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Abstract  

 

The size and age at which individuals mature is rapidly changing due to plastic and evolved 

responses to fisheries harvest and global warming. Understanding the nature of these changes is 

essential because maturity schedules are critical in determining population demography and 

ultimately, the economic value and viability of fisheries. Detecting maturity changes is, however, 

practically difficult and costly. A recently proposed biphasic growth modelling likelihood 

profiling method offers great potential as it can statistically estimate age-at-maturity from 

population-level size-at-age data, using the change-point in growth that occurs at maturity. Yet, 

the performance of the method on typical marine fisheries datasets remains untested. Here, we 

assessed the suitability of 12 North Sea and Australian species’ datasets for the likelihood 

profiling approach. The majority of the fisheries datasets were unsuitable as they had too small 

sample sizes or too large size-at-age variation. Further, datasets that did satisfy data requirements 

generally showed no correlation between empirical and model-derived maturity estimates. To 

understand why the biphasic approach had low performance we explored its sensitivity using 

simulated datasets. We found that method performance for marine fisheries datasets is likely to 

be low because of: 1) truncated age structures due to intensive fishing, 2) an under-representation 

of young individuals in datasets due to common fisheries-sampling protocols, and 3) large 

intrapopulation variability in growth curves. To improve our ability to detect maturation changes 

from population level size-at-age data we need to improve data collection protocols for fisheries 

monitoring.  
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Introduction 

 

Phenotypic change is a prevalent response to human interference in wild populations (Hendry et 

al. 2008; Sih et al. 2011). In the sea, these changes are often attributed to plastic and evolutionary 

responses to harvest (Kuparinen and Festa-Bianchet 2017; Law 2007) and warming (Cheung et 

al. 2013; Crozier and Hutchings 2014). Rapid changes in age and size at maturation are 

particularly common (e.g. Sharpe and Hendry, 2008; Audzijonyte et al. 2013) and have been 

observed in many fisheries stocks (e.g. Audzijonyte et al. 2016). Such changes could be driven 

by evolutionary response to increased mortality and size-selectivity from fishing (Jorgensen et al. 

2007), or by increasing temperatures through a range of mechanisms behind the temperature-size 

rule (Atkinson et al. 2006; Audzijonyte et al. 2019; Crozier and Hutchings 2014). Changes in 

maturation size and age have important implications for stocks and ecosystem dynamics because 

altered maturation schedules have obvious implications for demography, carrying capacities and 

economic yields (Eikeset et al. 2013; Heino et al. 2013; Law and Grey 1989). For example, shifts 

to earlier maturity reduce average body size in fish populations through trade-offs between 

growth and reproduction (Enberg et al. 2012). Smaller average body sizes can, in turn, cause 

reductions in per-capita fecundity (Roff 1983) and carrying capacities (Audzijonyte et al. 

2013b). Life history data are also fundamental inputs to fisheries stock assessments (Methot and 
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Wetzel 2013); small errors in parameter estimates have been shown to significantly affect 

estimates of biomass, age structure and thus future protected catches (Whitten et al. 2013). 

 

Regular spatio-temporal monitoring of maturity status is not available for many commercially 

important fish stocks. This is because in sexually monomorphic and indeterminately growing 

fish the transition to maturation is not readily observable from live animals (e.g. compared to 

rutting or nesting behaviours), so maturation status can only be confirmed by specific and 

invasive internal sampling. Innovative statistical approaches to estimate age and size at maturity 

from a population’s average somatic growth trajectory (based on size-at-age data) offer great 

potential to rectify these data deficiencies (reviewed in Wilson et al. 2018). Such techniques 

generally rely on the assumption that somatic growth decreases as individuals begin to invest in 

reproduction prior to maturity (e.g. Rijnsdorp and Storbeck 1995) and that statistical methods 

can be used to detect this change in growth rate. 

 

While the theory underpinning statistical approaches to estimate maturity is sound, finding an 

appropriate technique to successfully estimate maturity from size-at-age data has proven 

difficult. Recently, Honsey et. al. (2017) presented a novel application of the Lester (2004) 

biphasic growth-modelling technique to statistically estimate maturity status from size-at-age 

datasets, called Lester model likelihood profiling (LMLP). The method is based on joint 

maximum likelihood estimates of age at maturity and four other life-history parameters using 

length-at-age data and assumes that data can be approximated by the continuous biphasic growth 

model, with linear juvenile growth and von-Bertalanffy type post-maturation growth (see Wilson 

et al. 2018 for a review of different biphasic growth models). The likelihood intervals for the 
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maturity age are generated by finding the maximum likelihood of all growth parameters for a 

given age at maturity and then profiling across all plausible values of maturation age to find the 

confidence ranges of maturity age estimate. The LMLP method could accurately reproduce 

empirically observed maturity in walleye (Sander vitreus) gillnet scientific survey datasets from 

individual years across multiple lakes in North America; the method also worked on other 

datasets, such as a marine fish (haddock -Melanogrammus aeglefinus) or an amphibian (seal 

salamander -Desmognathus monticola) (Honsey et al. 2017). Further, Wilson et al. (2018) 

showed that LMLP had low bias and good precision, with the performance comparable to 

Bayesian methods. These findings are exciting, because if the method is generalisable, then 

LMLP could be routinely used to estimate maturity characteristics for subsequent statistical or 

stock assessment procedures (Methot and Wetzel 2013). However, the LMLP method is sensitive 

to high variation in size-at-age, small sample sizes, young age at maturity, uneven sample 

distribution across ages within a stock, and violations of biphasic growth model assumptions 

(Honsey et al. 2017). The applicability of LMLP has also not yet been tested for standard fishery 

datasets derived from fishery dependent (e.g. catch data) or independent (e.g. scientific trawls) 

sources. The main challenge with these datasets is that the youngest aged individuals in a 

population may not be available due to catches selectively excluding smaller individuals, or 

because high fishing mortalities have resulted in demographic truncation and the loss of the 

oldest aged individuals. Furthermore, fishery-dependent and independent datasets  may not truly 

represent the underlying population because for example, depending on the gear selectivity in a 

fishery-dependent sample, only the fastest growing individuals may be vulnerable to capture in 

the age groups that are not yet fully recruited to fisheries (Morrongiello and Thresher 2015). 

Honsey et al. (2017) did not account for any size selectivity effects because it was not considered 
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important for the walleye dataset; the authors suggested that the importance of these biases 

should be considered on a species-by-species basis (same applies to Wilson et al. 2018). 

Together, these sample biases could affect the LMLP methods’ ability to characterise population 

lifetime-growth and hinder maturity estimation. 

 

In this study, we evaluated the applicability and performance of Honsey et al.’s (2017) LMLP 

method to estimate maturity using a range of size-at-age datasets from commercially important 

fish species in the North Sea (Europe), a region with prolonged and intensive fishing history 

(ICES 2018) and from south-east Australia, where fishing mortality is lower (Patterson et al. 

2016). Such fishery-derived or fishery-independent datasets are commonly available around the 

world and span the decadal time-frames required to detect trends in maturity characteristics 

(Morrongiello et al. 2012), if the LMLP method can be shown to perform well. First, we 

evaluated the quality of commonly available datasets by testing how many of the North Sea and 

Australian species satisfied the data requirement (variation around size-at-age and sample sizes) 

for the method to perform (Honsey et al. 2017). Second, we focused on the fishery independent 

North Sea datasets where empirical maturation estimates were available. For these datasets we 

tested the performance of LMLP and showed that the method performed poorly. Empirical 

estimates of maturity were not available for the Australian datasets. Third, we used simulated 

fisheries-independent size-at-age datasets to investigate the minimal conditions that could result 

in adequate LMLP performance, and explored how age truncation or big variation in size-at-age 

affect maturity estimates. We outline conditions under which the method is unlikely to perform 

well and make recommendations for improved age-length data collection and life-history 

estimation.  
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Methods 

Fisheries data 

 

We used empirical age-length datasets from seven North Sea (Europe) and five south-east 

Australian species to assess the performance and generality of the LMLP method. North Sea 

datasets, collected from fishery independent trawl surveys, were downloaded from the ICES 

DATRAS (http://www.ices.dk/marine-data/dataset-collections/Pages/default.aspx) data portal on 

11/5/2018. Australian datasets, collected from fishery dependent surveys of commercial trawl 

catch, were received from the Australian Fisheries Management Authority on the 29/5/2017. 

Further information on sampling methodologies to generate data from both regions can be found 

in the Supplement. Data from both the North Sea and Australia were used to investigate the 

general suitability of the LMLP method for use in fishery contexts (i.e for maturity estimation 

with datasets derived from fishery dependent and independent sampling). LMLP performance 

was then investigated using datasets from the North Sea alone as these data also contained 

empirical maturity information. Our 12 species were selected to represent high value fisheries 

and diverse life-history strategies, and included: Atlantic herring (Clupea harengus), Atlantic 

cod (Gadus morhua), haddock (Melanogrammus aeglefinus), plaice (Pleuronectes platessa), 

saithe (Pollachius virens), Atlantic mackerel (Scomber scombrus) and sprat (Sprattus sprattus) 

from the North Sea, and pink ling (Genypterus blacodes), orange roughy (Hoplostethus 

atlanticus), blue grenadier (Macruronus novazelandiae), jackass morwong (Nemadactylus 

macropterus) and tiger flathead (Platycephalus richardsoni) from south-east Australia (see 

Supplementary Table 1 for a list of life history parameters for each species). 
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Precision investigation 

 

Initially we assessed whether length-at-age datasets from both the North Sea and south-east 

Australia were suitable to estimate maturity using the Lester model likelihood profiling (LMLP) 

method presented in Honsey et al. (2017). Honsey et al. (2017) explored the performance of 

LMLP and demonstrated that for populations with age at maturity = 5yrs, the method performs 

poorly on datasets with precision lower than 6 and sample sizes (n) smaller than 100. ‘Precision’ 

is defined as the mean inverse coefficient of variation (CV, which is standard deviation in length 

divided by mean length in the age group) in length at each age across ages, weighted by sample 

size-at-age within the dataset: 

𝑃෠ =
∑ ൬

భ

಴ೇ೔
∗௡೔൰ 

ೕ
೔సೖ

∑ ௡೔
ೕ
೔సೖ

     (1) 

where 𝑃෠ is precision, 𝐶𝑉 is the coefficient of variation at age 𝑖, 𝑘 is the first age and 𝑛 is weight 

(sample size) at age 𝑖 across ages 𝑘 through 𝑗. Note, that age i corresponds to discrete ages 

classes (1, 2, 3, etc.) and is different to the continuous time (t) used in the biphasic growth model 

(below). For our purposes, we chose a conservative average precision level of ≥10 as indicative 

of good performance, because some of our species had an age at maturity lower than 5. 

 

We calculated average precision and average n across datasets, subsampled across species, sex, 

year of capture (Year), fishing zone of capture (Zone: see (ICES 2015) and (Morrongiello and 

Thresher 2015) for descriptions of zone designations), annual quarter of capture (Quarter) and 

month of capture (Month; only available for Australian datasets), and all relevant combinations 

of these (i.e. Zone by Year, Zone by Sex, Year by Sex and so on, see Supplementary Table 2). 

Such subsampling reduces variation in length-at-age in the samples and should therefore increase 
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precision. Data points with missing relevant factorial information were removed prior to each 𝑃෠ 

calculation; for example, if zone information was missing, the datapoints were removed from 

analyses that assessed precision in different zones separately, but not in analyses where zones 

were combined. 

 

All data analyses were done using R 3.5.1 (R Development Core Team 2013) using the RStudio 

(RStudio Team 2015) interface (version 1.1.463).  

 

Validation of age at maturity estimates 

 

Honsey model 

The Honsey et al. (2017) method is based on the Lester (2004) biphasic growth model which 

assumes linear growth for juveniles and asymptotic von Bertalanffy type growth after 

maturation. Juvenile (linear) and adult (asymptotic) growth are defined by four parameters (𝑙଴, ℎ, 

𝑇, and 𝑔) which are estimated (including error 𝜎ଶ) from length-at-age datasets using a 

maximum-likelihood approach (see; Honsey et al. 2017). 

 For length at time t (lt), growth is defined by: 

𝑙௧ = 𝑙଴ + ℎ𝑡,    𝑡 ≤ 𝑇 𝑓𝑜𝑟 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠,   (2) 

𝑙௧ = 𝑙ஶ ൫1 − 𝑒ି௞(௧ି௧బ)൯, 𝑡 > 𝑇 𝑓𝑜𝑟 𝑎𝑑𝑢𝑙𝑡𝑠,  (3) 

  

where 

𝑡ଵ  = − 
௟బ

௛
 , 

𝑙ஶ  =
ଷ௛

௚
 , 

𝑘 = ln(1 +
௚

ଷ
) , 
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and t଴  =  𝑇 + ln(1 −  
௚ (்ି ௧భ)

ଷ
)/ ln(1 +  

௚

ଷ
 ) as derived in Lester et al. (2004) 

 

Here 𝑙଴ is the theoretical length at age 0 (mm), ℎ is the net rate of energy acquisition expressed 

as somatic growth rate (mm/yr), 𝑇 is the last immature age (yr; Lester age at maturity parameter), 

𝑙ஶ is asymptotic length (mm), 𝑘 is the von Bertalanffy growth coefficient or asymptotic growth 

rate (per year), 𝑡଴ is the von Bertalanffy hypothetical age at length 0 (yr), 𝑡ଵ is the Lester 

hypothetical age at length 0 (yr) and 𝑔 is the cost to somatic growth of maturity (expressed in 

equivalent energetic units and is constant for adults). 

 

This formulation of the Lester (2004) model assumes that metabolism scales with body size in a 

two-thirds power relationship across taxa. The estimated parameter T can be interpreted as 

average age at maturity in the dataset (Honsey et al. 2017). The estimate of T (we hereafter refer 

to 𝑇 as LMLP estimate) can then be compared to empirical assessments of maturity (hereafter 

referred to as ‘empirical estimate of maturity’ or EEM), such as the age at which 50% of 

individuals are mature age in a population as derived from logistic regression (Chen and 

Paloheimo 1994) using directly observed individual maturation status (mature or not) (as in 

Honsey et al. 2017).  

 

Accurate growth curve estimates require unbiased sample from a population, but due to 

selectivity of sampling gears, only the fastest or slowest growing individuals might, for example, 

be collected in size groups that are not fully recruited to fisheries. Ideally, growth curve or 

maturity estimates therefore should simultaneously estimate or account for gear selectivity. In 

practice however, this would require even larger sample sizes and may not be feasible for many 
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species, and most growth estimation methods do not account for this potential bias (see Wilson et 

al. 2018 for a review or growth models). The Honsey et al. (2017) method did not consider the 

effect of gear selectivity on the samples used to derive growth curves in the analyses, because in 

their analyses “the potential impacts of gill net size selectivity on model estimates are likely 

relatively small for organisms such as walleye across the ages included in the simulations”. The 

subsequent follow-up study by Wilson et al. (2018) also did not account for the gear selectivity 

effect. Because the goal of our study is to test the LMLP method presented by Honsey et al. 

(2017) and explored by Wilson et al. (2018) we follow the protocols provided in these two 

studies. In the simulation study (below) we show the method still cannot reliably estimate 

accurate maturity age even when non-selective sampling is applied.  

 

LMLP validation 

 

Subsampled datasets from four North Sea species satisfied the precision and sample size 

requirements for LMLP analyses. These data were from Atlantic herring, saithe, sprat and 

Atlantic mackerel. We estimated age at maturity of these accepted North Sea datasets using the 

LMLP method (using code developed in Honsey et al. (2017) which uses the R package ‘boot’ 

(Canty and Ripley 2017)) and compared these estimates to the empirical-estimates of maturity 

(EEM, see below). We do not formally assess LMLP performance for Australian species as time 

series of empirically derived maturity estimates do not exist for them. Australian data was used 

to assess the general suitability of fisheries data for LMLP.  
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North Sea LMLP analyses were conducted on all unique combinations of factors outlined above 

where precision was satisfied, e.g. Sex by Quarter (see Fig. 1 and Results for the specific factor 

combinations), and age at maturity was estimated (Equations 2 and 3) for each year where 

sufficient data was available. Following the recommendations of Honsey et al. 2017, model fits 

for each group of data were visually inspected and retained only if the likelihood surface 

contained a single peak and had confidence intervals around LMLP estimates of ≤ 2 years. Next, 

for each dataset that was used for LMLP analyses, we derived EEM estimates by applying a 

logistic regression function on maturation status data (see ICES (2015) for the methodology used 

to determine maturation status) to estimate the age at which 50% of individuals were mature 

(traditionally called A50) .  

Here, the logit of the probability 𝑝 of individual 𝑏 being mature 𝑀 (𝑝𝑀௕) was modelled as a 

function of age 𝑎௕; 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑀௕) =  𝛽଴ + 𝛽ଵ𝑎௕   (4) 

 

where 𝛽଴and 𝛽ଵare estimated regression coefficients.  

 

For each dataset, sample (population level) EEM estimates were extracted as age where 50% of 

individuals were estimated to be mature. In some instances, non-convergence or negative EEM 

estimates occurred and these data were removed from subsequent analyses. Correlation between 

LMLP and EEM estimates within subsampled datasets were then compared using standardised 

major axis regression using the R package ‘smatr’ (Warton et al. 2012). We apply the Huber’s M 

estimation, which is robust to outliers (Warton et al. 2012). Standardised major axis regression 

assumes error in both variables and allows for the meaningful comparison of two estimates. It 
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also downplays the effects of outliers and thus results in a more robust assessment of 

performance. We also assessed LMLP performance by counting how many LMLP estimates 

were within ±1 year of EEM estimates for species with average empirical maturity >3 years 

(within ±0.5 year for species with average empirical maturity ≤3 years). Finally, we looked at 

whether the 95% CI’s for LMLP estimates included EEM estimates for each stock dataset.  

 

To ensure that our investigation of the performance of the LMLP method was exhaustive, we 

also ran an additional set of targeted analyses. These included:  

1.  Data selection was modified to reduce the chance of erroneous age estimation (replicated 

techniques employed in Honsey et al. (2017));  

2. LMLP and EEM were compared after subtracting 1 year from EEM estimates to match 

differences in interpretation between the two metrics (see Supplement for further explanation;  

3. LMLP estimates were judged against LMLP method error characterisation described in 

Honsey et al. (2017) which allows for empirical dataset characteristics (combinations of data 

amount, LMLP model-estimated g and precision) to be judged against minimum requirements 

generated from simulated size-at-age datasets. Individual datasets that failed error 

characterisation were excluded from subsequent comparison of LMLP against EEM.  

None of these additional analyses significantly improved the performance of LMLP analyses, so 

we do not describe them further in the main text (see Supplement for full details). 

 

Performance of LMLP method in simulated datasets  

 

The LMLP method showed poor performance for the empirical datasets analysed above (see 

Results). We therefore explored its behaviour using simulated datasets based on characteristics 
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of two well studied Atlantic cod stocks with contrasting life-histories – the late maturing 

Greenland coast cod stock and the early maturing Skagerrak coast stock. 

 

Population length-at-age data was simulated using a modified biphasic growth model published 

in Wilson et al. (2018). The simulation model uses von Bertallanfy growth curve parameters (𝑙ஶ, 

𝑘 and 𝑡଴), age at maturity and a vector of possible ages for a species as defined by its longevity. 

It then calculates Lester (2004) biphasic growth model parameters 𝑔, ℎ and 𝑡1 to estimate size-

at-age distributions (see supplied code in Electronic Supplement for details). For length at time t 

(lt), growth is defined by Equations (2) and (3) used in LMLP analyses above. We parameterised 

the growth model using life history parameters from Fishbase. Specifically, Greenland cod 

parameters were 𝑙ஶ = 1540mm, 𝑘 = 0.06, 𝑡଴ = -2.88 (Rätz et al. 1999) and age at maturity = 8 

(Jónsson 1959), whilst for the Skagerrak stock they were and 𝑙ஶ = 1160mm, 𝑘 = 0.208, 𝑡଴ = 0.18  

and age at maturity = 2 (Froese and Sampang 2013). For simplicity, we ignored potential 

differences in growth between sexes. A coefficient of variation (CV) was applied to add 

variation around each modelled ‘average’ size across age classes. The baseline CV for the 

Greenland stock (CV = 0.156) was calculated using size-at-age variation in the North Sea 

Atlantic cod data from the ICES database (DATRAS database, analysed by year and zone, then 

averaged). For the Skagerrak stock the baseline CV (CV = 0.237) was taken from Olsen et al. 

(2009) estimates for 0-year old cod. Coefficients of variation were assumed to be constant across 

ages. Next, natural mortality was simulated using a decaying age-specific survival function to 

generate more realistic size-at-age distributions in simulated populations. Our mortality curve 

followed the approach in Wilson et al. (2018), where the probability of survival at age 𝑖 (𝑝𝑆௜) is 

given by: 
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𝑝𝑆௜ =  𝑝𝑆௜ିଵ ∗  
(

೒

భ.భఴ
ିଵ)

ିଵ
, 𝑓𝑜𝑟 𝑎𝑔𝑒𝑠 ≥ 2 (𝑝𝑆௜ = 1 𝑓𝑜𝑟 𝑖 = 1) (5) 

 

where 𝑔 is the cost to somatic growth of maturity (as above in Equation (3)). 

 

We explored a range of relevant values for CV in size-at-age, g, age at maturity, sample sizes 

and fisheries selectivity to assess whether certain assumptions about growth or sampling could 

explain low LMLP method performance. The CV values for both stocks were varied from 0.05 

to 0.45 (at 5 steps each 1 unit value apart) while the values for cost of maturity to growth, g was 

varied from 0.05 to 0.8 (5 steps each 0.1875 units apart) in the Skagerrak stock alone, because 

varying g in Greenland stock simulations produced unrealistic growth trajectories. Age at 

maturity ranged from 5 to 9 years (from the baseline of 8) for the Greenland stock (5 steps 1 year 

apart) and 1 or 2 years for Skagerrak stock (baseline was 2). We simulated the impacts of 

fisheries on population age structure using different assumptions about fisheries gear selectivity. 

For that we altered the age based midpoint of the selectivity curve (age at which 50% of 

individuals are removed by fisheries) from 4 to 12 years (5 steps 2 years apart) for the Greenland 

stock, and 2 to 6 years (5 steps 1 year apart) for the Skagerrak stock.  The probability of selection 

at age 𝑖 (𝑝𝐹௜) is given by: 

𝑝𝐹௜ =  
ଵ

ଵା ௘
ష 

ೌ೒೐೔షೞ೘

ೞ೟

      (6) 

 

where sm is age at 50% selectivity, and 𝑠𝑡 is the steepness of the selectivity curve. We use a 

steepness of 2 to reflect common selectivity patterns in fisheries (e.g. Blaber et al. (2005) and see 

Supplementary Figure 1 for an example of our selectivity curves), which means that if 50% 
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selectivity is at age 8, then ~25% and ~75% selectivity occurs at ages 6 and 10. Selectivity was 

not considered an important source of selection bias in Honsey et al. (2017).   

 

After applying the fisheries mortality to the population, the remaining individuals were sampled 

randomly (proportionally to their abundance in the population) to be used in the LMLP maturity 

estimation. We also explored the impact of excluding the youngest individuals by removing from 

the sample individuals smaller than 100 to 500mm (5 steps each 100mm apart) for the slower 

growing Greenland stock and from 200 to 400mm (5 steps each 50mm apart) for the Skagerrak 

stock. We also varied the overall sample size n from 50 to 250 for both stocks (5 steps each 50 

sample sizes apart) to explore how sample size affects method performance. For each 

combination of parameters (26 for each stock) we produced 10 replicate ‘samples’ of 250 

individuals for the LMLP analyses (and fewer where effect of sample size was explored).  

 

Low quality LMLP model fits (i.e. those with more than one likelihood peak and CI’s > 2 years) 

were not excluded from these analyses because we wanted to explore raw LMLP method 

performance across all fits to data and equal sample sizes. LMLP method performance was 

assessed in two ways: first we counted how many of the 10 replicate LMLP estimates gave age 

of maturity values that were within ±1 year of the actual simulated values for the Greenland 

stock (maturing at 8 years) and within ±0.5 year for the Skagerrak stock (maturing at 2 years), 

and second whether 95% CI’s for LMLP estimates included the simulated maturity values for 

each stock. The R code used to perform simulations is available as a supplement and on Github 

(link provided upon acceptance of manuscript). 
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Results 

 

Precision analyses in different fisheries stocks  

 

Only two species from the North Sea (Atlantic herring; 𝑃෠ = 10 and Atlantic mackerel; 𝑃෠ = 11) 

and two species from SE Australia (orange roughy; 𝑃෠  = 12 and blue grenadier; 𝑃෠ = 10) showed 

adequate precision using their complete datasets. When the full datasets for species were 

subsampled into factor combinations (e.g. by Zone, by Sex etc.), 46% or 74 of the resulting 161 

North Sea datasets had average precision greater than 10 (Supplementary Table 2). Average 

precision values were much higher for the SE Australian species after subsampling, where 94% 

(165 out of 175 resultant datasets) had average precision >10 (Supplementary Table 2, Fig. 1). 
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Figure. 1.Precision (mean and se) of length-at-age estimates in six selected example North Sea 
(black silhouettes) and south-east Australian (grey silhouettes) stocks for different levels of 
subsampling (represented by rows on the y-axis). Dashed lines represent a precision of 10, above 
which LMLP analyses are expected to perform well. Black points represent subsamples where 
≥70% of data contain at least 100 individuals and thus, are suitable for LMLP analysis (red 
points show subsamples were <70% contain 100 individuals). Panel ‘a’ - Atlantic herring, ‘b’ - 
Atlantic cod, ‘c’ - Atlantic mackerel, ‘d’ - orange roughy, ‘e’ - jackass morwong and ‘f’ - tiger 
flathead (See Table S1 for all details). 
 

Subsampling data by Sex, Year, Zone and Month showed the highest performance for SE 

Australian species (Sex, Year, Zone and Quarter for North Sea species) with a mean precision of 

22 (12 for North Sea), compared to the mean precision of 9 when using original non-subsampled 

data per species (Supplementary Table 2, Fig. 1). Sample sizes necessarily decreased as 

subsampling became more complex, often falling below the minimum ‘100 individual’ 

requirement (from Honsey et al. 2017) (Supplementary Table 2, Fig. 1). Nonetheless, sufficient 

precision and sample sizes were available for many subsamples, suggesting that fisheries 

datasets could satisfy the requirements for the LMLP method (Supplementary Table 2). For 
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example, in Atlantic herring across 100 generated Sex x Year x Quarter datasets, the mean 

precision in females was 11.93 (se = 0.38) and mean sample size was 761.21 (se = 56.14) while 

for males it was 11.88 (se = 0.26) and 702.7 (se = 49.72) (Supplementary Table 2). For orange 

roughy females, mean precision and mean sample size across 29 Sex x Year x Zone x Quarter 

datasets was 22.11 (se = 0.86) and 262.38 (se = 38.49), respectively.  

 

Performance of LMLP method in North Sea datasets 

 

The performance of the LMLP method was assessed for 16 subsampled datasets derived from 

four species with adequate precision, sample size and available empirical maturity estimates. 

These were Atlantic herring, saithe and sprat datasets that were subsampled by Sex, Year and 

Quarter, and Atlantic mackerel datasets subsampled by Year and Quarter. LMLP estimates 

performed poorly against EEM estimates in all but one of the 16 datasets (Table 1, Fig. 2, 

Supplementary Figures 2, 3, 4 and 5). The exception was Atlantic mackerel from Quarter 1 

(Table 1, Fig. 2 row D). Across species, LMLP estimates fell within the specified qualitative 

ranges from EEM estimates (±1 year for species with average empirical maturity >3 years and 

±0.5 year for species with average maturity ≤3 years) in 57% of cases (Fig. 2, Supplementary 

Figures 2, 3, 4 and 5). This underperformance was also mirrored when the LMLP method was 

characterised by testing the instances where LMLP CI’s contained the EEM estimate across all 

stock datasets. This occurred in only 22% of cases (Fig. 2, Supplementary Figures 2, 3, 4 and 5).  
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Figure 2. Comparison of statistical estimates of maturity (LMLP; black lines showing LOESS 
smoothed trend) against empirical estimates of maturity (EEM; grey lines LOESS smoothed) for 
four example datasets: row ‘a’ Atlantic herring females from Quarter 1, ‘b’ - Saithe males from 
Quarter 1, ‘c’ - Sprat males from Quarter 1, ‘d’ - Atlantic mackerel both sexes from Quarter 1. 
These datasets were selected because they represent a range of LMLP method performance 
across species and sexes (see Supplement for full representation of each species). Very wide 
error bars or those spanning 0 are not shown to improve clarity. The right column shows 
standardised major axis regression analyses of LMLP and EEM, where dashed lines represent a 
1:1 relationship and the solid black line in row d shows the regression line for the significant 
correlation. Differences in temporal replication of LMLP and EEM arise from instances where 
estimates of maturity were not possible due to poor model fits to data in LMLP (i.e. CI’s > 2 
years or multiple likelihood peaks) or non-convergence in EEM (see methods). Note a log-
transformation in axes scale in the right column of plots. 
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Table 1. Results of standardised major axis regression analyses comparing statistical estimates of 
age at maturity (LMLP) (biphasic approach) to empirical estimates (EEM) (logistic regression 
applied to raw maturity at age data) across Years for each Species, Sex (excluding Atlantic 
mackerel) and Quarter (within Year) combination. Parameter estimates for the regression 
intercept and slope with accompanying 95% confidence intervals are also reported. Perfect 
match between LMLP and EEM estimates would result in an R2 value of 1 where slope is 1 and 
the intercept is 0. 
     

Species Sex Quarter Intercept Slope R2 P-value 

Atlantic herring F 1 0.059 (-0.075, 0.059) 0.910 (0.626, 1.322) <0.001 0.974 

F 2 0.862 (0.228, 1.495) -1.206 (-3.786, -0.384) 0.035 0.721 

F 3 0.863 (0.600, 1.126) -1.744 (-2.831, -1.075) 0.002 0.831 

F 4 -0.807 (-2.928, 1.314) 4.679 (1.263, 17.337) 0.508 0.287 

M 1 0.171 (0.088, 0.255) 0.584 (0.418, 0.831) 0.022 0.353 

M 2 0.703 (0.315, 1.091) -0.776 (-2.366, -0.255) 0.001 0.943 

M 3 0.919 (0.636, 1.203) -2.123 (-3.368, -1.339) 0.001 0.878 

M 4 -0.023 (-0.564, 0.517) 1.619 (0.547, 4.792) 0.137 0.540 
Saithe F 1 -0.503 (-2.056, 1.050) 1.941 (0.741, 5.081) 0.428 0.158 

M 1 5.409 (-3.163, 13.980) -7.123 (-27.119, -1.871) 0.056 0.652 

M 3 -6.067 (-59.293, 47.160) 11.048 (0.685, 178.069) 0.202 0.703 
Sprat F 1 0.369 (0.328, 0.410) -0.065 (-0.154, -0.028) 0.036 0.654 

F 3 0.177 (-0.185, 0.538) 0.754 (0.288, 1.972) 0.375 0.272 

M 1 0.328 (0.276, 0.381) -0.125 (-0.300, -0.052) 0.443 0.149 
Atlantic mackerel - 1 0.310 (0.250, 0.370) 0.409 (0.247, 0.676) 0.464 0.010 

- 3 0.426 (0.357, 0.494) 0.480 (0.272, 0.847) 0.115 0.144 
 
 
Assessing LMLP method performance with simulated datasets  

 

Performance of the LMLP method was explored in simulated datasets for two Atlantic cod 

stocks with different life-history characteristics under a range of values for CV, 𝑔, age at 

maturity and selectivity parameters. Populations simulated when the CV was 0.15 for Greenland 

cod and when the CV was 0.25 for Skagerrak cod represent baseline parameters. The LMLP 

method successfully estimated maturity for the Greenland stock under the baseline scenario, 

where 9 out of 10 LMLP estimates were within ±1 year of the true value (Fig. 3 panel A). 

However, LMLP analyses did not successfully estimate maturity for the earlier-maturing 
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Skagerrak cod stock for baseline simulations (1 out of 10 LMLP estimates were within ±0.5 year 

of the true value) (Table 2, Fig. 3). LMLP analyses generally performed better across all 

simulations in the Greenland stock even when life-history parameters and sampling regimes were 

varied, with maturity estimates falling within ±one year of the true value in 72% of cases (Table 

2, Fig. 3). In contrast, the method generally performed poorly for the early maturing Skagerrak 

stock, where maturity estimates fell within ±0.5 year of the true value in only 28% of cases. 

Notably, LMLP estimates from each of the 10 replicate samples for each parameter combination 

were variable, especially for high values of CV and small sample sizes (Table 2). The 

performance of LMLP analysis was most sensitive to increases in the minimum size limit of fish 

in the sample, where maturity estimates fell were outside the specified confidence bounds (±1 

year for Greenland and ±0.5 year for Skagerrak simulations) in 70% of simulations across the 

two stocks for the largest minimum size limit (Table 2, Fig. 3 panel D). We also characterised 

the LMLP method’s performance by testing whether the 95% CI’s of LMLP estimates included 

the simulated maturity value (Table 2), but method performance outcomes for different 

parameter sets were similar to those outlined above. 
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Figure 3. Statistical age at maturity estimates from 10 replicates of data sets for Greenland and 
Skagerrak cod stocks simulated using different life-history parameters and sampling regimes. 
Each panel represents a different parameter (panel ‘a’ - CV, ‘b’ - 𝑔, ‘c’ – age at maturity input, 
‘d’ - minimum fisheries size limit (mm), ‘e’ – age at 50% selectivity and ‘f’ - sample size (𝑛)). 
Dashed lines represent age at maturity inputs for the Skagerrak stock and solid lines are for the 
Greenland stock. Points represent mean values (squares show Skagerrak and triangles show 
Greenland stocks) and bars represent ranges (min and max values) for LMLP estimates across 10 
replicate simulated populations. Grey shaded areas are the ranges of agreement for LMLP 
estimates against true maturity in simulations (±1 year for Greenland and ±0.5 year for 
Skagerrak stocks). 
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Table 2. Results of simulation analyses where LMLP estimates are compared to age at maturity 
model inputs in simulated Greenland and Skagerrak datasets. Age at maturity model inputs were 
8 years for the Greenland stock and 2 years for the Skagerrak stock across simulations except 
where specifically varied (i.e. in Age at maturity input columns). Parameter values are 
represented in rows alongside LMLP ranges of maturity age (min and max values in years). 
Proportions of estimated 95% confidence intervals that contained the true maturity age and the 
proportion of estimates that fell within ±1 year (Greenland) or within ±0.5 year (Skagerrak) of 
the true maturity age are also shown (based on 10 replicate maturity estimates for each parameter 
combination). Parameter values with an asterisk represent baseline values for each stock. 

   

   Greenland stock Skagerrak stock 

   

(Baseline parameters; age at maturity = 8, g = 0.18, h = 
95.23, t1 = 0.25 and CV = 0.156) 

(Baseline parameters; age at maturity = 2, g = 0.69, h = 
268.21, t1 = 0.64 and CV = 0.237) 

Parameter   Value LMLP range 

Pr. LMLP 
95% CI's that 
contain true 

value 

Pr. LMLP 
within ±1 

year of true 
value Value LMLP range 

Pr. LMLP 
95% CI's that 
contain true 

value 

Pr. LMLP 
within ±0.5 
year of true 

value 
CV 0.05 7.8-8.4 0.9 1.0 0.05 2.0-2.4 0.2 1.0 

0.15 * 7.7-9.3 0.9 0.9 0.15 2.4-3.5 0.2 0.3 
0.25 6.0-10.6 0.8 0.6 0.25 * 1.5-3.9 0.3 0.1 
0.35 4.6-10.6 0.9 0.5 0.35 2.2-4.4 0.1 0.1 
0.45 6.9-13.1 0.9 0.6 0.45 1.4-4.4 0.3 0.3 

g         0.050 2.0-3.4 0.3 0.5 
        0.237 2.2-3.5 0.3 0.2 
        0.425 1.6-3.7 0.4 0.4 
        0.613 2.0-3.9 0.1 0.1 
        0.800 2.0-3.1 0.4 0.2 

Age at maturity input 
(years) 

5 4.0-5.8 1 1.0 1 1.6-5.4 0 0.0 
6 5.0-7.4 0.8 0.8 2  1.1-3.8 0.3 0.5 
7 6.6-7.6 1 1.0         
8  7.7-9.7 0.7 0.7         
9 8.4-10.4 0.9 0.9         

Minimum size (mm) 100 6.6-8.6 0.9 0.9 200 4.0-7.7 0.2 0.0 
200 7.5-9.0 0.8 1.0 250 3.4-8.5 0.4 0.0 
300 7.9-11.5 0.6 0.5 300 3.1-5.7 0.0 0.0 
400 8.0-9.6 1.0 0.7 350 4.3-6.0 0.0 0.0 
500 8.0-12.0 0.8 0.6 400 4.5-6.0 0.0 0.0 

50% sigmoidal 
fisheries selectivity 

4 4.0-9.1 0.5 0.2 2 1.2-3.8 0.5 0.5 
6 5.0-10.2 0.7 0.6 3 2.0-3.9 0.6 0.4 
8 6.3-11.0 0.8 0.6 4 2.2-3.3 0.3 0.6 

10 6.4-10.2 0.7 0.6 5 1.6-3.6 0.3 0.5 
12 6.8-8.7 0.9 0.9 6 1.7-3.5 0.4 0.5 

Sample size (n) 50 5.6-13 0.7 0.4 50 1.2-3.4 0.9 0.3 
100 7.3-9.3 1 0.8 100 2.2-3.9 0.2 0.1 
150 6.6-10.3 0.7 0.7 150 2.2-4.4 0.4 0.2 
200 7.0-10.6 0.6 0.8 200 1.2-3.1 0.4 0.4 
250 7.3-9.4 0.8 0.8 250 1.6-4.3 0.5 0.5 
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Discussion 

 

In this study we show that, despite obvious appeal, the statistical estimation of maturity using the 

current formulation of the LMLP method seems unlikely to produce reliable estimates of 

maturity in many real-world fisheries datasets. Consistent with Honsey et al. 2017, we find that 

the method works well when applied to high quality datasets of species with specific life-history 

characteristics, including late maturation (⪆ 5 years), small variation around length-at-age (CV 

⪅ 0.2), high continuity of datapoints across ages (e.g. minimum size limit ≤ 200 mm in 

Greenland simulations) and good representation of older individuals (50% fisheries selectivity 

midpoint ⪆ age at maturity). Fisheries datasets, however, typically do not satisfy these 

requirements where there can be: large variation in length-at-age as seen in many geographically 

widespread species, age truncation due to intensive harvest, and an absence of the smallest 

individuals in a population due to fishery-dependent sampling.  

 

The estimation of maturity from auxiliary data sources is an important ambition for the future of 

fisheries research. If successful, statistical estimates of life-history traits could represent 

relatively cheap sources of crucial data that could be used in current management contexts and to 

answer ecological and evolutionary questions across historical growth records. However, such 

techniques are yet to be successfully adopted in any applied examples that we know of. 

A range of approaches have been proposed to statistically estimate age at maturity from either 

individual or population level growth data. Early methods employed segmented linear regression 

to individual growth increments (Rijnsdorp and Storbeck 1995), whilst more recently biphasic 

growth models have been applied to individual-level weight at age (Brunel et al. 2013; Mollet et 
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al. 2010) and population level size-at-age data (Minte-Vera et al. 2016) (techniques reviewed in; 

Honsey et al. 2017; Wilson et al. 2018). The failure to adopt these methods in standard fisheries 

research is surprising given their theoretical basis, validation against some real data (usually 

snapshots of high-quality data) and obvious application. Possible explanations for the lack of 

adoption could be based in the complexity of fitting many of these models, correlations between 

estimated parameters, demanding data requirements or simply low agreement with empirical 

estimates of maturity (Wilson et al. 2018).  

 

When compared to earlier techniques, the likelihood profiling approach presented in Honsey et 

al. (2017) is attractive as it is based upon a popular biphasic growth modelling framework (the 

Lester (2004) model) and is also the first technique to use common, population level length-at-

age data. We identify three possible reasons why LMLP failed to successfully estimate age at 

maturity in our study. 

 

First, a history of intense harvest means that the North Sea stocks analysed here are age-

truncated (ICES 2018). For example, only 12 of 120,000 Atlantic cod individuals were older 

than 12 years, despite this species living to at least 23 years (Beverton and Holt 1959). Likewise, 

only 9% of Atlantic herring were older than six years despite the species living for up to 15 years 

in the North Sea (Corten 2002). This truncation is in stark contrast to the Walleye datasets used 

to validate the LMLP method in Honsey et al. (2017) that comprised many old and large 

individuals, an even spread of individuals across ages, and adequate precision. The simulated 

datasets that were used to generate error characterisation for LMLP estimates (Honsey et al. 

2017) also included many older individuals and were intended to replicate fisheries-independent 
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sampling. Age truncation in intensively harvested stocks is likely to be a key problem for LMLP 

methods, because growth trajectories cannot be properly estimated from such data and estimates 

of maturity become inaccurate.  

 

Many commercially important stocks are harvested at high rates and show similar age truncation 

to the North Sea stocks (e.g. Berkeley et al. 2004; Hsieh et al. 2010). The datasets used to 

validate LMLP analyses in Honsey et al. (2017) could thus be considered atypical for large-scale 

fisheries. This highlights a potential paradox with obtaining the datasets required for maximal 

LMLP method performance in exploited stocks: whilst the heavily fished stocks generally have 

the largest size-at-age data collections and are most likely to display temporal trends in maturity 

ages (Audzijonyte et al. 2013a), their populations often lack the full age distribution needed to 

adequately estimate growth curves. Moreover, the restricted age distribution observed in our 

study is not caused by fisheries based sampling, as North Sea datasets were derived from fishery 

independent surveys. Therefore, the observed age truncation is a real phenomenon which cannot 

be “improved” other than by reducing fishing mortality.  

 

Truncation of younger ages also affected estimation of age at maturity, as removing juveniles 

from simulated datasets also impacted the LMLP method’s performance. This situation can arise 

when datasets are derived from catches with minimum size regulations (e.g. fishery-dependent 

surveys) as is the case for Australian datasets analysed here. This situation could be improved 

with better sampling, and at least occasional fisheries independent surveys (further simulations 

are needed to assess the minimum amount of surveys needed to adequately characterise early 

growth). Unfortunately, time series of empirically derived maturity estimates do not exist for the 
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Australian data and so we cannot formally assess the LMLP method’s performance here. 

However, qualitative comparisons with the few snapshot empirical estimates of maturity for 

Australian species suggested poor LMLP method performance (results not shown). Datasets 

generated from sampling of commercial catches, such as in our Australian example, are subject 

to many sources of selection (e.g. selection on growth rate and/or fisher behaviour) which can 

result in further data bias and failure to estimate accurate population level growth curves. Given 

that LMLP performed poorly on fishery independent datasets that we assume to be unbiased, 

LMLP is even less likely to work in fishery-dependent contexts. Nevertheless, the LMLP method 

could potentially be useful for less intensively harvested stocks and may hold promise for 

maturity assessment of new fisheries. 

 

The second reason why the LMLP method may not have performed well is that biphasic 

approaches are sensitive to the duration of the juvenile growth phase (Honsey et al. 2017). A 

relatively young age at maturity could mean that not enough data is available to adequately 

characterize juvenile growth when size data are derived annually. This scenario is likely 

commonplace as age data within fishery datasets is usually estimated from annual growth 

increments deposited in the otoliths of individual fish (Morrongiello et al. 2012). Indeed, our 

simulations of an early maturing stock from the Norwegian Skagerrak coast showed weak LMLP 

technique performance regardless of parameter values and sampling regime. This finding is in 

agreement with simulated early-maturing populations provided in Honsey et al. (2017). 

Paradoxically however, the only North Sea dataset where the LMLP method gave a similar result 

to the empirical age at maturity estimate was the early maturing (approx. 2 years) Atlantic 

mackerel in Quarter 1, whereas LMLP estimates for the later maturing saithe were generally bad. 
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It is possible that the mackerel result is due to chance given the number of statistical comparisons 

made in our study. 

 

Third, modelling approaches to estimate maturity from growth data rely on accurate estimation 

of age and size; these characteristics are often themselves prone to measurement error (Campana 

2001). Measurement error is likely to result in decreased precision of size-at-age datasets and in 

turn affect LMLP estimate accuracy. Moreover, the empirical estimates of maturity used to 

validate the LMLP method here are treated as true values, yet they necessarily have associated 

errors and biases. Empirical maturity estimation is usually described by macroscopic inspection 

of gonad tissue which is prone to error (Flores et al. 2019) and logistic regression models 

commonly used to characterise maturity are also sensitive to issues such as low sample size. Any 

biases in sampling used to assess population level maturity (e.g. capturing only the fastest 

growing individuals at around the maturation age) will even further increase this error. LMLP 

and EEM also have slightly different interpretations of maturity, where LMLP attempts to 

estimate the onset of investment in reproduction and EEM represents a population average based 

on visual inspection of gonads (Honsey et al. 2017). We attempted to address the impact of this 

difference by regressing LMLP against EEM-1 year (as suggested in: Honsey et al. 2017), but 

performance was not improved. Moreover, given the assumption that any differences between 

LMLP and EEM are consistent within a species, our analyses would still have identified 

correlations between the two, if present. Generally, the empirical maturity estimates of the North 

Sea species used in our analyses are considered robust and used as time-varying parameters in 

age based stock assessment methods (ICES 2019). Nevertheless, the issue of regressing 

statistical estimates of maturity against empirical measures, each with their own potential sources 
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of error, poses a general statistical problem that cannot be addressed in this study or when 

dealing with real world fisheries datasets. Ideally, statistical techniques should be validated 

against datasets of the highest quality but with reasonably high variability in size-at-age and size 

at maturity; unfortunately for most large fisheries stocks such datasets are impossible to obtain. 

 

Finally, it remains unclear to what degree selectivity associated with the fisheries-dependent or 

independent sampling is likely to affect statistical estimates of maturity. If some age groups are 

not sampled randomly (i.e. fast or slow growing individuals are more likely to be caught), this 

may bias inferred growth curves compared to the real population sample. All sampling is 

inherently selective which may bias empirical estimates of maturity or growth away from ‘truth’ 

(e.g. Bettoli and Miranda (2001)) or at least disagree with datasets collected with differing 

methodologies (e.g. scientific and commercial catch data). While these issues should be explored 

further, it is reasonable to assume that, as long as sampling is done in a similar way, LMLP 

should still be able to detect temporal trends, even if consistently biased from the true population 

value. This was not, however, the case in our study.  

 

Future directions 

 

Stock assessment models can be sensitive to changes in life history traits such as maturity, with 

even small changes causing shifts to reference points in population estimation (Methot and 

Wetzel 2013). Given that age at maturity is known to respond to both warming (e.g. Crozier and 

Hutchings 2014) and fisheries induced mortality (e.g. Law 2007), failure to account for these 

changes can increase assessment error and ultimately erode our ability to manage harvests 
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sustainably (Laugen et al. 2014). This is likely to be the case both for assessments that assume 

maturity as a function of age or as a function of length, as in both cases the growth and 

productivity of the stock will change as maturation changes (Laugen et al. 2014). For many 

harvested species, however, maturity is not routinely assessed and successful statistical 

techniques to estimate maturity are critically needed to improve management of fisheries stocks 

and contribute to ‘evolutionarily enlightened management strategies’ (Ashley et al. 2003; 

Jorgensen et al. 2007).  

 

Further exploration of Bayesian approaches to estimate statistical maturity from growth data is 

warranted (Wilson et al. 2018). Whilst performance of Bayesian and likelihood profiling (as 

applied in this manuscript) have been shown to perform similarly on simulated datasets, the 

possibility of including prior information on maturity may improve the performance of Bayesian 

approaches (Wilson et al. 2018). However, our study shows that performance should be tested 

upon ‘real’ datasets, as simulations typically assume perfect spatial and temporal mixing and are 

likely to underestimate the amounts of variability seen in real fishery datasets. The use of 

integrated models to estimate maturity should also be investigated as a promising technique 

(Maunder and Punt 2013). Here, growth, maturity and selectivity could be estimated on the same 

joint likelihood distribution which could alleviate some of the issues around fisheries selection 

and data quality as discussed above. Establishing minimum data quality requirements of 

statistical maturity estimates is a critical step for use in fisheries management. We also need to 

better explore cases, stocks and assessment methods that are most sensitive to small changes in 

maturation age and size.  
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One important step in aiming to improve statistical maturity estimates should consider back 

calculated individual length-at-age data, where an individual fish’s previous length is inferred 

from measured growth increments in biological hard parts such as otoliths (Francis 1990). Here, 

individual growth curves would be combined by year of capture or cohort with the inclusion of 

random terms into statistical methods, such as LMLP. This is different to the approach we 

investigated in this manuscript, where growth is inferred from population averages. The 

inclusion of individual growth would align the LMLP method with earlier approaches to estimate 

age at maturity that use the less common weight-at-age data format (Brunel et al. 2013; Mollet et 

al. 2010). Individual growth estimates may also allow enough data for LMLP to be estimated for 

cohorts rather than by year of capture, which has been the norm (see: Wilson et al. (2018)). 

Analysing by cohort groups individuals into shared environmental experiences and would likely 

improve growth and maturity characterisation through for example, reductions in variation 

around life-histories. It should be noted, however, that Mollet and Brunel’s techniques 

mentioned above also had issues when tested against simulated and fisheries data (reviewed in: 

Honsey et al. 2017), and no examples yet exist of application in fisheries management. 

Nonetheless, the estimation of individual growth improves the temporal extent and quality of 

existing fishery datasets as multiple size-at-age records become available for each individual. 

This in turn allows for datasets to be subsetted with greater complexity, whilst still maintaining 

minimum data requirements, which should increase precision (as evidenced by our precision 

analysis above) and thus drive greater LMLP method performance. Additionally, such otolith 

based data will provide access to early growth records through back calculation from older 

catches and will aid estimation of juvenile growth, especially for datasets where juvenile data is 

lacking. However, LMLP method performance would still need to be assessed as back-
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calculation provides another potential source of error (Campana 2001). Notably, the use of 

individually derived data will not help in cases where older ages are simply missing due to 

intensive fishing, and the issue of no maturity data for stocks with which to validate LMLP still 

remains. 
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Supplementary methods 13 

 14 

Summary of sample collection methodologies 15 

Datasets used in this manuscript were from the North Sea and south-east Australia. North Sea 16 

data come from fishery independent surveys while Australian data derive from fishery catch 17 

records.  18 

 19 

North Sea datasets were downloaded from the DATRAS database (http://www.ices.dk/marine-20 

data/dataset-collections/Pages/default.aspx) on the 11/5/2018. Specimens contributing to this 21 

dataset are collected in the International Bottom Trawl Survey (IBTS) in the North Sea which is 22 

contributed to by multiple European countries and overseen by the International Council for the 23 

Exploration of the Sea (ICES) (ICES 2015). These surveys have been conducted since the 24 

beginning of the 1960’s and methodologies have varied slightly over time where for example, 25 

quarter of the year sampled, sweep lengths and fishing gears have changed (ICES 2015). Trawls 26 

have occurred each year and are stratified into survey grids of approximately 30 x 30 nautical 27 

miles and multiple species and data types are recorded (e.g. recruitment indices, monitoring of 28 

commercial stocks and collection of hydrographical and environmental information) (ICES 29 

2015). Trawl ‘shots’ are standardised (e.g. standard speed is 4 knots and 30 minutes in length) 30 

and the entire catch is sorted and sampled when possible (large catches can be subsampled) 31 

(ICES 2015). Catches are sorted into species for measurement of length, sex, age and maturity 32 

(ICES 2015). 33 

 34 
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Australian datasets were obtained from the Australian Fisheries Management Authority with 35 

permission on the 29/5/2017. These data are part of a routine monitoring programme run by 36 

Australian authorities since 1941 on the Southern and Eastern Scalefish and Shark Fishery 37 

(Knuckey et al. 1999). This fishery covers a large geographical area spanning the south-east 38 

coast of Australia from the state of Queensland through to South Australia. Fleets operate out of 39 

multiple ports, target multiple species and mainly use trawl gears (Knuckey et al. 1999). 40 

Fisheries observers regularly obtain specimens from commercial operations at ports to provide 41 

age estimates for stock assessment modelling (Knuckey et al. 1999).42 
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Supplementary Table 1. Life-history parameters for North Sea and Australian species analysed in the manuscript. Von Bertalanffy 43 
growth parameters for each species are taken (as averages) from Fishbase (www.Fishbase.org). Linf is the asymptotic length, K is the 44 
rate at which growth approaches asymptotic length (of dimension time-1) and Ø is a growth performance index equal to log10 K + 2/3 45 
log10 Linf. Maturity parameters are shown from studies on North Sea or Australian stocks unless specified. Lengths represent total 46 
length and sexes are combined unless indicated otherwise (i.e. standard length (sl)). 47 

Parameter Atlantic 

herring 

Atlantic 

cod 
Haddock Plaice Saithe Atlantic mackerel Sprat Pink ling 

Orange 

roughy 

Blue 

grenadier 

Jackass 

morwong 
Tiger flathead 

Linf (cm) 31 110 70 54.4 111 42 14.7 136 40.1 (sl) 102 45.5 62.2 

K 0.3 0.1 0.2 0.1 0.1 0.2 0.8 0.1 0.05 0.2 0.2 0.3 

ø 2.45 3.25 2.99 2.51 3.09 2.62 2.25 3.24 1.85 3.22 2.54 3.05 

Age at maturity 

(years) 
2.7 3.8 

M: 2 

F: 2.5 
2.5 4.6 2-3 1.2 (Baltic data) 5-7 32 

F: 5.4 

 M: 4.3 

F 3  

M: 3 
4-5 

Length at 

maturity (cm) 
24.1 69.7 

F: 31.5 

M: 27.5 
26.6 55.4 28 (Western stock) 8.5 60-74 28-32 

F: 63.7 (sl) 

M: 56.8 (sl) 

F: 25  

M: 27 

F: 36 

M: 30 

Maturity parameters for each specific species are from as follows: Atlantic herring (Froese and Sampang 2013), Atlantic cod (ICES 1996), haddock (Hislop and Shanks 1981), plaice (age: (ICES 2017) 48 
and length: (ICES 1996)), saithe (ICES 1996), Atlantic mackerel (age:(ICES 2005) and length: (Lockwood and Shepherd 1984)) and sprat (Froese and Sampang 2013) from the North Sea and pink ling 49 
(age: (Caton and McLaughlin 2000) and length: (Tilzey 1994)), orange roughy (age: (Fenton et al. 1991) and length: (Mace et al. 1990)), blue grenadier (Russel and Smith 2007), jackass morwong 50 
(age: (Smith and Wayte 2001) and length: (Jordan 1999)) and tiger flathead (Fairbridge 1951) from south-east Australi51 
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 52 

Supplementary Figure 1. Example of selectivity curve (equation (6) in the manuscript) applied to 53 

populations in our simulation analyses where the probability of selection (fishing mortality) is 54 

plotted against age. Here, the selection midpoint (𝑠𝑚) is 8 and the steepness (𝑠𝑡) of the curve is 55 

2. 56 

 57 

 58 

 59 

 60 
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Supplementary results 61 
 62 
Supplementary Table 2. Full results of precision calculations in North Sea and south east Australian species. Calculations are done for 63 
the entire species datasets and for different subsampling combinations generated from the data-filtering of datasets by species and 64 
unique combinations of potential factors of interest (subsetting factor column), then divided into variables of interest (n and precision). 65 
Values represent means and standard errors across all datasets generated by data-filtering all available data by factor combinations for 66 
each species (rows denoted by * represent raw values as they are generated from one dataset). Values in brackets represent the number 67 
of datasets generated by each subsampling design.  68 

      

Atlantic herring Atlantic cod Haddock Plaice Saithe Atlantic mackerel Sprat Pink ling Orange roughy Blue grenadier Jackass morwong Tiger flathead 

Subsetting 
factor Variable Sex 

m se m se m se m se m se m se m se m se m se m se m se m se 

Species n *   
146391 

(1)   
120474 

(1)   
143995 

(1)   
74301 

(1)   
36409 

(1)   
28007 

(1)   
29139 

(1)   
16416 

(1)   
15249 

(1)   
40845 

(1)   
10436 

(1)   
13544 

(1)   

 precision *   10  5  6  6  8  11  8  9  12  10  9  9  

Sex n * f 76121 
(1) 

 60744 
(1) 

 72354 
(1) 

 42207 
(1) 

 17443 
(1) 

 14265 
(1) 

 16302 
(1) 

 9317 
(1) 

 7609 
(1) 

 20710 
(1) 

 5801 
(1) 

 7869 
(1) 

 

  m 70270 
(1) 

 59730 
(1) 

 71641 
(1) 

 32094 
(1) 

 18966 
(1) 

 13742 
(1) 

 12837 
(1) 

 7099 
(1) 

 7640 
(1) 

 20135 
(1) 

 4635 
(1) 

 5675 
(1) 

 

 Precision * f 10  5  6  6  8  11  8  9  12  11  9  10  

  m 10  5  6  6  8  11  8  10  13  12  9  11  

Year (of 
capture) n   

2762 
(53) 317 

2510 
(48) 212 

3063 
(47) 264 

2654 
(28) 345 

984 
(37) 128 

718 
(39) 97 

833 
(35) 113 

513 
(32) 60 

1386 
(11) 277 

1459 
(28) 127 

435 
(24) 48 

616 
(22) 83 

 precision   10 0 5 0 6 0 6 0 10 1 14 0 9 0 12 0 15 1 14 0 13 0 11 0 

Zone (of 
capture) 

n   14639 
(10) 

2790 12047 
(10) 

2729 15999 
(9) 

5486 7430 
(10) 

1559 4551 
(8) 

3646 3112 
(9) 

967 2914 
(10) 

699 1642 
(10) 

575 2178 
(7) 

944 4538 
(9) 

2842 949 
(11) 

399 2257 
(6) 

1301 

 precision   10 1 5 0 6 0 6 0 8 0 13 1 9 1 15 2 18 1 13 1 14 1 10 1 

Quarter (of 
capture) n   

36598 
(4) 17392 

30119 
(4) 14707 

35999 
(4) 18062 

18575 
(4) 10645 

9102 
(4) 4492 

7002 
(4) 4530 

7285 
(4) 4775 

4104 
(4) 447 

3812 
(4) 2552 

10211 
(4) 3169 

2609 
(4) 328 

3386 
(4) 732 

 precision   11 0 5 0 6 0 7 1 9 0 13 1 10 1 9 0 14 1 11 0 10 1 9 0 

Month (of 
capture) 

n                  1368 
(12) 

158 1271 
(12) 

711 3404 
(12) 

1064 870 
(12) 

84 1129 
(12) 

166 

 precision                  10 0 19 2 11 0 11 1 9 0 

Month x 
Year n                  81 

(203) 5 
492 
(31) 98 

201 
(203) 17 

70 
(150) 4 

94 
(144) 5 

 precision                  16 1 21 2 18 0 20 1 15 1 

Month x 
Zone n                  235 

(70) 26 
635 
(24) 246 

601 
(68) 204 

156 
(670 16 

251 
(54) 43 

 precision                  13 1 20 1 18 2 17 1 13 1 

Sex x Year n f 1436 
(53) 

167 1266 
(48) 

108 1539 
(47) 

130 1507 
(28) 

201 485 
(36) 

61 366 
(39) 

49 466 
(35) 

65 291 
(32) 

33 692 
(11) 

122 740 
(28) 

70 242 
(24) 

32 358 
(22) 

48 

  m 
1326 
(53) 

151 
1244 
(48) 

104 
1524 
(47) 

135 
1146 
(28) 

145 
527 
(36) 

68 
352 
(39) 

48 
367 
(35) 

48 
222 
(32) 

28 
695 
(11) 

161 
719 
(28) 

63 
193 
(24) 

18 
258 
(22) 

37 

 precision f 10 0 5 0 6 0 6 0 11 1 14 0 9 0 12 1 17 1 15 1 14 1 12 1 

  m 10 0 5 0 6 0 6 0 11 1 15 1 9 0 14 1 16 1 17 1 14 1 15 1 

Sex x Zone n f 7612 
(10) 

1420 6074 
(10) 

1415 8039 (9) 2764 4221 
(10) 

840 2180 
(8) 

1758 1585 
(9) 

489 1630 
(10) 

396 932 (10 326 1087 
(7) 

473 2301 
(9) 

1443 527 
(11) 

232 1312 
(6) 

721 

  m 7027 
(10) 

1373 5973 
(10) 

1317 7960 (9) 2724 3209 
(10) 

737 2371 
(8) 

1888 1527 
(9) 

479 1284 
(10) 

304 710 
(10) 

249 1091 
(7) 

474 2237 
(9) 

1403 421 
(11) 

170 946 (6) 581 

 precision f 10 1 5 0 6 0 7 0 9 1 13 1 10 1 16 4 21 2 13 1 15 1 11 1 

  m 10 1 5 0 6 0 7 0 11 3 14 2 9 1 20 3 21 2 18 4 15 1 12 0 

Sex x 
Quarter n f 

19030 
(4) 9106 

15186 
(4) 7315 

18089 
(4) 9193 

10552 
(4) 6080 

4361 
(4) 2148 

3566 
(4) 2302 

4076 
(4) 2611 

2329 
(4) 229 

1902 
(4) 1248 

5178 
(4) 1659 

1450 
(4) 112 

1967 
(4) 430 

  m 17568 
(4) 

8288 14933 
(4) 

7396 17910 
(4) 

8886 8024 
(4) 

4638 4742 
(4) 

2346 3436 
(4) 

2228 3209 
(4) 

2170 1775 
(4) 

229 1910 
(4) 

1305 5034 
(4) 

1510 1159 
(4) 

220 1419 
(4) 

314 

 precision f 11 1 5 0 6 0 8 2 9 0 14 1 10 1 10 0 16 2 11 1 10 1 10 0 
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  m 11 0 5 0 6 0 7 1 9 0 13 1 10 1 11 0 15 1 12 0 10 1 11 1 

Sex x 
Month 

n f                776 
(12) 

96 634 
(12) 

363 1726 
(12) 

582 483 
(12) 

44 656 
(12) 

94 

  m                592 
(12) 

65 
637 
(12) 

350 
1678 
(12) 

485 
386 
(12) 

45 
473 
(12) 

75 

 precision f                10 0 20 2 12 0 11 1 11 0 

  m                11 0 20 2 13 0 11 1 12 0 

Year x Zone n   
335 

(437) 16 
297 

(405) 14 
395 

(365) 25 
300 

(248) 18 
199 

(183) 31 
124 

(225) 9 
132 

(220) 7 
149 

(110) 14 
726 
(21) 85 

382 
(107) 42 

137 
(76) 17 

218 
(62) 26 

 precision   12 0 7 0 8 0 8 0 13 1 17 0 11 0 15 1 18 1 18 1 19 1 13 0 

Year x 
Quarter 

n   335 
(100) 

16 297 (96) 14 395 (94) 25 300 
(56) 

18 199 
(82) 

31 124 
(78) 

9 132 
(58) 

7 163 
(101) 

13 803 
(19) 

182 425 
(96) 

36 141 
(74) 

12 218 
(62) 

16 

 precision   12 0 7 0 8 0 8 0 13 1 17 0 11 0 14 0 17 1 16 0 17 1 13 1 

Quarter x 
Zone n   

3957 
(37) 698 

3256 
(37) 627 

4000 
(36) 1052 

2562 
(29) 499 

1300 
(28) 679 

903 
(31) 264 

1166 
(25) 252 

586 
(28) 93 

953 
(16) 398 

1459 
(28) 600 

337 
(31) 65 

616 
(22) 179 

 precision   12 0 6 0 7 0 7 1 11 1 15 1 12 1 13 1 18 1 18 4 16 1 11 1 

Sex x Year x 
Zone 

n f 175 
(436) 

8 150 
(405) 

7 206 
(352) 

13 171 
(247) 

10 108 
(161) 

17 64 
(222) 

4 74 
(220) 

4 85 
(109) 

8 362 
(21) 

43 194 
(107) 

23 76 (76) 11 127 
(62) 

15 

  m 
161 

(436) 
8 

148 
(404) 

7 
201 

(356) 
13 

129 
(248) 

8 
112 

(170) 
17 

63 
(219) 

4 
59 

(218) 
3 

68 
(105) 

7 
364 
(21) 

48 
190 

(106) 
21 63 (74) 7 93 (61) 12 

 precision f 12 0 7 0 8 0 9 0 14 1 18 0 12 0 17 1 21 1 20 1 20 1 15 1 

  m 12 0 7 0 8 0 9 0 14 1 18 0 11 0 20 1 20 1 22 1 21 1 17 1 

Sex x Year x 
Quarter n f 

761 
(100) 56 633 (96) 30 770 (94) 43 

754 
(56) 74 

215 
(81) 21 

183 
(78) 23 

281 
(58) 28 

93 
(100) 7 

400 
(19) 88 

218 
(95) 19 79 (73) 7 

127 
(62) 10 

  m 
703 

(100) 
50 622 (96) 30 762 (94) 45 

573 
(56) 

54 
234 
(81) 

23 
176 
(78) 

23 
221 
(58) 

22 
71 

(100) 
6 

402 
(19) 

98 
210 
(96) 

19 64 (72) 6 93 (61) 7 

 precision f 12 0 6 0 7 0 7 0 11 0 16 0 10 0 15 1 20 1 18 0 18 1 15 1 

  m 12 0 6 0 7 0 7 0 11 0 16 0 10 0 17 1 19 1 21 1 19 1 17 1 

Sex x Year x 
Month n f                47 

(200) 3 
245 
(31) 50 

103 
(202) 9 

39 
(148) 3 

55 
(144) 3 

  m                37 
(190) 3 

246 
(31) 50 

100 
(201) 9 

32 
(145) 2 

40 
(142) 3 

 precision f                18 1 23 1 20 1 20 1 18 1 

  m                19 1 22 2 22 1 22 1 19 1 

Sex x Zone x 
Quarter n f 2057 

(37) 362 1642 
(37) 318 2010 

(36) 534 1455 
(29) 277 646 

(27) 339 460 
(31) 136 652 

(25) 139 333 
(28) 52 476 

(16) 196 740 
(28) 307 187 

(31) 38 358 
(22) 99 

  m 
1899 
(37) 337 

1614 
(37) 310 

1990 
(36) 519 

1146 
(28) 235 

677 
(28) 352 

458 
(30) 132 

535 
(24) 116 

254 
(28) 42 

478 
(16) 203 

746 
(27) 304 

150 
(31) 29 

270 
(21) 85 

 precision f 12 0 6 0 8 1 9 1 11 1 15 1 12 1 16 2 22 1 18 3 17 1 13 1 

  m 12 0 6 0 8 0 8 1 11 1 15 1 12 1 17 2 21 1 18 2 19 2 13 1 

Sex x 
Month x 
Zone 

n f                133 
(70) 14 

317 
(24) 122 

305 
(68) 109 87 (67) 10 

146 
(540 24 

  m                104 
(68) 12 318 

(24) 126 301 
(67) 97 71 (65) 7 109 

(52) 20 

 precision f                17 2 22 1 18 1 18 1 15 1 

  m                17 1 21 1 19 1 20 1 16 1 

Year x 
Month x 
Zone 

n                  54 
(304) 

3 
401 
(38) 

58 
125 

(327) 
10 

50 
(207) 

3 
58 

(232) 
3 

 precision                  18 1 21 1 20 0 21 1 17 0 

Sex x Year x 
Zone x 
Month 

n f                31 
(298) 

2 
200 
(38) 

31 
64 

(323) 
5 

29 
(203) 

2 
34 

(231) 
2 

 m                26 
(273) 2 

201 
(38) 30 

63 
(318) 5 

23 
(200) 2 

25 
(235) 2 

 precision f                21 1 24 1 22 1 22 1 19 1 

  m                21 1 23 1 23 1 24 1 21 1 

Sex x Year x 
Zone x 
Quarter 

n f 99 (767) 3 79 (772) 3 113 
(640) 

5 105 
(403) 

4 58 
(303) 

6 41 
(351) 

2 47 
(346) 

2 44 
(212) 

3 262 
(29) 

38 91 
(227) 

8 42 
(138) 

3 59 
(134) 

4 

 m 91 (768) 3 78 (769) 2 
111 

(643) 5 
80 

(401) 3 
60 

(316) 7 
39 

(348) 2 
38 

(340) 2 
36 

(199) 3 
263 
(29) 39 

89 
(226) 8 

34 
(135) 3 

43 
(131) 3 

 precision f 13 0 8 0 9 0 10 0 15 1 20 1 14 0 20 1 22 1 22 1 20 1 17 1 

  m 14 0 8 0 9 0 9 0 15 0 19 0 13 0 20 1 21 1 23 1 23 1 19 1 

 
                           

69 
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 70 

 71 

Supplementary Figure 2. Full comparison of statistical estimates of maturity (LMLP) against 72 
empirical estimates of maturity (EEM)(on raw maturity data) for Atlantic herring as supplement 73 
to analyses presented in Table 1. Left two plots on each row represent LMLP estimates (black 74 
points with black loess smoothers) through years plotted against matched EEM estimates (grey 75 
points and smoothers) for males and females. Right two plots show standardised major axis 76 
regression analyses where LMLP and EEM estimates are directly compared where black dashed 77 
lines represent a 1:1 relationship. Differences in temporal replication of LMLP and EEM arise 78 
from instances of poor model fits to data in LMLP or non-convergence in EEM for those years 79 
which were subsequently excluded from regression analyses (see methods). Each row of plots 80 
depicts individual Quarters (of capture, within Years) represented by numbers on the right side 81 
of plot pairs. Note a log-transformation in axes scale in the right two columns of plots. 82 
 83 

 84 
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Supplementary Figure 3. Full comparison of statistical estimates of maturity (LMLP) against 85 
empirical estimates of maturity (EEM)(on raw maturity data) for saithe as supplement to 86 
analyses presented in Table 1. Note that one regression was not possible due to low replication. 87 
For further details see legend of figure S1. 88 
 89 

 90 

Supplementary Figure 4. Full comparison of statistical estimates of maturity (LMLP) against 91 
empirical estimates of maturity (EEM)(on raw maturity data) for sprat as supplement to analyses 92 
presented in Table 1. Note that one regression was not possible due to low replication. Very wide 93 
error bars or those spanning 0 are not shown to improve figure clarity. For further details see 94 
legend of figure S1. 95 
 96 

 97 

Supplementary Figure 5. Full comparison of statistical estimates of maturity (LMLP) against 98 
empirical estimates of maturity (EEM)(on raw maturity data) for Atlantic mackerel as 99 
supplement to analyses presented in Table 1. Each row of plots depicts individual Quarters (of 100 
capture, within Years) represented by numbers on the right side of plots. For further details see 101 
legend of figure S1. 102 
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 103 

 104 

Further exploration of LMLP performance  105 
 106 

Here, additional investigation of statistical methods to estimate maturity (LMLP) presented in 107 

Honsey et al. (2017) were conducted in response to the general underperformance of the 108 

technique under fisheries datasets. A number of modified analyses, as suggested by Honsey at al. 109 

(2017), are presented below.   110 

 111 

Honsey et al. (2017) data selection methodology analyses 112 

 113 

Data selection methodologies were matched as closely as possible to those employed in Honsey 114 

et al. (2017) as justified to avoid any possible erroneous age estimation in datasets and increase 115 

LMLP method accuracy as a result. Three species from the North Sea were analysed and include 116 

Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and plaice (Pleuronectes 117 

platessa). Datasets were modified to only include the Quarter (of capture) directly preceding the 118 

month of otolith increment formation (3rd quarter for all species; personal communication (Cefas, 119 

UK)). Secondly, unsexed individuals smaller than the smallest mature male were selected and 120 

randomly allocated to male or female proportions of each respective dataset. Males were then 121 

excluded, and LMLP analyses were conducted on the resulting datasets. LMLP analyses were 122 

then compared to EEM analyses across years (of capture) including samples from either the 123 

whole year (hereafter; EEM (whole year)) or the 3rd quarter of each year (hereafter; EEM (3rd 124 

quarter)) using standardised major axis regression analyses as presented in the main manuscript 125 

(see methods for specific descriptions of LMLP, EEM and standardised major axis regression 126 
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analyses). These comparisons were designed to assay the performance of LMLP analyses against 127 

EEM analyses in a general sense (EEM (whole year)) and also more specifically (EEM (3rd 128 

quarter)). LMLP and EEM estimates were uncorrelated across all analyses (across species and 129 

the differing EEM analyses (LMLP x EEM (whole year) or LMLP x EEM (3rd quarter)) but 130 

differing EEM (EEM (whole year) x EEM (3rd quarter)) analyses were correlated for each 131 

species (Supplementary Table 2, Supplementary Figure 5). 132 

 133 

Supplementary Table 2.  Results of standardised major axis regression analyses comparing 134 
statistical estimates of age at maturity (LMLP) to empirical estimates (EEM)(logistic regression 135 
applied to raw maturity data) for the Quarter preceding the month of otolith increment formation 136 
across Years for females in each Species. LMLP is compared to EEM estimated from both whole 137 
Years of data and also the Quarter matched to that used in LMLP estimation (3rd Quarter in all 138 
cases). EEM (3rd Quarter) vs EEM (whole year) regressions are included for comparative 139 
purposes. Parameter estimates for the regression intercept and slope with accompanying 95% 140 
confidence intervals are also reported. Perfect equivalence between estimates would result in an 141 
R2 value of 1 where slope is 1 and the intercept is 0. 142 
 143 

Species Sex Comparison Intercept Slope R2 P-value 

Atlantic 
cod f LMLP vs EEM (whole year) -0.355 (-0.817, 0.107) 2.023 (1.264, 3.238) 0.034 0.478 

 f LMLP vs EEM (3rd quarter) 0.015 (-0.293, 0.322) 1.345 (0.811, 2.231) 0.024 0.555 

 f 
EEM (whole year) vs EEM 

(3rd quarter) 0.223 (0.152, 0.293) 0.531 (0.394, 0.716) 0.573 <0.001 

Haddock f LMLP vs EEM (whole year) -0.546 (-0.968, -0.123) 3.105 (1.994, 4.835) 0.050 0.281 

 f LMLP vs EEM (3rd quarter) 0.751 (0.504, 0.998) -1.488 (-2.618, -0.845) 0.207 0.057 

 f 
EEM (whole year) vs EEM 

(3rd quarter) 0.180 (0.131, 0.228) 0.368 (0.238, 0.569) 0.285 0.015 

Plaice f LMLP vs EEM (whole year) 1.035 (0.754, 1.316) -1.058 (-1.842, -0.607) <0.001 0.956 

 f LMLP vs EEM (3rd quarter) 0.263 (0.068, 0.457) 0.655 (0.365, 1.177) 0.042 0.398 

 f 
EEM (whole year) vs EEM 

(3rd quarter) 0.079 (-0.042, 0.201) 0.777 (0.571, 1.057) 0.315 0.003 
 144 

 145 

 146 
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 147 

Supplementary Figure 6. Comparisons of LMLP against EEM for three North Sea species using 148 
data selection methodologies from Honsey et al. (2017). Each row of plots represents separate 149 
species; the first row - Atlantic cod, second row – haddock, third row - plaice. The first plot on 150 
each row represent LMLP estimates (black points with black loess smoothers) through years 151 
plotted against matched EEM estimates where either the whole year (light grey points with 152 
smoothers) or the third quarter (dark grey points with smoothers) of data is included (note 153 
differences in y-axis scale). The right three plots on each row show standardised major axis 154 
regression analyses where LMLP and EEM estimates are compared for each Year show (second 155 
plot - LMLP vs EEM whole year, third - LMLP vs EEM 3rd quarter and fourth plot - EEM whole 156 
year vs EEM 3rd quarter). For standardised major axis regression plots, black dashed lines 157 
represent a 1:1 relationship and solid black lines represent significant correlations between 158 
variables. 159 
 160 

Modified analyses to encompass differences in interpretation between LMLP and EEM 161 

 162 
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LMLP and EEM were also compared after subtracting 1 year from all EEM estimates. This was 163 

done because LMLP estimates predict the point at which populations start investing in 164 

reproduction while logistic regressions of raw maturity data predict maturity from visual 165 

inspection of ripe gonads, which occurs later than the onset of reproductive investment. Despite 166 

this EEM adjustment, LMLP estimates still did not show any increase in correlations to EEM 167 

estimates (Supplementary Table 3) and thus, there was no evidence that LMLP was consistently 168 

biased and the performance did not improve if we corrected for the possible underestimation of 169 

maturation by LMLP. 170 

 171 

Supplementary Table 3. Results of standardised major axis regression analyses comparing 172 
statistical estimates of age at maturity (LMLP)(Honsey et al. 2017 model) to adjusted empirical 173 
estimates (EEM - 1)(logistic regression applied to raw maturity data) across Years for each 174 
Species, Sex (excluding Atlantic mackerel) and Quarter (within Year) combination. Parameter 175 
estimates for the regression intercept and slope with accompanying 95% confidence intervals are 176 
also reported. Perfect equivalence between LMLP and EEM-1 estimates would result in an R2 177 
value of 1 where slope is 1 and the intercept is 0. 178 

Species Sex Quarter Comparison Intercept Slope R2 P-value 

Atlantic 
herring 

F 1 LMLP x (EEM -1) 0.329 (0.295, 0.363) 0.527 (0.367, 0.758) <0.001 0.901 

F 2 LMLP x (EEM -1) 0.502 (0.347, 0.657) -0.688 (-2.168, -0.218) 0.026 0.760 

F 3 LMLP x (EEM -1) 0.354 (0.320, 0.387) 0.860 (0.530, 1.396) 0.002 0.837 

F 4 LMLP x (EEM -1) 0.590 (0.212, 0.968) 2.066 (0.555, 7.691) 0.502 0.292 

M 1 LMLP x (EEM -1) 0.343 (0.320, 0.367) 0.347 (0.244, 0.492) 0.021 0.367 

M 2 LMLP x (EEM -1) 0.472 (0.375, 0.568) -0.444 (-1.357, -0.145) 0.002 0.928 

M 3 LMLP x (EEM -1) 0.280 (0.228, 0.331) -1.004 (-1.593, -0.633) 0.001 0.864 

M 4 LMLP x (EEM -1) 0.457 (0.210, 0.703) 0.628 (0.208, 1.891) 0.132 0.548 
Saithe F 1 LMLP x (EEM -1) -0.080 (-1.161, 1.000) 1.554 (0.594, 4.061) 0.432 0.156 

M 1 LMLP x (EEM -1) 3.816 (-1.931, 9.563) -5.624 (-21.402, -1.478) 0.052 0.665 

M 3 LMLP x (EEM -1) -3.326 (-34.580, 27.927) 8.204 (0.510, 132.032) 0.204 0.702 
Sprat F 1 LMLP x (EEM -1) 0.336 (0.229, 0.442) -0.042 (-0.140, -0.013) 0.005 0.909 

F 3 LMLP x (EEM -1) 0.293 (-0.302, 0.889) 1.142 (0.192, 6.788) 0.897 0.208 
Atlantic 

mackerel 
- 1 LMLP x (EEM -1) 0.436 (0.414, 0.459) 0.171 (0.100, 0.294) 0.385 0.024 

- 3 LMLP x (EEM -1) 0.539 (0.452, 0.627) 0.140 (0.075, 0.263) 0.060 0.397 
 179 

 180 
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 181 

LMLP error characterisation 182 

 183 

To ensure our investigation of the LMLP method was exhaustive, LMLP estimates were judged 184 

against error characterisation methodologies suggested by Honsey et al. (2017). The authors 185 

present error characterisation as a series of plots where individual LMLP estimates can be 186 

checked against minimum data amounts, precision and model-estimated g for three levels of age 187 

at maturity to ascertain confidence in LMLP estimates. Honsey et al. (2017) generated error 188 

characterisation using simulated datasets with simulated fishery selection applied and found 189 

increasing data quality requirements for earlier-maturing simulated populations. For analyses 190 

presented here, each LMLP estimate was judged against the nearest lower contour (defined by g 191 

estimated by the model) and excluded from subsequent regression analyses if it fell below the 192 

contour (see; Honsey et al. 2017). Standardised major axis regression analyses were then 193 

performed on all remaining LMLP estimates where comparisons to empirical estimates (EEM) 194 

across all Years for each Species, Sex and Quarter (within Year). Regression analyses that were 195 

not modified by error characterisation (as all analyses fell above relevant error contours) are not 196 

presented here as they unmodified from those presented in Table 2 within the manuscript. Of 6 197 

possible comparisons modified by the exclusion of individual LMLP estimates that failed error 198 

characterisation (all other analyses were unmodified and so are equivalent to those presented in 199 

Table 2), only male saithe datasets from Quarter 1 showed a significant relationship between 200 

LMLP and EEM estimates (Supplementary Table 4, Supplementary Figures 1, 2, 3 and 4). 201 

 202 

Supplementary Table 4. Standardised major axis regression analyses where statistical estimates 203 
of age at maturity (LMLP) have been validated against error characterisation methods presented 204 
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in Honsey et al. (2017) before comparison with empirical estimates (EEM)(logistic regression 205 
applied to raw maturity data) across Years for each Species, Sex (excluding Atlantic mackerel) 206 
and Quarter (within Year) combination. Exclusion of LMLP estimates that fell under error 207 
contours rendered some analyses unsuitable as data amounts were too low. Adjusting maturity 208 
estimates to match interpretation of the LMLP parameter (analogous to methods used to generate 209 
Supplementary Table 2) had no effect on significance on results and are not presented here. 210 
Excluding analyses that fell below error contours for simulated data where maturity = 3 but 211 
above error contours for simulated data where maturity = 5 (this only occurred in 8 saithe 212 
datasets) also had no effect on the significance of standardised major axis regression analyses 213 
and so these analyses are not presented. Parameter estimates for the regression intercept and 214 
slope with accompanying 95% confidence intervals are also reported. Perfect equivalence 215 
between LMLP and EEM estimates would result in an R2 value of 1 where slope is 1 and the 216 
intercept is 0. 217 
 218 

Species 
error 

characterisation 
maturity value 

Sex Quarter Intercept Slope R2 P-value 

Saithe 5 f 1 -0.503 (-2.056, 1.050) 1.941 (0.741, 5.081) 0.428 0.158  
5 m 1 5.409 (-3.163, 13.980) -7.123 (-27.119, -1.871) 0.056 0.652  
3 m 1 -6.625 (-10.310, -2.940) 10.446 (6.424, 16.985) 0.997 0.036 

Sprat 3 f 1 0.336 (0.172, 0.499) 1.412 (0.331, 6.028) 0.329 0.427 
3 f 3 -0.336 (-2.520, 1.849) 2.060 (0.327, 12.979) 0.883 0.222 

Atlantic 
mackerel 

3 
- 3 0.569 (0.461, 0.677) -0.834 (-1.527, -0.455) 0.014 0.695 

 219 

 220 
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