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Abstract — Automatic seizure prediction promotes the 

development of closed-loop treatment system on 
intractable epilepsy. In this study, by considering the 
specific information exchange between EEG channels from 
the perspective of whole brain activities, the convolution 
neural network (CNN) and the directed transfer function 
(DTF) were merged to present a novel method for 
patient-specific seizure prediction. Firstly, the intracranial 
electroencephalogram (iEEG) signals were segmented and 
the information flow features of iEEG signals were 
calculated by using the DTF algorithm. Then, these 
features were reconstructed as the channel-frequency 
maps according to channel pairs and the frequency of 
information flow. Finally, these maps were fed into the CNN 
model and the outputs were post-processed by the moving 
average approach to predict the epileptic seizures. By the 
evaluation of cross-validation method, the proposed 
algorithm achieved the averaged sensitivity of 90.8%, the 
averaged false prediction rate of 0.08 per hour. Compared 
to the random predictor and other existing algorithms 
tested on the Freiburg EEG dataset, our proposed method 
achieved better performance for seizure prediction in all 
patients. These results demonstrated that the proposed 
algorithm could provide an robust seizure prediction 
solution by using deep learning to capture the brain 
network changes of iEEG signals from epileptic patients. 

Index Terms — Intracranial electroencephalogram (iEEG), 
seizure prediction, convolution neural networks, directed 
transfer function 
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I. INTRODUCTION 

pilepsy is a chronic nervous system disease caused by 
sudden abnormal discharges of neurons in the brain, which 

leads to dysfunction of the brain in a short period [1]. It is 
estimated that about 60 million people worldwide suffer from 
epilepsy. Approximately two-thirds of epileptic patients can be 
controlled or even cured through the first part of specific drug 
treatment [2]. For some patients with refractory epilepsy, they 
can be treated by surgical resection. However, the scopes of 
application of the surgical treatment are still also limited. Only 
after accurate source localization of the epileptogenic zone, the 
operation can be performed. Additionally, it should be 
guaranteed that the extent of epileptogenic foci should be 
concentrative; otherwise the excision may cause significant 
functional deficits. About 25% of patients have no suitable 
treatments to control their seizure symptoms. For patients who 
cannot be surgically removed, intervention such as medication 
or vagus nerve simulation, is needed for prolonged periods to 
suppress seizures. Specially, if an alarm is given before seizure 
and then human intervention is carried out, it can greatly 
improve the quality of life of epileptic patients and is helpful for 
treatment [3]. Therefore, the study of epileptic seizure 
prediction is becoming increasingly important.  

Electroencephalogram (EEG) is an important portable device 
to measure the electrical activity of brain cortex and allows to 
explore various information related to brain functions [4]. 
Therefore, EEG signals are of great value in the diagnosis of 
brain diseases, and especially, EEG has been widely used in the 
diagnosis and treatment of epilepsy [5-7]. In most cases, the 
epileptic seizures cannot be detected in the short term, so it is 
necessary to record EEG signals continuously over a long 
period of time. The long-term EEG monitoring can effectively 
provide information about the electrical activity of brain and 
the number of seizure, which is helpful for the diagnosis and 
prediction of epilepsy. Due to the advances in high time 
resolution and effective brain function representation of EEG 
signals, it has been applied for the prediction of epileptic 
seizures [8]. There are two types of the state-of-the-art (SOTA) 
methods to predict epileptic seizures using EEG signals. The 
first type of SOTA methods is to extract features from EEG 
signals. If the features cross a certain or dynamic threshold, 
there will be an alert that epilepsy seizure is about to occur. In 
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terms of second type of SOTA methods, EEG is artificially 
divided into interictal and preictal periods and features are 
extracted, and then machine learning is used to identify preictal 
and interictal periods. It is possible to predict the arrival of 
epileptic seizures when preictal EEG segments are identified. 
In recent decades, there are many kinds of algorithms for 
epileptic seizure prediction. These algorithms mainly included 
time domain, frequency domain, time-frequency domain and 
nonlinear methods, as the most of classical signal processing 
method, the frequency spectral analysis [9-11] had achieved 
good results. Previous investigations also demonstrated that the 
EEG signals are nonlinear, non-stationary random processes, so 
Lyapunov exponent, correlation dimension [12, 13], and 
approximate entropy [14] had been introduced into the feature 
analysis of epileptic seizure prediction. In addition to the 
single-channel EEG analysis, recent investigations started to 
focus on the interrelationship between multi-channel EEG 
signals and the information exchange among various parts of 
brain [15-17]. However, current studies still neglect further 
investigations for improving seizure prediction performance 
that will benefit the treatment of epilepsy patients, via 
providing an accurate early alert for seizure attacks.  

Deep learning is one category of machine learning technique 
which can classify the samples through multiple layers in the 
hierarchical architectures of neural networks. Deep learning has 
already proven its capability and has outperformed humans in 
audio and image recognition tasks. For example, Convolutional 
Neural Network (CNN) is a fundamental and broadly used deep 
neural network. There are several characteristics of CNN, such 
as local connections, shared weights, pooling etc. These 
features can reduce the complexity of the network and the 
number of training parameters, and they can also make the 
model create some degrees of invariance to shift, distortion and 
scale and have strong robustness and fault tolerance. So it is 
easy to train and optimize its network structure. Based on these 
predominant characteristics, it has been shown to outperform 
the standard fully connected neural networks in a variety of 
signal and information processing tasks.  

At present, deep learning methods have been applied to the 
field of clinical medicine. In addition to medical images, they 
have begun to be used for a variety of physiological signals, 
including EEG [17, 18], ECG [19], and EMG [20]. Recently, 
some CNN-based methods have also significantly improved the 
accuracy of seizure prediction. Mirowski et al. extracted the 
phase synchronization feature that combines the time as a 
pattern to the feed to the CNNs, and achieved the sensitivity of 
71% without false prediction on 15 patients using 
out-of-sample test method [21]. Truong et al. used a technique 
of epileptic seizure prediction based on CNN, which uses the 
extracted short-time Fourier transform (STFT) time-frequency 
map as the inputs of CNN to identify preictal and interictal 
phases [22]. Khan et al. proposed an epileptic prediction 
method based on wavelet transform and convolution neural 
network using scalp EEG [23]. Ozcan et al. achieved the 
seizure prediction by giving spectral band power, statistical 
moment, and Hjorth parameters as inputs to a multi-frame 3D 
CNN model [24]. Zhang et al. presented a novel solution on 

epilepsy seizure prediction using common spatial pattern (CSP) 
and CNN to improve overall accuracy while reducing the 
training time [25]. 

Frequency-domain granger causality analysis describes the 
connections between channels in the frequency dimension and 
the brain effective connectivity can be achieved by this 
causality analysis to localize the epileptic foci and analyze the 
epileptic brain networks [26, 27]. Although the graph theory 
index of brain networks constructed by the directed transfer 
function (DTF) had been used to predict the seizure onsets [28], 
this method would lose some detailed information of brain 
connectivity. Hence, by considering the specific information 
exchange between EEG channels or brain regions from the 
perspective of whole brain activities, a novel algorithm based 
on DTF and CNN was proposed for epileptic seizure prediction 
by combining the frequency-domain causality analysis of brain 
connectivity and deep learning.  

II. METHODS 

A. Patients and iEEG Data 

The Freiburg EEG dataset (http://epilepsy.uni-freiburg.de/) 
was used to test the proposed seizure prediction algorithm in 
this study. The EEG dataset contains iEEG recordings of 21 
patients suffering from medically intractable focal epilepsy. 
The data were recorded during invasive pre-surgical epilepsy 
monitoring at the Epilepsy Center of the University Hospital of 
Freiburg, Germany. For each patient, the iEEG data includes at 
least 50 minutes of preictal data near epileptic seizures and at 
least 24 hours of interictal data. For 13 patients, there are over 
24 hours of continuous interictal recordings. For the remaining 
patients, interictal iEEG consisted of certain segments of 
separate recordings. Each patient has 6 channels of iEEG 
recordings from grid, strip, or depth electrodes. Near the 
seizure focus (marked as electrodes 1, 2, and 3) are three 
intrafocal electrodes and the other three are extrafocal 
electrodes distal to the focus (marked as electrodes 4, 5, and 6). 
According to the clinical manifestation and iEEG recordings, 
the epileptic seizure onset time-points were determined by 
certified epileptologists. The sampling rate is 256 Hz (for 
patient 12, the sampling rate is 512 Hz). In order to avoid an 
under-fitting or over-fitting problem in the seizure prediction 
model, the training dataset should keep in a large size. 
Therefore, the 19 patients with at least 3 seizures were selected 
from this dataset, and the last 2 cases with fewer seizures were 
excluded. There are 82 seizures in total, and the length of entire 
interictal periods was 459.1 hours. 

B. Seizure Prediction Algorithm 

The block diagram of the proposed method is shown in Fig. 1. 
Firstly, the information flow features of iEEG signals were 
obtained by using DTF algorithm in a sliding window. 
Secondly, these features were reconstructed as the 
channel-frequency feature maps, which were inputs to a CNN 
model. Finally, the outputs of CNN were post-processed to 
achieve epileptic seizure prediction. 
1) Pre-processing of iEEG Signals 

As the presence of power frequency interference in iEEG 
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recordings might have an impact on the DTF algorithm, the 50 
Hz notch filter was set to remove the effect of power line. In 
this study, we chose 30 minutes preceding a seizure onset as the 
preictal period. 
2) Feature Extraction 

The iEEG signals were segmented according to 10 s of 
analysis window without overlap. The first step of feature 
extraction was to normalize the iEEG segments by subtracting 
the mean value and dividing by the variance. Then, the 
multivariate autoregressive (MVAR) model was established 
and the features were extracted by the DTF algorithm using the 
coefficients of MVAR model. These features reflected the 
intensity and direction of information flow between any two 
channels of iEEG signals. 

The N channels of iEEG signals at time t can be defined as a 
vector: 

       1 2, ,
T

NX t X t X t X t                       (1) 

where N is channel number, T is the transpose of matrix 
and   1,2, ,nX t n N  is the nth channel of iEEG signals. 

For each segment of iEEG signals, a MVAR model with p  

order can be built as follows: 

     
1

p

r
r

X t A X t r E t


                           (2) 

where p  is the order of MVAR model, rA  is a N N matrix 

of coefficients and ( )E t  is the estimation error which is an 

uncorrelated white noise sequenced with zero mean. The order 
p can be determined by Schwarz’s Bayesian Criterion (SBC) 
[29]. The optimal order was calculated for each sample, and the 
maximum p was 5 in all MVAR models. The coefficient matrix 

rA  can be estimated by ARFIT algorithm [30]. Then, the 

Fourier transform of coefficient matrix rA can be calculated by: 

  2
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The transfer matrix is defined as: 

     1
H f I A f


                            (4) 

Then,  H f  can be used to calculate the information flow 

between any two channels of iEEG signals: 
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where ( )ijH f  is the element in the i th row of column j of 

transfer matrix  H f , ( )ih f is the column i  of transfer 

matrix  H f , 2 ( )ij f denotes the intensity and direction of 

information flow from the thj  channel  to the thi channel  at 

frequency f . Because the dataset used in this study consisted 

of 6-channel iEEG signals, 36 channel pairs of information 
flow characteristics were calculated from these signals. These 
features extracted by DTF algorithm are reorganized to form 
the channel-frequency feature maps where the abscissa axis 
represents frequency and the vertical axis indicates channel 
pairs, respectively. The relationship between the order number 

 
Fig. 1. The block diagram of the proposed seizure prediction method.

TABLE I 
THE RELATIONSHIP BETWEEN THE ORDER NUMBER OF CHANNEL 

PAIRS AND THE CORRESPONDING INFORMATION FLOW. 

OC: IF OC: IF OC: IF OC: IF OC: IF OC: IF 

1: 1->1 7: 2->1 13: 3->1 19: 4->1 25: 5->1 31: 6->1

2: 1->2 8: 2->2 14: 3->2 20: 4->2 26: 5->2 32: 6->2

3: 1->3 9: 2->3 15: 3->3 21: 4->3 27: 5->3 33: 6->3

4: 1->4 10: 2->4 16: 3->4 22: 4->4 28: 5->4 34: 6->4

5: 1->5 11: 2->5 17: 3->5 23: 4->5 29: 5->5 35: 6->5

6: 1->6 12: 2->6 18: 3->6 24: 4->6 30: 5->6 36: 6->6

Order number of channel pairs: OC; 
Corresponding information flow: IF; 
The i j  represents the information flow from the thi channel to the 

thj channel.
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of channel pairs and the corresponding information flow is 
shown in Table I. 
3) Convolution Neural Network 

In recent years, CNN has made a great breakthrough in the 
field of neuro-computing. It has many advantages, such as 
automatic feature extraction, feature selection, and weight 
sharing, etc. According to AlexNet network, six-layer CNN 
was used for feature selection and classification in this study 
[31]. The block architecture of this CNN model is shown in Fig. 
2. The first convolutional layer filtered the channel-frequency 
feature maps with 8 kernels of size 3 x 3 with a stride of 1 x 1. 
The second convolutional layer takes as inputs the outputs of 
the first convolutional layer and filtered it with 16 kernels of 
size 5 x 5 with a stride of 1 x 3. The third convolutional layer 
had 32 kernels of size 3 x 3 with a stride of 1 x 3 connected to 
the outputs of the second convolutional layer. The first and 
second convolutional layers were followed by max-pooling 
layers. The pooling size was 2 x 2 and the stride was 2 x 2. The 
ReLU nonlinearity was regarded as the activation function 
applied to the outputs of every convolutional layer. The 
remaining three layers were fully-connected and used to 
identify preictal and interictal recordings. The outputs of the 
last fully-connected layer were fed to a softmax activation 
function which produced the probability of preictal ( p ) and 

interictal (1 p ) samples. In order to prevent the over-fitting 

problem of CNN model, the dropout layers were placed in the 
first two fully-connected layers with the dropout rate of 0.5. 
The batch size was assigned as 100 and the categorical cross 
entropy was selected as loss function. The optimizer used in 
this network was the Adaptive Moment Estimation (Adam) 
with the learning rate of 0.001, the beta1 of 10.9, and the beta2 
of 0.999 [32]. Finally, the CNN was implemented using Keras 
2.2.4 framework upon Tensorflow 1.12.0 backend in Python 
3.5 environment. 
4) Training and Testing Strategy of CNN 

In order to reliably evaluate the performance of the proposed 
method, the seizure prediction results were calculated using 
cross-validation method. For a given patient with N  seizures, 
the iEEG signals were divided into N  mutually exclusive folds 
which contained approximately equal time length of interictal 
recordings and 30 minutes of paired preictal recordings. In 

these N  folds, one fold was left aside as test data to test the 
performance of CNN model and the remaining ( 1N  ) folds 
were used as training data to train and validate the CNN model. 
To prevent the over-fitting problem, 20% of training dataset 
was choose for model validation and the remaining 80% dataset 
was used for training the CNN model. After each training epoch, 
the error rate of validation dataset was calculated to check if the 
CNN model was over-fitting on the training dataset. The 
training process should be stopped when the maximal iteration 
times were achieved or the error rate of validation dataset 
increased continuously in four training epochs. In this study, 
the training process could be terminated after about 50 times of 
iteration. Once the training stage of CNN model was completed, 
the interictal and preictal recordings in the fold left aside were 
tested using the trained CNN model. This process was then 
repeated N  times until every fold was tested and the 
cross-validation results were obtained by averaging N  
individual evaluation measures (sensibility and false prediction 
rate).  

Fig. 3 illustrated the training and testing strategy of CNN 
model for patient 15. This patient had 24 hours of interictal 
recordings and 4 epileptic seizures. So the 24 hours of interictal 
recordings were divided into 4 folds (each fold had 6 hours). 
One fold included interictal and paired preictal data was 
reserved for testing and the other three folds were used for 
training. The imbalanced ratio of interictal periods to preictal 
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Fig. 3. The training and testing strategy of CNN for patient 15. 
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periods was about 12:1. The CNN learning of imbalanced data 
would lead to the seizure prediction algorithm with low 
sensitivity. To solve this problem, the random oversampling 
technique was used to replicate the preictal samples according 
to the same number as the interictal samples.  
5) Post-processing 

For each testing sample, the CNN model would produce two 
probability values. One was the probability of identifying the 
samples as preictal recordings (p) and the other one was the 
probability of recognizing the samples as interictal recordings 
(1-p). The probability values p should be further processed to 
perform seizure prediction. To remove the fluctuation of 
probability values, the moving average method across 20 points 
was used to smooth the curves of probability values. The 
post-processing process of probability values produced by the 
CNN model is shown in Fig. 4. Once the smoothed probability 
p exceeded the threshold values, a seizure alarm would be 
raised. 

III. RESULTS 

In this study, the prediction results of the proposed algorithm 
were evaluated by using cross-validation method. In order to 
further compare the seizures predicted by the proposed 
algorithm with those recognized by the certified epileptologists, 
the seizure prediction characteristic method was used and the 
relevant performance parameters are defined by the following 
indices [1]. The seizure prediction horizon (SPH) refers to the 
time period between seizure alarm and the occurrence of 
epileptic seizure. The seizure occurrence period (SOP) is 
followed by the SPH and defined as the time interval during 
which the seizure onset is expected to appear. In this study, the 
SPH and SOP were assigned as 5 minutes and 30 minutes 
respectively. If the seizure onset not appears during the SPH but 
occurs during the SOP, the seizure alarm can be recognized as a 
correct seizure prediction. True positive (TP) denotes the 
number of correct seizure predictions. False negative (FN) 
represents the number of missed seizure events. If no seizure 
occurs during SOP, the seizure alarm could be identified as a 
wrong seizure prediction. For a realistic seizure predictor, the 

wrong prediction cannot be avoided. False prediction (FP) 
refers to the number of wrong seizure predictions. Then, we 
took into account two assessment criteria to evaluate the 
effectiveness of the proposed method quantitatively as follow: 

1) The sensitivity (SEN) is defined as the ratio of the number 
of correct seizure predictions to all registered seizures. 

100%S
TP

TP FN
EN 


                          (6) 

 
2) The false prediction rate (FPR) indicates the number of 

false prediction per unit time.  

 

FP
FPR

time period
                               (7) 

The proposed algorithm was examined on 19 patients with 
459.1 hours of interictal recordings and 82 seizures in the 
Freiburg EEG dataset. When post-processing the outputs of 
CNN model, it is very important to choose an appropriate the 
threshold of seizure prediction for epilepsy patients. If the 
smoothed probability output exceeded this threshold, an 
epileptic attack alarm would be raised. In fact, different 
thresholds would result in different seizure prediction results, 
including SEN and FPR. As shown in Fig. 4, if the threshold 
was small, there would be high SEN and FPR. If the threshold 
became large, the SEN and FPR decreased at the same time. 
Nevertheless, a perfect seizure prediction algorithm should 
achieve as high SEN and low FPR as possible. In order to 
choose an appropriate threshold of seizure prediction, the 
assessment criterion SF compromising between SEN and FPR 
can be defined as [33]:  

2 2(1 )
100%

2

SEN FPR
SF

 
                     (8) 

where SEN and FPR are the corresponding sensitivity and false 
prediction rate, respectively. The SEN ranged from 0 to 1 and 
reached the maximum value of 100% when the SEN was 1 and 
the FPR was 0. If the FPR was greater than 1, then it was 
considered equal to 1. Fig. 5 illustrates the assessment criterion 
SF of seizure prediction results for different thresholds. When 
the threshold of seizure prediction was 0.5, the SF index 
consisting of related SEN and FPR achieved the highest value 

Fig. 4. Post-processing process of output probability produced by 
the CNN model. The pale blue line represents the probability values 
of identifying the samples as preictal recordings. The red line is the 
smoothed probability curve. The blue vertical line denotes the 
time-point of seizure onset. The horizontal dotted line is the alarm 
threshold of seizure prediction. 

 
Fig. 5. Comparison of seizure prediction performance under 
different alarm thresholds. Histograms represent the average SF 
values of all patients. Bars: standard deviations. 
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of 91.7%. Hence, the alarm threshold of seizure prediction was 
set to 0.5 for all patients in this study.  

The results of epileptic seizure prediction using the proposed 
method on all patients are summarized in Table II. For all 19 
patients, the averaged sensitivity of seizure prediction was 
90.8% and the averaged false prediction rate was 0.08 per hour. 
The proposed method achieved the sensitivity of 100% for 
seizure prediction in 13 patients of 19 and the sensitivity of 
100% without false prediction in 10 patients of 19. In order to 
further investigate the effectiveness of the proposed method, 
we compared this one with a random predictor based on 
Poisson processes. The probability to raise a seizure alarm in a 
period of duration equal to SOP can be calculated by [34]: 

1 FPR SOPprob e   .                                  (9) 

The probability values of predicting at least k  events 
correctly from K  seizures by an unspecific random predictor 
can be given by: 

 ( , , ) 1
K jj

j k

K
p k K prob prob prob

j




 
  

 
 .         (10) 

Then, the probability of the random predictor producing the 
same SEN and FPR as our algorithm would be calculated to 
verify how superior the performance of this method is to chance. 
In this study, the significance level p was set to 0.05. As shown 
in Table II, the proposed method achieved significantly better 
seizure prediction results than a random predictor in all 19 
patients (p < 0.05). These results demonstrated that our 
proposed method was able to perform the epileptic seizure 
prediction effectively. 

IV. DISCUSSION 

A. Comparisons to the State-of-the-art Algorithms 

At present, several algorithms have been reported to solve 
the epileptic seizure prediction. The performance of our 
proposed approach was compared with that of the 
state-of-the-art algorithms using the same Freiburg EEG 
dataset. Table III presents the detailed information of these 
relevant works in recent years. Compared to other existing 
algorithms tested on the Freiburg EEG dataset, our proposed 
method achieved high SEN, low FPR and the highest SF index. 

The primary goal of epileptic seizure prediction is to find 
some characteristic differences between interictal and preictal 
recordings. In this study, the DTF algorithm was used to 
capture these differences of causal information flow between 
iEEG channels. Fig. 6 shows the comparison of DTF analysis 
between interictal and preictal recordings. It could be observed 
that there were distinct changes of the channel-frequency maps 
between interictal and preictal iEEG signals (Fig. 6(a) and Fig. 
6(b)). For interictal recordings, the information flow mainly 
concentrated in high frequency bands. However, for preictal 

TABLE II 
SEIZURE PREDICTION PERFORMANCE ACHIEVED BY THE PROPOSED 

METHOD FOR ALL 19 PATIENTS. 

Patients 
No. of 
seizure 

Interictal 
(hours) 

SEN 
(%) 

FPR 
(/h) 

p-value

1 4 24 100 0 0.0000

2 3 24 100 0 0.0000

3 5 24 100 0 0.0000

4 4 23 100 0 0.0000

5 5 24 60 0.375 0.0380

6 3 24 100 0 0.0000

7 3 24.6 100 0 0.0000

9 5 23.9 100 0 0.0000

10 5 24.4 80 0 0.0000

11 4 24 75 0 0.0000

12 4 24.8 100 0 0.0000

14 4 23.8 75 0 0.0000

15 4 24 100 0.042 0.0000

16 5 24 100 0.333 0.0001

17 5 24 100 0 0.0000

18 5 24.8 100 0.040 0.0000

19 4 24.3 75 0.534 0.0426

20 5 25.6 60 0.195 0.0070

21 5 23.9 100 0 0.0000

Total 82 459.1 90.8 0.08 / 

TABLE III 
COMPARISON TO RECENT SEIZURE PREDICTION ALGORITHMS ON FREIBURG EEG DATASET 

Authors 
No. of 

patients 
Features SPH SOP Classifier 

No. of 
seizures

SEN 
(%) 

FPR 
(/h) 

SF 
(%) 

Winterhalder 
et al., 2003 [1] 

21 Phase coherence 10 minutes 30 minutes Threshold crossing 80 60 0.15 73.57 

Maiwald et 
al., 2004 [13] 

21 
Dynamical similarity 

index 
2 minutes 30 minutes Threshold crossing 87 42 0.15 68.28 

Zheng et al., 
2014 [14] 

10 Mean phase coherence 10 minutes 30 minutes Threshold crossing 50 70 0.15 77.86 

Aarabi et al., 
2014 [3] 

21 
Bayesian inversion of 
power spectral density 

10 seconds 30 minutes Rule-based decision 87 87.07 0.20 80.04 

Aarabi et al., 
2017 [5] 

10 
Univariate and bivariate 

features 
10 seconds 30 minutes Rule-based decision 28 86.7 0.13 87.05 

Yuan et al., 
2017 [8] 

21 Diffusion distance 10 seconds 30 minutes
Bayesian linear 

discriminant analysis
87 85.11 0.08 88.62 

Truong et al., 
2018 [22] 

13 STFT spectral images 5 minutes 30 minutes CNN 59 81.4 0.06 87.93 

The proposed 
method 

19 
DTF channel-frequency 

maps 
5 minutes 30 minutes CNN 82 90.8 0.08 91.40 
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recordings, the information flow distributed evenly in low and 
high frequency bands. In order to evaluate the total information 
flow between two channels of iEEG signals, all DTF values 
were summed up over the frequency bands of interests to obtain 
the integrated DTF. Then, the integrated DTF was visualized on 
the cerebral cortex by using BrainNet Matlab toolbox [35] to 
represent the brain networks of interictal and preictal 
recordings, as shown in Fig. 6(c) and Fig. 6(d). During the 
interictal phase, the brain connectivity between the seizure 
focus and the extrafocal region was relatively weak. However, 
from the interictal phase to the preictal phase, 22 of 36 
connectivity between brain areas were increased prominently. 
These indicated that the seizure focus had largely exchanged 
the causal information flow with the extrafocal region during 
the preictal phase. In summary, the channel-frequency maps 
reflects the differences of information flow between interictal 
and preictal recordings in the aspect of frequency bands and 
channel locations. Since CNN captures these abnormal changes 
in the channel-frequency maps, the proposed method can 
effectively perform the epileptic seizure prediction. 

B. Impacts of Different Frequency Bands 

In order to further discuss the impacts of different frequency 
bands on the seizure prediction results, the features extracted 
from different bands of iEEG recordings were used as the 
inputs of CNN model to perform the seizure prediction. After 
the DTF analysis of iEEG signals, the frequency resolution of 
0.1 Hz was fitted to produce the channel-frequency maps. As 
the inputs of CNN, the size of these maps were 36 x 40 for delta 
(0-4 Hz), 36 x 40 for theta (4-8 Hz), 36 x 50 for alpha (8-13 Hz), 
36 x 170 for beta(13-30 Hz), 36 x 400 for gamma1(30-70 Hz) 
and 36 x 580 for gamma2 (70-128 Hz), respectively. Fig. 7 

illustrates the numerical differences of SF criterion assessing 
seizure prediction results among different frequency bands of 
iEEG signals. The average SEN of seizure prediction using six 
bands were 79.2%, 85.3%, 84.6% 81.3%, 79.8%, and 76.4%, 
respectively. The average FPR were 0.06, 0.09, 0.14, 0.12, 0.13, 
and 0.09 per hour, respectively. On the one hand, there were no 
significant differences of SF values among six frequency bands. 
On the other hand, the SF results of seizure prediction using full 
frequency band were significantly superior when compared to 
those using six bands of iEEG signals (p < 0.05). The epileptic 
seizures have been demonstrated to associate with not only low 

 
Fig. 6. Comparison of channel-frequency maps and related brain networks between interictal and preictal recordings in patient 11. The 
channel-frequency maps were reconstructed by the information flow characteristics using 10 s of interictal (a) and preictal (b) recordings. The 
brain networks of interictal (c) and preictal (d) data were connected by the information flow among six iEEG electrodes. The red nodes represent 
three intrafocal electrodes near the seizure focus, while the yellow nodes denote three extrafocal electrodes distal to the focus. The thickness of 
gray line indicates the strength of information flow of brain networks among iEEG electrodes. 

 
Fig. 7. Comparison of seizure prediction results for different 
frequency bands of iEEG signals. Histograms represent the 
average SF values. Bars: standard deviations. 

Authorized licensed use limited to: University of Tasmania. Downloaded on November 28,2020 at 06:50:24 UTC from IEEE Xplore.  Restrictions apply. 



1534-4320 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.3035836, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 1 

frequency signals but also high frequency components [36-39]. 
Since each frequency band of iEEG signals provides different 
useful information for seizure prediction, the integration of 
these features can provide the CNN model with more 
information flow characteristics to discriminate interictal and 
preictal recordings. Hence, the proposed method can improve 
the seizure prediction results. 

The feature selection method based on mutual information 
was used to explore the contribution of different 
channel-frequency features to epileptic seizure prediction [40]. 
The iEEG classes (interictal and preictal) could be regarded as a 
kind of random variables and another kind of random variables 
were the features related to specific frequency and channel pair 
in the channel-frequency maps. The mutual information 
between two kinds of random variables could be used to 
characterize the correlation between these variables. The higher 
the values of mutual information was, the greater the 
contribution of corresponding features to seizure prediction 
was. Fig. 8 shows the values of mutual information between 
information flow features and iEEG classes for patient 2 on 
channel-frequency maps. It could be observed from this figure 
that each frequency band would provide the useful features to 
distinguish between the preictal and interictal recordings. 
However, it was quite distinctive for the effect of different 
frequency and channel pairs on seizure prediction.  

To further investigate which frequency bands and channel 
pairs could contribute the useful features for seizure prediction, 
the correlation values were accumulated over six frequency 
bands according to each channel pair. Table IV summarizes the 
top two discriminative information flow features over 12 
patients performed well in epileptic seizure prediction. Of these 
12 patients, 13 features were the information flow from channel 
i  to i  which was related to the power spectrum of thi channel 
of iEEG signals.  In fact, many previous studies used power 
spectrum features to predict epileptic seizures and were found 
to achieve good results [9-11]. The remaining 11 features were 
the information flow from channel j  to i . This indicated that 

both spectrum-related features and information flow had a 

positive effect on seizure prediction. As far as the frequency 
bands were concerned, the feature number in the gamma 
frequency band (9/24) was the largest among those in all six 
bands. Hence, the gamma frequency bands greatly contributed 
to seizure prediction, which was in line with the close 
relationship between high frequency components of iEEG 
signals and epileptic seizures  [41-43]. 

C. Imbalance Learning for Seizure Prediction 

For the iEEG signals from epileptic patients, interictal 
recordings are usually much longer than preictal recordings. In 
this study, the ratio of size of interictal class to preictal class is 
huge over 12:1. Such imbalanced data was unsuitable for the 
training of CNN model because of inadequate learning for 
minority class samples (preictal recordings). Since the CNN 
trained by imbalanced data was likely to ignore the minority 
class, the minority class samples could be identified as majority 
class samples (interictal recordings) [44]. Then, CNN learning 
will bring the low sensitivity of seizure prediction. In order to 
handle class-imbalance problems, previous studies have 
proposed some solutions, including sampling method, 
cost-sensitive learning, and so on [45]. The main idea of 
sampling method is to balance the proportion of majority class 
to minority class by altering the size of training dataset. The 
common approaches of changing the training dataset have 
random oversampling, random undersampling, and synthetic 
minority oversampling technique (SMOTE) [46]. Instead of 
creating class samples in the sampling strategies, the 
cost-sensitive learning attempts to balance distributions by 
considering the costs associated with misclassifying samples.  
For a binary classification of interictal and preictal recordings, 
there is usually no cost for correct classification. However, it is 
very important that the costs of identifying minority class 
samples as majority class samples should be larger than the 
costs of the contrary cases. In the process of CNN learning on 
the training dataset, misclassifying minority samples will result 
in more penalty costs than misclassifying majority samples. By 
minimizing the total costs on the training dataset, cost-sensitive 
learning can improve the recognition capability of minority 

TABLE IV 
TOP TWO DISCRIMINATIVE FEATURES RELATED TO SEIZURE 

PREDICTION IN TERMS OF FREQUENCY BANDS AND CHANNEL PAIRS. 

Patients First features Second features 

1 beta(5->5) beta(6->6) 

2 gamma1(2->1) delta(5->4) 

3 gamma2(2->2) gamma1(2->2) 

4 beta(4->4) gamma1(4->4) 

6 theta(6->5) delta(6->5) 

7 beta(4->4) theta(4->4) 

9 gamma2(4->4) gamma2(3->4) 

12 gamma2(4->5) gamma2(5->5) 

15 alpha(6->1) theta(6->1) 

17 theta(4->6) alpha(4->6) 

18 gamma2(3->3) delta(5->5) 

21 delta(1->1) alpha(3->1) 

Fig. 8. The correlation analysis based on the mutual information 
between information flow features and iEEG classes (interictal 
and preictal) overlaid on the channel-frequency maps in patient 2. 
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class samples. 
To investigate the effects of different class-imbalance 

solutions on seizure prediction, we compared random 
oversampling, SMOTE, and cost-sensitive CNN learning. For 
random oversampling, the preictal samples were randomly 
duplicated according to the same number as the interictal 
samples. The SMOTE algorithm is a powerful tool and has 
widely been applied to a crowd of applications. This algorithm 
was used to produce the artificial samples based on the feature 
space similarities between existing preictal recordings. For 
cost-sensitive CNN learning, the costs of misclassifying 
interictal and preictal samples were designated according to the 
imbalanced ratio of interictal class to preictal class. The results 
of epileptic seizure prediction using different class-imbalance 
solutions are illustrated in Fig. 9. For random oversampling, the 
average SF was 91.7% with the SEN of 90.8% and the FPR of 
0.08/h. The SMOTE achieved the average SF of 90.1%, the 
average SEN of 89.7% and the average FPR of 0.10/h. 
Additionally, the average SF, SEN, and FPR from 
cost-sensitive CNN learning were 86.9%, 77.6%, and 0.068/h, 
respectively. On one hand, there were no significant differences 
in SF values between the random oversampling and the 
SMOTE in terms of seizure prediction results. On the other 
hand, the random oversampling resulted in significantly 
superior SF to the cost-sensitive CNN learning (p < 0.05). As is 
well known, it is very important to choose the appropriate costs 
of misclassifying interictal and preictal samples for 
cost-sensitive learning. In this study, the cost of misclassifying 
interictal class was set to 1 and the cost of misclassifying 
preictal class was assigned as the ration of size of interictal 
class to preictal class. However, these misclassification costs 
may not be the optimal parameters for handling the imbalance 
learning of interictal and preictal recordings. If the optimal 
parameters can be used to perform seizure prediction, the 
performance of cost-sensitive CNN learning will be further 
enhanced. The grid search algorithm had been presented to find 
out the optimal misclassification costs when the cost-sensitive 

SVM was applied to seizure prediction [9]. When the sample 
number of training dataset and the dimension of extracted 
feature vector is large, the computation complexity of 
parameter optimization will become high. If we perform the 
parameter optimization in deep learning algorithm, the 
computation complexity will be further increased dramatically. 
Hence, if deep learning was used to dealing with the 
class-imbalance problems in seizure prediction, the sampling 
method may be more convenient and feasible than the 
cost-sensitive learning. 

D. Limitation and Future Works 

The proposed method extracted the channel-frequency maps 
to perform the seizure prediction by using the DTF algorithm. 
The CNN model not only took advantage of frequency but also 
channel position information in the channel-frequency maps. 
However, the position in the channel-frequency maps was not 
the realistic location of iEEG channel. If the deep learning 
algorithm utilized the actual channel location, the seizure 
prediction results could be further improved. Recently, the 
graph convolution network (GCN) is proposed to especially 
analyze the network graph features and has been widely applied 
to recommendation systems, electronic transactions, 
computational geometry, brain signals, molecular structures, 
and so on [47]. Because the GCN is also suitable for addressing 
brain network graph [48], the GCN model may adequately 
explore the actual location information of iEEG channel to 
achieve better seizure prediction results than the CNN model. 
In this study, individual CNN classifier was trained according 
to each patient. In fact, if the seizure onset of a specific patient 
could be predicted accurately by the CNN classifier trained on 
other remaining patients, this method would be very useful for a 
clinical application system. In the future, the proposed method 
should be improved to effectively achieve the cross-patient 
seizure prediction. 

V. CONCLUSION 

In this study, a novel approach based on CNN and DTF 
algorithm was proposed to predict the epileptic seizures in 
long-term iEEG recordings. Our proposed method illustrated 
the possibility of using CNN to extract and recognize the 
features of DTF network and was performed on 19 epilepsy 
patients with a total 459.1 hours of iEEG signals. After the 
cross-validation measurement, the averaged SEN was 90.8% 
and the averaged FPR was 0.08 per hour. Of all 19 patients, 13 
had 100% sensitivity for seizure prediction and 10 had 100% 
sensitivity without false prediction. Compared with the 
state-of-the-art algorithms using the same Freiburg EEG 
dataset, the proposed method achieved high SEN, low FPR and 
the highest SF index. Because the discriminative feature 
number in the gamma band was the largest among those in all 
frequency bands, the iEEG signals in the gamma band had a 
great impact on the seizure prediction results. In addition, since 
there was much imbalanced ratio of size of interictal class to 
preictal class, the class-imbalance solutions could greatly 
improve the seizure prediction results. These results indicated 
that the proposed method was suitable for performing the 

 
Fig. 9. The results of epileptic seizure prediction using random 
oversampling, SMOTE, and cost-sensitive CNN learning. 
Histograms represent the average SF values related to different 
class-imbalance solutions. Bars: standard deviations. 
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epileptic seizure prediction. This accurate and reliable seizure 
prediction method is likely to be applied to clinical practice and 
benefit the closed-loop treatment of epilepsy patients. 
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