sequences and ∼300 sites. In the past, expert

knowledge about the data was often used (e.g. structural in-
formation about the gene or gene product), but automated
methods (55–65) are now frequently used. However, these
methods often yield different sub-MSAs from the same
MSA, leaving confusion and doubt.

The choice of what phylogenetic method to use for the
data is rated (by many) as the most challenging one to make
(e.g. because the assumptions underpinning each phyloge-
netic method often are poorly understood), and it is often
solved by using several phylogenetic methods. If these meth-
ods return the same phylogenetic tree, many authors feel
confident that they have identified the ‘true’ phylogeny and
they would go on to publish their results. However, while
this approach may have led to correct trees, it is perhaps
more due to luck than to scientific rigor that the right tree
was identified. This is because every phylogenetic method is
based on assumptions (see above and Appendix 1), and if
these assumptions are not violated too strongly by the data,
and the number of variable sites is sufficient, then the true
tree has a high probability of being identified. On the other
hand, if the violations are strong enough, there is currently
no way of knowing whether the correct tree has been iden-
tified. Indeed, strong violation of phylogenetic assumptions
could lead to similar, but nevertheless, wrong trees being in-
ferred using different phylogenetic methods (123,124).

Over the last two decades, the choice of a suitable
model of sequence evolution has often been made by using
purpose-built model-selection methods (14,92–103). As-
suming a tree, these methods step through a list of prede-
fined models, evaluating each of them, one by one, until
the list is exhausted. This approach is sensible if the true
or most appropriate model is included in the list of pre-
defined models. On the other hand, if the true model is
not included in this list, then the popular model-selection
methods will never be able to return the true model. They
will return an optimal model, but it will be conditional on
the models included in the list. Unfortunately, most model-
selection methods only consider time-reversible Markov
models. If the sequences have evolved along a single tree
but under non-reversible Markovian conditions (i.e. under
non-SRH conditions), then there is no way that a single,
time-reversible Markov model is sufficient to approximate
the evolutionary processes across all edges of the tree (125).
Therefore, it is worrying that many researchers still ignore
or dismiss the implication of compositional heterogeneity
across sequences (124). This type of heterogeneity indicates
that the evolutionary processes have changed across the lin-
eages. This implication must be taken seriously when data
are analyzed phylogenetically.

The choice of phylogenetic program is often driven by
prior experiences and transaction costs (i.e. the time it takes
to become a confident and competent user of the software)
rather than by a profound understanding of the strengths,
limitations and weaknesses of the available software. How-
ever, this may not substantially minimize the accuracy of the
phylogenetic estimate, as long as the data do not violate the
assumptions on which the phylogenetic methods are based,
and the phylogenetic methods search tree space and model
space thoroughly.

The bootstrap probability (104) and clade credibility
(105) are often thought of as metrics of the accuracy of
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the phylogenetic estimate or the confidence we might have
in the inferred divergence events. Unfortunately, doing so
is unwise because they measure consistency of the estimate
(126)––a phylogenetic estimate may consistently point to an
incorrect tree.

Finally, once well-supported phylogenetic estimates have
been inferred, prior expectations are likely to influence
whether the estimates are considered reliable and newswor-
thy. In some cases, where information on the phylogeny
is known (e.g. serially sampled viral genomes), not meet-
ing the prior expectations may signal a problem with the
phylogenetic analysis. However, if a researcher’s expecta-
tions are met by the phylogenetic results, it is more likely
that a report will be written without a further assessment
of what might have gone wrong during the analysis. This
tendency––allowing prior expectations to influence the in-
terpretation of phylogenetic estimates––is called confirma-
tion bias. Confirmation bias is not discussed in phyloge-
netics, even though it is a recognized problem in other dis-
ciplines (e.g. psychology and social science (127)), so it is
timely that the phylogenetic community takes onboard the
serious implications of this.

The new phylogenetic protocol

Although the current phylogenetic protocol has many
shortcomings, it also has many good attributes, including
that it is easy to apply and implement as a pipeline. How-
ever, to mitigate its limitations, it will be necessary to re-
design the protocol to accommodate well-established, but
largely ignored, procedures as well as new feedback loops.

Figure 2 shows a picture of the new phylogenetic proto-
col. It shares many features found in the current protocol
(e.g. the first four steps). However, the fifth step (assess phy-
logenetic assumptions) will be novel to many researchers.
As all phylogenetic methods are based on assumptions, it
is sensible to validate these assumptions at this point in
the protocol. Since many phylogenetic methods assume that
the data (e.g. different genes) have evolved over the same
tree, and that the chosen data partitions have evolved inde-
pendently under the same time-reversible Markovian con-
ditions, it is wise to survey the sub-MSAs for evidence that
the sequences actually have evolved under these conditions.
If the data violate these phylogenetic assumptions, then it
will be wise to avoid these phylogenetic methods and to
employ other phylogenetic methods. Alternatively, it may
be worth following the relevant feedback loops in Figure
2––perhaps something led to a biased sub-MSA? The rel-
evance and benefits of this step are illustrated using a case
study (Appendix 2), which focuses on determining whether
a dataset is consistent with the phylogenetic assumption of
evolution under time-reversible conditions. Assessments of
other phylogenetic assumptions require other types of tests
and surveys. Some of the relevant questions and methods
are listed in Table 2.

Next follows the choice of phylogenetic method, but now
this choice is made on the basis of the previous step, rather
than on cultural or computational reasons. If the sequences
have evolved on a single tree under time-reversible Marko-
vian conditions, there is a large set of phylogenetic meth-
ods to choose from (70–86,89–91). On the other hand, if

Figure 2. A new phylogenetic protocol. Solid arrows show the order of ac-
tions normally taken during a phylogenetic analysis. Dashed arrows show
feedback loops that should be employed in phylogenetic research. For de-
tails, see the main text.

these data have evolved under more complex Markovian
conditions, the number of suitable phylogenetic methods is
rather limited (13,68,151–176), and most of these methods
are aimed at finding the optimal model of sequence evolu-
tion for a given tree rather than finding the optimal set of
trees. Users of phylogenetic methods therefore are some-
times confronted by a dilemma: Do they abandon their
dataset because it has evolved under non-time-reversible
conditions and because there are no appropriate phyloge-
netic methods for such data, or do they take the risk and
employ the phylogenetic methods that assume evolution un-
der time-reversible conditions? Fortunately, there may be a
way around this dilemma.

Having inferred the phylogeny using model-based phylo-
genetic methods, it is possible to test the fit between tree,
model and data (step 10 of the new protocol). A suitable
test of goodness of fit was proposed in 1993 (177) (Figure
3). In brief, using the inferred optimal tree, including the
edge lengths, it is possible to simulate datasets under the null
model (i.e. the inferred optimal model of sequence evolution
with its parameter values included). This is called a para-
metric bootstrap. Given the optimal tree (i.e. T in Figure 3)
and the optimal model of sequence evolution (i.e. M in Fig-
ure 3), several sequence-generating programs (13,165,178–
181) facilitate production of pseudo-data. Having gener-
ated, say, m = 1000 pseudo-data, the next step involves
finding the difference (δ) between the unconstrained log-
likelihood (i.e. the log-likelihood inferred without assuming
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Table 2. Important questions requiring pre-phylogenetic surveys of phylogenetic data, accompanied by publications describing methods developed to
carry such surveys

Are evolutionary processes Markovian?
Two papers consider this question (128,129), and one of these presents methods in the context of recoding nucleotides

(129).
Are evolutionary processes independent and identically distributed?

Four papers consider this question and present methods for assessing phylogenetic data (130–133).
Are evolutionary processes stationary, reversible and homogeneous?

Several papers consider this question and present methods for assessing phylogenetic data (54,134–143,200,201).
Are evolutionary processes heterotachous?

Several papers consider this question (144,181,196–198) and some of these present methods for inferring
phylogenetic trees under such conditions (181,196–198).
Is the phylogenetic signal in phylogenetic data tree-like?

Several papers consider this question and present methods for surveying phylogenetic data (145,146,202,203).
Is the historical signal in phylogenetic data decayed?

Several papers consider this question and some present methods for surveying phylogenetic data (147,204–206).
Is the compositional signal in phylogenetic data stronger than expected?

One paper considers this question and presents a method for surveying phylogenetic data (147).
How phylogenetically informative are phylogenetic data?

Three papers consider this question and present methods for surveying phylogenetic data (148–150).

Figure 3. Diagram showing the parametric bootstrap procedure that may be used to conduct a suitable goodness-of-fit test. The procedure includes three
steps. For details, see the main text.

a tree and a model of sequence evolution) and constrained
log-likelihood (i.e. the log-likelihood inferred assuming a
tree and a model of sequence evolution)––that is, comput-
ing δ = lnL(D) − lnL(D|T, M), where D is the data, T is the
optimal tree and M is the optimal model of sequence evolu-
tion. If δ is greater for the real data than it is for the pseudo-
data, then that result reveals a poor fit between tree, model
and data (141). The approach described here works well for

likelihood-based phylogenetic analysis. A similar approach
that relies on posterior predictive distributions is available
for Bayesian-based phylogenetic analysis (182).

Parametric bootstrapping is computationally expensive
and may be time consuming, so we recommend it be used
only if the data appear to meet the assumptions of the
phylogenetic method used. The advantages of using such a
goodness-of-fit test are that it allows users to assess whether
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a poor fit is poor enough to not be due to chance. It does not
say anything about why a fit might be poor or whether the
lack of fit matters (in a biological sense). If the fit is poor,
then the relevant feedback loops should be followed (Figure
2)––perhaps a biasing factor was overlooked? If the phylo-
genetic tree and model of sequence evolution are found to
fit the data, then that implies that the estimates represent a
plausible explanation of the data. It is these estimates that
should be reported, but only as one plausible explanation,
not as the only possible explanation. This is because there
may be other plausible explanations of the data that never
were considered during the analysis.

The future: areas in most need of methodological research

Adherence to the new phylogenetic protocol will undoubt-
edly lead to improved accuracy of phylogenetic estimates
and a reduction of confirmation bias. The advantage of the
fifth step in the new phylogenetic protocol (i.e. assess phylo-
genetic assumptions) is that users are able to decide how to
do the most computationally intensive parts of the phyloge-
netic study without wasting precious time on, for example,
a high-performance computer center. Model selection, phy-
logenetic analysis and parametric bootstrapping are com-
putationally intensive and time consuming, and there is a
need for new, computationally efficient strategies that can
be used to analyze sequences that have evolved under com-
plex phylogenetic conditions.

The advantage of the 10th step in the new phylogenetic
protocol (i.e. test goodness of fit) is its ability to answer
whether an inferred phylogeny explains the data well, or
not. In so doing, the step tackles the issue of confirmation
bias front on. Clearly, without information gleaned from
the fifth step, the parametric bootstrap might return an un-
wanted answer (i.e. the inferred tree and model of sequence
evolution does not fit the data well), so to avoid this dis-
appointment it is better to embrace the new phylogenetic
protocol in full.

Results emerging from studies that rely on the new phy-
logenetic protocol might well call into question published
phylogenetic research, but there is also a chance that re-
search might gain stronger support. This is good for every-
one concerned, especially since it will become easier to de-
fend the notion that the research was done without preju-
dice or preference for a particular result. Objectivity should
be restored in phylogenetics––it is no longer reasonable
to defend phylogenetic results on the basis that they were
obtained using the best available tools; if these tools do
not model the evolutionary processes accurately, then that
should be reported rather than be hidden away. This is criti-
cal because it increases the transparency of the research and
aids other scientists to understand the intricate nature of the
challenges encountered.

Notwithstanding the likely benefits offered by the new
protocol and the methods supporting it, it would be unwise
to assume that further development of phylogenetic meth-
ods will no longer be needed. On the contrary, there is a
lot of evidence that method development will be needed in
different areas:

MSA methods: There is a dire need for MSA methods
that yield accurate homology statements. Likewise, there is

a need for methods that allow users to (i) determine how
accurate different MSA methods are and (ii) select MSA
methods that are most suitable for the data at hand. More-
over, there is a dire need for better transparency in the way
MSAs are reported in the literature (65).

Methods for masking MSAs: Assuming an accurate MSA
has been inferred, there is a need for strategies that can be
applied to identify and distinguish between poorly aligned
and highly variable regions of MSA. Well-aligned but highly
variable regions of MSAs may be more informative than
poorly aligned regions of such MSAs, so to delete them may
be unwise.

Model-selection methods: Model selection is a pivotal
prerequisite if parametric phylogenetic methods are used.
However, the Model selection methods currently employed
may not be accurate (183), especially for sequences that have
evolved under complex conditions (e.g. heterotachous, co-
varion or non-time-reversible conditions). For example, the
evolutionary process may have to be considered an evolv-
ing entity in its own right. Further, a better understanding
of the information criteria used is necessary (184).

Phylogenetic methods: While there are many accurate
phylogenetic methods for analysis of data that have evolved
under time-homogeneous, reversible Markovian condi-
tions, there is a dearth of accurate phylogenetic methods
suitable for analysis of data that have evolved under more
complex conditions. Added to this challenge are methods
that accurately consider incomplete lineage sorting of ge-
netic markers and the special conditions associated with the
analysis of single nucleotide polimorphism (SNP) data.

Goodness-of-fit tests: Suitable goodness-of-fit tests are
available, but there is not only a need for a wider under-
standing of the merits of these tests, but also of how they can
be tailored to suit different requirements. In particular, there
is a need for programs that can generate simulated data un-
der extremely complex evolutionary conditions. Some pro-
grams are available (13,165,180,185), but they only cater for
a very limited set of conditions.

Analysis of residuals: Although goodness-of-fit tests can
tell you whether or not the lack of fit observed is potentially
due to chance, they do not answer the more useful question
of whether or not that lack of fit matters or how the lack
of fit arises (186,187). For this reason, residual diagnostic
tools that can inform the user about the way in which their
model fails to fit the data would be very useful.

In summary, while calls for better phylogenetic methods
and more careful considerations of the data have occurred
(125), we posit there is a need for a comprehensive over-
haul of the current phylogenetic protocol. The proposed
new phylogenetic protocol is unlikely to be a final prod-
uct; rather, it is probably a first, but important step toward
a more scientifically sound phylogenetic protocol, which
should result in not only more accurate phylogenetic esti-
mates, but also a reduction in the likelihood of confirmation
bias.

CONCLUSION

The Holy Grail in molecular phylogenetics is being able to
obtain accurate, reproducible, transparent and trustworthy
phylogenetic estimates from the phylogenetic data. We are

hwerkman
Sticky Note
None set by hwerkman

hwerkman
Sticky Note
MigrationNone set by hwerkman

hwerkman
Sticky Note
Unmarked set by hwerkman



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 7

not there yet, but encouraging progress is being made not
only in the design of the phylogenetic protocol, but also
in phylogenetic methodology based on the likelihood and
Bayesian optimality criteria.

Notwithstanding this progress, a quantum shift in
attitudes and habits is needed in the phylogenetic
community––it is no longer enough to infer an opti-
mal phylogenetic estimate. The fit between trees, models
and data must be evaluated before phylogenetic estimates
can be considered newsworthy. We owe it to the scientific
community and wider public to be as rigorous as we
can––the attitude ‘She’ll be alright, mate’ is no longer
appropriate in this discipline.
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Mitochondrial genome variation and the origin of modern humans.
Nature, 408, 708–713.

49. Ke,Y.H., Su,B., Song,X.F., Lu,D.R., Chen,L.F., Li,H.Y., Qi,C.J.,
Marzuki,S., Deka,R., Underhill,P. et al. (2001) African origin of
modern humans in East Asia: a tale of 12,000 Y chromosomes.
Science, 292, 1151–1153.

50. Schraiber,J.G. and Akey,J.M. (2015) Methods and models for
unravelling human evolutionary history. Nat. Rev. Genet., 16,
727–740.

51. Posth,C., Renaud,G., Mittnik,A., Drucker,D.G., Rougier,H.,
Cupillard,C., Valentin,F., Thevenet,C., Furtwangler,A., Wissing,C.
et al. (2016) Pleistocene mitochondrial genomes suggest a single
major dispersal of non-Africans and a late glacial population
turnover in Europe. Curr. Biol., 26, 827–833.

52. Nielsen,R., Akey,J.M., Jakobsson,M., Pritchard,J.K., Tishkoff,S.
and Willerslev,E. (2017) Tracing the peopling of the world through
genomics. Nature, 541, 302–310.

53. Morrison,D.A. (2015) Is sequence alignment an art or a science?
Syst. Bot., 40, 14–26.

54. Jermiin,L.S., Lovell,D.R., Misof,B., Foster,P.G. and Robinson,J.
(2020) Detecting heterogeneous evolutionary processes across
aligned sequence data. bioRxiv doi: https://doi.org/10.1101/828996,
04 November 2019, preprint: not peer reviewed.

55. Castresana,J. (2000) Selection of conservative blocks from multiple
alignments for their use in phylogenetic analysis. Mol. Biol. Evol.,
17, 540–552.

56. Talavera,G. and Castresana,J. (2007) Improvement of phylogenies
after removing divergent and ambiguously aligned blocks from
protein sequence alignments. Syst. Biol., 56, 564–577.

57. Dress,A.W.M., Flamm,C., Fritzsch,G., Grunewald,S., Kruspe,M.,
Prohaska,S.J. and Stadler,P.F. (2008) Noisy: identification of
problematic columns in multiple sequence alignments. Algorith.
Mol. Biol., 3, 7.

58. Hartmann,S. and Vision,T.J. (2008) Using ESTs for phylogenomics:
can one accurately infer a phylogenetic tree from a gappy alignment?
BMC Evol. Biol., 8, 95.

59. Misof,B. and Misof,K. (2009) A Monte Carlo approach successfully
identifies randomness in multiple sequence alignments: a more
objective means of data exclusion. Syst. Biol., 58, 21–34.

60. Capella-Gutierrez,S., Silla-Martinez,J.M. and Gabaldon,T. (2009)
trimAl: a tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics, 25, 1972–1973.

61. Kück,P., Meusemann,K., Dambach,J., Thormann,B., von
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APPENDIX 1. COMMON PHYLOGENETIC ASSUMP-
TIONS

Phylogenetic methods developed to analyze alignments of
nucleotides, codons and amino acids typically make some
of the following modeling assumptions:

i. The sequences evolved along the edges of a single bifur-
cating tree.

ii. Each site has a fixed rate of change that does not change
across the tree; however, note that this rate can be zero
(invariable sites).

iii. The evolutionary processes operating at the variable
sites follow independent and identically distributed
Markov processes.

iv. The evolutionary processes operating at the variable
sites were stationary, reversible, and homogeneous over
time.

Other modeling assumptions are often made (e.g. that rate
heterogeneity across the sites can be modeled accurately us-
ing a discrete � distribution (188) or non-parametric, prob-
abilistic model of rate heterogeneity across sites (189); the
latter strategy is more flexible, allowing multimodal distri-
butions of rate heterogeneity across sites to be accommo-
dated (14)), but they are not considered here. In addition to
these assumptions, it is typically assumed that the data are
phylogenetically informative––that is, the historical signal
has not decayed enough to make it pointless using the data
in a phylogenetic study. We now describe the modeling as-
sumptions with a minimum of mathematical and statistical
terminology.
The assumption of tree-like evolution: Building on graph the-
ory, this assumption––the tree-likeness assumption––states
that every site in an alignment has evolved on the same
rooted phylogenetic tree. The assumption applies equally to
single-gene and multi-gene datasets. Some relatively recent
methods (190–192) relax this assumption by assuming a sin-
gle species tree but allowing the gene trees to vary from the
species tree due to incomplete lineage sorting. However, if,
for example, some of the sequences in the data were involved
in recombination events or introgression, then the phyloge-
nies of the sites on either side of the break points will be
different and the assumption of a single underlying tree will
be violated.
The assumption of each site having a fixed rate of change that
does not change across the tree: Building on knowledge of
biochemistry and natural selection, the sites in a nucleotide
sequence can be divided into those that are variable and
those that are invariable. Here the variable sites are those
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that are free to change while the invariable sites are those
that cannot change, usually due to all changes being delete-
rious.
A key point here is that it is not possible, in general, to dis-
tinguish between sites that were able to change but have
not done so, and sites that were unable to change due to
selection. For this reason, we are limited in our ability to
conclude whether sites are truly invariable. Therefore, many
phylogenetic methods are designed to estimate the propor-
tion of invariable sites. In fact, it is highly recommended to
assume that a proportion of sites are invariable.
The assumption that sites are either variable or invariable
may be violated by the data if the selective constraints at
the sites change over time. Under this scenario, a variable
site might become invariable within, for example, one lin-
eage but remain variable in all other lineages. Our under-
standing of the prevalence of evolving selective constraints
is not good, but intra- and inter-molecular epistasis might
be contributing factors. Intra- and inter-molecular epistasis
is known to constrain the order and reversibility of amino-
acid substitution (193–195) but it has not yet been incorpo-
rated in phylogenetic methods (for exceptions, see 181,196–
198).
The assumption of independent and identically distributed
Markovian processes: Based on probability theory, this as-
sumption is required because it gives us the statistical power
that is needed to compare evolutionary hypotheses within a
statistical framework. A process is Markovian if the condi-
tional probability of change at a site in a sequence depends
only on the current state and is independent of its earlier
states. In other words, a Markov process has no memory.
The ‘independency of the Markovian processes’ refers to the
processes at the variable sites being independent of one an-
other, and the ‘distributions of the Markov processes being
identical’ refers to the conditional probability of a change
from state i to state j (e.g. from A to G) being the same irre-
spective of what variable site is considered. In other words,
the assumption states that the variable sites evolve indepen-
dently of one another and that the evolutionary processes
are not only Markovian but also identical across the vari-
able sites.
The assumption of stationary processes: A Markov process
is stationary when the marginal probabilities of the states
that the process might take remain the same irrespective of
time. In mathematical terms, a Markov process is stationary
when the following condition holds:

Pr (X (t) = j ) = π j = f j ,

where X(t) denotes the state of the Markov process (X) at
time t, j = A, C, G, T (for DNA), π j denotes the marginal
probability of state j in the process and f j represents the
relative frequency of state j at the variable sites of the an-
cestral sequence. Usually, π is called the stationary distri-
bution of the process (or the Markov model approximating
this process). In mathematical terms, it is a vector.
The assumption of stationary processes is made as it re-
duces the number of parameters that needs to be opti-
mized and, therefore, reduces the amount of time required
to optimize them. If the sequences in an alignment have
evolved under stationary conditions, then they are unlikely
to have acquired different compositions of the states (e.g.

nucleotides). On the other hand, if the sequences are com-
positionally heterogeneous, then they are unlikely to have
evolved under stationary conditions. Evolution under non-
stationary conditions now appears to be a norm rather than
an exception (e.g. (142,199)).
The assumption of reversible processes––A Markovian pro-
cess is reversible if the probability of sampling state i from
the stationary distribution (i.e. π ) and going to state j is the
same as the probability of sampling state j from the station-
ary distribution and going to state i . In mathematical terms,
a Markov process is reversible when the following condition
holds:

πi Ri j = π j Rji ,

where Ri j denotes the instantaneous rate of change from
state i to state j , and i, j = A, C, G, T (for DNA). In math-
ematical terms, R is a matrix. If the evolutionary process is
consistent with this ‘balancing equation’, further reductions
in the number of parameters can be made. An important up-
shot of this assumption is that the likelihood of a tree for a
given phylogenetic dataset can be computed without know-
ing the ancestral sequence for these data.
While the assumption of reversible processes is critical for
most model-based phylogenetic methods, it is more diffi-
cult to ascertain whether sequences have evolved under re-
versible conditions. It is, however, clear that evolutionary
processes cannot be reversible if they are non-stationary,
so evolution under non-reversible conditions now also ap-
pears be a norm, rather than an exception. A biochemical
study of the evolutionary trajectories between two enzymes,
atrazine chlorohydrolase (AtzA) and melamine deaminase
(TriA), corroborates this picture: the optimal order of sub-
stitutions from AtzA to TriA differed from that from TriA
to AtzA (195).
The assumption of homogeneous processes: A Markovian
process is homogeneous in time if the conditional probabili-
ties of substitutions are constant over time. When a Markov
process is consistent with this assumption, it is easy to esti-
mate the conditional probability of change (P) over a given
time (�t). In mathematical terms, the following expression
is used:

P (�t) = eR×�t.

Here, P is a matrix representing the joint probability of state
i at the beginning of an edge in a tree and state j at the end
of this edge. By combining sets of P matrices, one per edge,
in a manner that reflects the topology of the tree (i.e. T),
it is possible to calculate the likelihood of the tree and the
model (i.e. R), given the phylogenetic data.
Although convenient, the assumption of homogeneous pro-
cesses over time is unlikely to be realistic. This is because ac-
cumulation of substitutions over time is likely to be gradual
and occurring along the edges, rather than being punctu-
ated and occurring only at the nodes in the tree. Sometimes,
the term ‘homogeneous processes’ is used to describe evo-
lutionary processes operating along diverging lineages in a
phylogenetic tree. To avoid confusion, it is sensible to write
‘time-homogeneous processes’ when this is the intended
meaning and to write ‘homogeneous processes across lin-
eages’ when this is the intended meaning.
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Figure A2. Illustrating the merits of the fifth step in the new phylogenetic protocol. Panels A–C show the average nucleotide composition at first, second
and third codon positions of the sequences (144 sequences, 413 459 codons) originally examined by Misof et al. (11). Each dot represents the nucleotide
composition of a single sequence. The spread of dots in panels (A–C) reveals compositional heterogeneity at first, second and third codon positions,
indicating these data violate important assumptions underlying most phylogenetic methods. The tetrahedral plots were generated using SeqVis (139).
Panel D shows a two-tipped tree with an ancestral sequence and two diverged sequences. Panels E and F show the divergence matrix for these sequences
at time 0 and time t. Each number in a cell of a divergence matrix corresponds to the number of sites with nucleotide i in one sequence, and nucleotide
j in the other. Panels G–I show the PP plots for the data already analyzed in panels A–C. A total of 10 296 tests were done for each of the three codon
positions using Homo 1.3 (http://www.csiro.au/homo/––a new version of Homo is now available (54)).

APPENDIX 2. CASE STUDY

To illustrate the relevance and benefits of the fifth step in the
new phylogenetic protocol (i.e. assess phylogenetic assump-
tions), we surveyed the phylogenetic data used to infer the
evolution of insects (11).
The tetrahedral plots in panels A–C of Figure A2 reveal that
the nucleotide composition at the three codon positions is
heterogeneous (most clear in panel C and least clear in panel
B), implying that the evolutionary processes that operated
at these positions are unlikely to have been time-reversible.
However, the plots are deceptive because the presence of
constant sites (i.e. sites with the same nucleotide or amino
acid) in the data can mask how compositionally dissimilar
the sequences actually are.
To learn how to resolve this issue, it is necessary to focus
on the evolution of two sequences on a tree (panel D of
Figure A2) and the corresponding divergence matrix, N, at

time 0 (panel E of Figure A2) and at time t (panel F of Fig-
ure A2). At time 0, the two sequences are beginning to di-
verge from one another, so the off-diagonal elements of N
are all zero. Later, N may look like that in panel F of Figure
A2. The off-diagonal elements of N are now greater than
zero, and matching off-diagonal elements of N might differ
(i.e. ni j �= n ji ). The degree of divergence between the two
sequences can be inferred by comparing the off-diagonal
elements to the diagonal elements, while the degree of dif-
ference between the two evolutionary processes can be in-
ferred by comparing the above-diagonal elements of N to
the below-diagonal elements of N. If the two evolution-
ary processes were the same, the matching off-diagonal ele-
ments in panel F of Figure A2 would be similar. A lack of
symmetry (i.e. ni j �= n ji ) implies that the evolutionary pro-
cesses along the descendant lineages may be different.
A matched-pairs test of symmetry (138) can be used to de-
termine whether this observed deviation from symmetry
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is statistically significant. Panels G–I of Figure A2 show
the distributions of the observed and expected P values
from these tests for the data assessed in panels A–C of Fig-
ure A2. If the evolutionary processes operating along the
descendant lineages are identical, the dots would be dis-
tributed along the diagonal line of a PP plot. However, as
the dots in each plot fall far from this line, there is little evi-
dence supporting the assumption of evolution under homo-

geneous conditions. The same is the case for the correspond-
ing amino acid alignment (not shown), so it would be un-
wise to assume that the data evolved under time-reversible
conditions. A more complex evolutionary process might ex-
plain these data. However, such methods were not available
at the time when Misof et al. (11) analyzed these data, and
that is still the case.
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