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Abstract 16 

Antarctic krill (Euphausia superba) are amongst the most abundant animals on Earth, with a 17 

circumpolar distribution in the Southern Ocean. Genetic and genomic studies have failed to detect 18 

any population structure for the species, suggesting a single panmictic population. However, the 19 

hyper-abundance of krill slows the rate of genetic differentiation, masking potential underlying 20 

structure. Here we use high-throughput sequencing of bacterial 16S rRNA genes to show that krill 21 

bacterial epibiont communities exhibit spatial structuring, driven mainly by distance rather than 22 

environmental factors, especially for strongly krill-associated bacteria. Estimating the ecological 23 

processes driving bacterial community turnover indicated this was driven by bacterial dispersal 24 

limitation increasing with geographic distance. Furthermore, divergent epibiont communities 25 

generated from a single krill swarm split between aquarium tanks under near identical conditions 26 

suggests physical isolation in itself can cause krill-associated bacterial communities to diverge. Our 27 

findings show that Antarctic krill-associated bacterial communities are geographically structured, in 28 

direct contrast with the lack of structure observed for krill genetic and genomic data. 29 

 30 

Introduction 31 

Antarctic krill (Euphausia superba) is a keystone species of Southern Ocean food webs (Croxall et al. 32 

1999), with an estimated biomass of 379 million tonnes (Atkinson et al. 2009). The commercial 33 

Antarctic krill fishery catch is the largest in the Southern Ocean and has been expanding in recent years 34 

(Nicol & Foster 2016). However, management of the krill fishery is hampered by lack of knowledge 35 

regarding krill population structure and the number of effective stocks. 36 

 37 

Krill have a circumpolar, but non-uniform, distribution, with highest densities in the South Atlantic 38 

near the Antarctic Peninsula and Scotia Arc (Siegel & Watkins 2016). The presence of persistent areas 39 

of high krill density has led to suggestions that there may be between three and six separate krill stocks 40 

in the Southern Ocean (Latogurski 1979; Mackintosh 1973), but this has not been supported by genetic 41 
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and genomic studies over the last four decades (Deagle et al. 2015). The current consensus is that the 42 

genetic and genomic data are consistent with a single panmictic circumpolar population, however, 43 

any demographic structure may be obscured by the hyper-abundance of Antarctic krill (Jarman & 44 

Deagle 2016). Genetic drift in neutral markers is inversely related to population size, and the vast 45 

number of individual krill would slow genetic differentiation between subpopulations, even in the 46 

absence of homogenising gene flow (Deagle et al. 2015).  47 

 48 

All eukaryotes carry a characteristic bacterial microbiome. Bacterial populations often exhibit more 49 

genetic structuring than those of higher eukaryotes, as large bacterial populations accumulate 50 

diversity that tends to create barriers to recombination between lineages (Yang et al. 2019). Spatial 51 

structuring of microbiomes has been demonstrated in several marine invertebrates (Cregeen 2016; 52 

Zwirglmaier et al. 2015), and can arise as a result of either environmental (including host) 53 

heterogeneity combined with selection, and/or dispersal limitation combined with ecological drift 54 

(Stegen et al. 2015). In a recent study, we showed that four krill swarms separated by 260-1270 km 55 

each supported distinct microbiomes, with the strongest differences observed in bacteria associated 56 

with the exoskeleton (Clarke et al. 2019). In this study, we expand the number of swarms and the 57 

number of krill sampled per swarm, and examine a greater range of geographic distances to test 58 

whether krill-associated bacteria show spatial structuring, and whether the observed structure is more 59 

closely related to geographic or environmental distance. In supporting experiments, we investigate 60 

whether divergent krill microbiomes can be generated in aquaria under near identical conditions. Our 61 

results demonstrate krill microbiomes in different areas represent distinct communities, and may also 62 

be functionally different; these different microbe-host associations in different spatial areas may be 63 

meaningful as conservation units. 64 

 65 

Results 66 
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We analysed the bacterial communities on 155 krill moults collected from krill from 13 swarms (n=11-67 

12 moults per swarm) separated by 4-3481 km (Fig. 1a). Following filtering and quality control, this 68 

dataset included 4.49 million Illumina paired-end sequencing reads (10,787 to 87,547 reads per 69 

sample) representing 3,808 zero-radius OTUs (zOTUS). Moult bacterial communities were dominated 70 

by Gammaproteobacteria (mean relative abundance 53%), followed by Bacteroidia (27%) and 71 

Alphaproteobacteria (7%). Swarm membership (trawl) explained half the variance in moult 72 

microbiome composition based on weighted UniFrac distance, and more than 40% for unweighted 73 

UniFrac distance (weighted UniFrac: F12,142=11.85, R2=0.500, P<0.001, unweighted UniFrac: 74 

F12,142=8.18, R2=0.409, P<0.001). Ecological (unweighted UniFrac) distance between moult bacterial 75 

communities increased with increasing geographic distance between trawls (Fig. 2a). An UPGMA tree 76 

based on unweighted UniFrac distance showed bacterial communities clustered by geographic region 77 

(Fig. 1a and b), with 3-5 swarms sharing similar microbiomes near each of Mawson, Casey and Dumont 78 

d’Urville stations in East Antarctica. A single swarm near BANZARE Bank north-east of Mawson station 79 

(K29) supported a distinct microbiome, though most closely related to the swarms sampled off 80 

Mawson (Fig. 1b). The spatial structuring of krill microbiomes from the vicinity of Casey and Mawson 81 

is in direct contrast to the lack of structure observed in SNP markers for krill collected from the same 82 

two regions (Deagle et al. 2015) (Fig. 3).  83 

 84 

Although we have previously demonstrated that krill moult bacterial communities are distinct from 85 

seawater bacterial communities (Clarke et al. 2019), moult bacterial communities are an open system 86 

that can exchange bacteria with the surrounding seawater. To investigate if variation in seawater 87 

bacteria could be driving the observed geographic structuring, we repeated the above analyses using 88 

only strongly krill-associated bacteria (present in ≥50% of samples) to reduce the potential influence 89 

of local environmental bacteria. This reduced the dataset from 3,808 to 267 zOTUs but, as these were 90 

the more common bacteria, still represented 73.3% of reads. The entire moult and strongly krill-91 

associated bacterial communities were taxonomically very similar (see Supporting Information Text) 92 
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and strongly krill-associated bacterial communities clustered by region as per Fig. 1b (Fig. S1). Swarm 93 

membership explained approximately half the variance in strongly krill-associated bacterial 94 

community composition (weighted UniFrac: R2=0.469, unweighted UniFrac: R2=0.529, P<0.001 for 95 

both). Unweighted UniFrac distance between strongly krill-associated bacterial communities also 96 

increased with geographic distance between trawls (Fig. S2a).  97 

 98 

Identity of dominant core zOTUs differs between regions 99 

The core microbiome (zOTUs present in 85% or more of the moult samples) comprised only 21 zOTUs 100 

representing 30.9% of reads. The core microbiome was dominated by zOTUs from the families 101 

Colwelliaceae (13 zOTUs), Rhodobacteraceae (4 zOTUs, 2 Sulfitobacter) and Flavobacteriaceae (3 102 

zOTUS, 2 Polaribacter). Most of the Colwelliaceae zOTUs (11/13) had 97-99% identity to two closely 103 

related (99% identity) Colwellia species isolated from Antarctic sea-ice assemblages (Bowman et al. 104 

1998) (Table S1). Other core zOTUs were highly similar (99-100% pairwise identity) to bacterial isolates 105 

from polar marine invertebrates (n=3 zOTUs) and to Antarctic sea ice bacteria (n=3 zOTUs), indicating 106 

these high nutrient surface environments in polar oceans are commonly colonised by similar bacterial 107 

assemblages. Interestingly, despite being present in the majority of samples and representing a high 108 

proportion of the total reads, the identity of dominant core zOTUs varied between geographic regions 109 

(Fig. 4). Four core zOTUs (three Colwellia and one Sulfitobacter) were identified as having significantly 110 

different relative abundances between regions (LEfSe, LDA > 3, α < 0.01).  Inferred metagenomic traits 111 

also suggest krill moult bacterial communities from different regions are functionally distinct (Fig. S3 112 

and 4).  113 

 114 

Environmental and spatial effects 115 

We used linear mixed-effects (LME) modelling to test whether spatial (geographic distance) and/or 116 

environmental variables (ocean temperature, salinity, sea-ice melt and productivity) explained 117 

variation in krill microbial community composition between trawl sites. Geographic distance (LME 118 
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model coefficient estimate: 0.065±0.003 [0.060–0.070 95%CI]) and salinity (0.009±0.003 [0.003–0.014 119 

95%CI]) were the only significant predictors for moult community composition (z = 23.01, p < 0.001 120 

and z = 3.19, p = 0.0014, respectively, Table S4), based on model-averaging over the top-ranked 121 

models (n=8) using ∆AICc ≤ 10. In contrast, geographic distance (0.066±0.003 [0.059-0.073 95%CI]) 122 

was the only significant predictor for strongly krill-associated bacterial communities (z = 18.8, p < 123 

0.001, Table S6), with weaker evidence for an effect of salinity depending on the random-effects 124 

specification (custom covariance structure: z-value=1.48, p-value=0.14, Table S6; crossed effects z-125 

value=2.21, p-value=0.027, Table S10). Results were very consistent overall using the two different 126 

random-effects specifications (Table S3-10). All top-ranking (i.e., lower AICc) models included 127 

geographic distance (rather than only environmental variables) for both the entire moult community 128 

and strongly krill-associated bacteria. 129 

 130 

Krill microbiome differentiation driven by dispersal limitation over large geographic distances 131 

We used a combination of null models to estimate the contribution of homogeneous or variable 132 

selection, homogenising dispersal and dispersal limitation to krill microbiome community turnover 133 

(Stegen et al. 2013; Stegen et al. 2015). In our data, bacterial communities on krill with increased 134 

geographic separation showed increased dispersal limitation and decreased influence of 135 

homogenising dispersal, homogeneous selection and undominated processes. Undominated 136 

processes were the major influence for moult communities sampled from krill within a trawl (52%, Fig. 137 

2b). Comparing samples between trawls within a cluster (e.g., Mawson, Casey and Dumont d’Urville), 138 

the influence of dispersal limitation increased from 9 to 29%, with decreased influence of 139 

homogenising dispersal and undominated processes. Dispersal limitation was the main factor when 140 

comparing communities between clusters (57%), with a further decrease in the influence of 141 

undominated processes (18%). The contribution of homogeneous selection and homogenising 142 

dispersal also decreased from 11 to 2% and 11 to 0.3%, respectively, with increasing geographic 143 
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separation. Strongly krill-associated bacteria showed similar patterns of increasing dispersal limitation 144 

with increasing geographic distance (Fig. S2b). 145 

 146 

Krill in identical aquarium conditions develop divergent microbiomes  147 

To investigate the process of microbiome differentiation, krill from a single swarm off Casey station 148 

(T04, see Fig. 1a) were split across four 200 L aquarium tanks, with approximately 400 krill per tank, 149 

and with consistent conditions  for seven months prior to sampling. Krill from each tank developed 150 

significantly different epibiont bacterial communities, with twice the proportion of variation explained 151 

by tank of origin when relative abundance was taken into account, compared to presence/absence of 152 

taxa (weighted UniFrac (WU): F3,44=12.09, R2=0.452, P<0.001, unweighted UniFrac (UU): F3,44=4.57, 153 

R2=0.237, P<0.001, Fig. 5a and b). Bacterial communities in water within the four tanks were clearly 154 

distinct from krill communities (Fig. S5, WU: F1,54=46.56, R2=0.463, P<0.001, UU: F1,54=11.91, R2=0.181, 155 

P<0.001), but were also significantly different between tanks (WU: F3,4=2.87, R2=0.682, P=0.015, UU: 156 

F3,4=1.65, R2=0.553, P=0.024). However, this was largely driven by tank 2A, as tank water bacterial 157 

communities were not significantly different when this tank was excluded (2B, C and D, WU: F2,3=2.78, 158 

R2=0.650, P=0.13, UU: F2,3=1.56, R2=0.510, P=0.067), whereas epibiont communities were distinct 159 

(WU: F2,33=11.50, R2=0.411, UU: F2,33=4.91, R2=0.229, P<0.001 for both). 160 

 161 

Comparing the ecological processes contributing to community turnover within versus between tanks, 162 

the contribution of homogenising dispersal decreased from 17 to less than 1%, whereas dispersal 163 

limitation increased from 9 to 20% (Fig. 5c). Interestingly, the influence of variable selection (reflecting 164 

different environments) decreased from 7% within tanks to 1% between tanks, supporting the notion 165 

that the tanks represented highly similar environments.  166 

  167 
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Discussion 168 

We show that Antarctic krill-associated bacterial communities are geographically structured, in direct 169 

contrast with the lack of structure observed for krill genetic and genomic data (Deagle et al. 2015). 170 

Individual taxa and communities within the human microbiome can be used as markers of migration 171 

and ancestry (Dominguez-Bello & Blaser 2011; Henne et al. 2014), allowing resolution of migration 172 

events previously indistinguishable with human genetic markers (Moodley et al. 2009; Wirth et al. 173 

2004). The potential for members of the human microbiome to accurately trace human migrations is 174 

dependent on the degree to which they are vertically transmitted (Dominguez-Bello & Blaser 2011). 175 

In contrast, structuring of krill-associated bacterial communities is driven by homogenising dispersal 176 

within a krill swarm (horizontal transmission), but increasing dispersal limitation with increasing 177 

geographic distance (Fig. 2). Our findings support the conclusion from a study of bat fur microbiomes 178 

(Kolodny et al. 2018) that for species experiencing high levels of homogenising dispersal between 179 

individuals, the colony or swarm rather than the individual may be the meaningful biological unit on 180 

which selection influences the microbiome. Krill microbiome dynamics can thus be understood best 181 

in light of metacommunity theory, being influenced by both processes within the community (e.g., 182 

competition) and dispersal between communities (Burns et al. 2017; Miller et al. 2018).  183 

 184 

The significant effect of spatial distance on both moult and strongly krill-associated bacterial 185 

communities, but limited evidence for environmental influence on the latter suggests different 186 

environments are not essential for the development of distinct bacterial communities. This is further 187 

supported by development of divergent microbiomes in aquarium krill populations under near-188 

identical conditions. The contribution of variable selection, reflecting community differences arising 189 

due to selection in different environments, showed a modest increase comparing bacterial 190 

communities within a swarm versus those in separate bacterial geographic clusters (17 to 21% for 191 

entire moults communities, 23 to 26% for strongly krill-associated bacteria). In contrast, the 192 

contribution of dispersal limitation showed a much larger increase from 9 to 57% (Fig. 2b). If 193 
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environmental factors were driving variation in krill microbiomes, we would expect swarms in 194 

different water masses to have distinct bacterial communities, as the Southern Ocean fronts separate 195 

waters with distinct physical and chemical properties. However, the Casey and Dumont d’Urville 196 

clusters include swarms north and south of one or more oceanographic fronts (Fig. 1a). Similarly, LEfSe 197 

analysis showed that swarms north or south of the southern boundary of the Antarctic Circumpolar 198 

Current were not enriched in particular zOTUs (Table S11). Rather, clusters were mainly distributed 199 

west to east rather than north to south, consistent with meso-scale circulation in the region. In 200 

particular, Mawson (and BANZARE Bank) clusters correspond to the Prydz Bay gyre, and the Casey 201 

cluster corresponds to recirculation within the Australian-Antarctic basin (Bindoff et al. 2000). A series 202 

of cyclonic eddies off the Adelie Coast that terminates near 130° E may link krill swarms in the Dumont 203 

d’Urville cluster, whilst isolating them from sites further west (Aoki et al. 2007). However, the 204 

influence of circulation patterns, environmental factors and variable selection on krill microbiomes 205 

warrants further investigation. The difference observed for aquarium populations between distance 206 

measures including or excluding relative abundance suggests ecological drift may be driving 207 

divergence in isolated populations in the absence of environmental selection. Weighted UniFrac 208 

distance (including relative abundance) explained twice the proportion of variation between tanks 209 

compared to unweighted UniFrac distance (a presence/absence metric), suggesting changes in 210 

relative abundance precede changes in community membership.  211 

 212 

Ecological drift in krill epibiont communities is likely exacerbated by the regular moulting of the 213 

exoskeleton, which occurs every 12-30 days during summer (Reiss 2016). Characterising bacteria from 214 

moulted exoskeletons means samples represent bacterial communities at the same stage of the moult 215 

cycle. However, this was not the case for the aquarium samples. The occurrence of ciliate epibionts 216 

decreases from 66% in pre-moult individuals to 0% in post-moult krill (Tarling & Cuzin-Roudy 2008), 217 

with bacterial epibionts likely to experience a similar, but potentially less extreme, drop in abundance. 218 

Subsequent colonisation may then occur essentially at random by whichever species gets there first, 219 
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following the “competitive lottery model” (Burke et al. 2011; Hubbell 2001), although the presence of 220 

protozoan epibionts could also influence bacterial moult community composition. The existence of a 221 

core microbiome is consistent with the need for species to have similar ecologies to compete for the 222 

same vacant niche. Given krill swarms can exceed densities of 1000 individuals m-3 (Nowacek et al. 223 

2011; Tarling et al. 2009), colonisation is most likely to occur from epibionts on neighbouring krill, 224 

hence the greater influence of homogenising dispersal for bacterial communities within a swarm (Fig. 225 

2b). Homogenising dispersal should have less influence in smaller or less dense swarms, leading to 226 

faster rates of drift. Although bacteria on model marine (chitin) particles exhibit rapid and 227 

reproducible succession patterns (Datta et al. 2016), further aquarium studies are required to better 228 

understand krill epibiont colonisation dynamics.  229 

 230 

The fishery for Antarctic krill is the largest by tonnage in the Southern Ocean (Nicol & Foster 2016). 231 

The krill fishery is managed using regional catch limits, but whether there is a single circumpolar krill 232 

stock or if there are distinct populations within each region is unclear (Jarman & Deagle 2016). We 233 

have shown that krill microbiomes in different regions represent distinct communities, indicating a 234 

non-homogeneous mixture throughout their range. Microbiomes may also be functionally different 235 

and furthermore affect host fitness. It seems plausible that different microbe-host associations in 236 

different regions may be meaningful as conservation units. Current spatial management of the 237 

krill fishery is focussed within the southwest Atlantic, where small-scale management units have 238 

been established. Our results suggest that the Indian Sector of the Southern Ocean contains at least 239 

two distinct spatial clusters of krill bacterial communities, reflecting different microbe-host 240 

associations, near Casey and Dumont d’Urville which both lie within a single large management 241 

division. A better understanding of how microbiomes vary at different temporal scales, including 242 

throughout the moult cycle, and both seasonal and interannual variation, will be necessary to 243 

understand how to apply microbe-host associations to inform regional krill fishery management.  244 

 245 
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There are many ways population connectivity can be measured; from ancient linkages through 246 

phylogeography, to more recent linkages with population genetics, and contemporary movement 247 

though animal tracking. Several studies have now demonstrated links between host population 248 

genetic structure and host-associated microbiome composition in marine species (Díez-Vives et 249 

al. 2020; Easson et al. 2020; Fietz et al. 2018). Our study does not explicitly test whether there is 250 

a direct association between krill moult microbiomes and krill population dynamics; indeed this is 251 

not possible given that we have little independent information about krill population dynamics. 252 

However, we consider that some link between krill microbiomes and population connectivity is a 253 

reasonable hypothesis given the apparent lack of an environmental driver and observed isolation by 254 

distance. Future studies should explore and ideally test whether there is an association between krill 255 

microbiomes and krill population dynamics, especially in the key krill fishery areas of the Antarctic 256 

Peninsula and Scotia Arc. Supporting aquarium experiments that investigate horizontal transmission 257 

rates between krill with distinct microbiomes, and between krill and the water column, would also 258 

assist establishing the scope of inference.  259 

 260 

The potential for long-distance dispersal in many marine taxa leads to high population connectivity, 261 

making it difficult to resolve population structure with classic genetic approaches (Kelley et al. 2016). 262 

An improved view of host-microbiome structuring could expand our understanding of system 263 

connectivity in the marine environment. Studying the structure of the bacterial communities that 264 

effectively hitch a ride with their host may allow previously unseen linkages and barriers to dispersal 265 

to be identified.  266 

 267 

Materials and Methods 268 

Sample collection  269 

Samples were collected on board the RSV Aurora Australis during voyage 3 between 31 January and 270 

19 February 2016 (Kerguelen Axis voyage), and voyage 2 between 16 December 2016 and 16 January 271 
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2017 (Totten Glacier voyage). Antarctic krill were sampled from 13 swarms across the Indian sector of 272 

the Southern Ocean (Fig. 1a) using targeted trawls with a Rectangular Mid-water Trawl 8+1 (RMT-8+1 273 

metre square) net. Trawls were made on acoustically identified targets at depths between the surface 274 

and 60-70 m. The pairwise distance between trawls ranged from 4 to 3481 km. 275 

 276 

In order to isolate moults, live krill  were transferred immediately after capture to 250 mL jars (one 277 

krill per jar) which were ventilated with small holes to allow seawater exchange as per Virtue et al. 278 

(2010). The jars were incubated in a large (1600 L) flow-through seawater tank close to ambient ocean 279 

temperature (approx. 1 °C) with no additional food provided (Kawaguchi et al. 2006). Jars were 280 

inspected for moults at 12 hour intervals, with the first 12 animals to moult from each trawl sampled 281 

for microbial community profiles (all collected within 48 hours). Moults were removed from the jar, 282 

rinsed with 0.22 µm-filtered seawater and stored separately in liquid nitrogen before being stored at 283 

-86 °C on return to Australia. 284 

 285 

Aquarium samples 286 

Krill from a single swarm caught off Casey station mid-December 2016 (T04 in Fig. 1a) were split across 287 

four 200 L krill aquaria tanks at the end of January 2017, with approximately 400 krill per tank. Krill in 288 

each tank experienced identical conditions for seven months, including light environment, food 289 

(phytoplankton), with the same filtered and UV-sterilised water supply for each tank (Kawaguchi et al. 290 

2010; King et al. 2003). In September 2017, 12 krill per tank were individually netted and both lateral 291 

surfaces swabbed with Epicentre Catch-All™ sample collection swabs for approximately 10 seconds. 292 

Krill were then sexed and staged. Swabs were transferred to sterile Eppendorf tubes and stored at -293 

86 °C. Nets were treated with 1% bleach then 0.5% sodium thiosulphate and rinsed with reverse-294 

osmosis and deionised water between individuals. Tank water bacterial communities were sampled 295 

by filtering 1 to 1.6 L onto 0.22 μm Sterivex™ filters, with two samples per tank. Filters were 296 

transferred to tubes prior to extraction.  297 
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 298 

DNA extraction, PCR amplification and high-throughput sequencing 299 

Swabs (n=48) were sent to the Australian Genome Research Facility (AGRF, Adelaide, Australia; 300 

http://www.agrf.org.au) on dry ice, and moults (n=155), Sterivex filters (n=8) and extraction controls 301 

(1 ml ethanol) were sent in ethanol on dry ice. DNA was extracted from all samples using the QIAGEN 302 

DNeasy PowerLyzer PowerSoil kit. DNA concentrations were quantified using a NanoDrop ND-8000 303 

Spectrophotometer (ThermoFisher Scientific). PCR amplification, amplicon purification and high-304 

throughput sequencing of bacterial 16S V1-3 rRNA (primers 27F: AGAGTTTGATCMTGGCTCAG, Lane 305 

1991;  and 519R: GWATTACCGCGGCKGCTG, Lane et al. 1985) were carried out at the Ramaciotti 306 

Centre for Genomics (Sydney, Australia) on an Illumina MiSeq following the Australian Marine 307 

Microbes protocol (Brown et al. 2018).  308 

 309 

Data analysis 310 

DNA sequence processing and taxonomic assignment followed the Australian Marine Microbial 311 

Biodiversity Initiative workflow (Brown et al. 2018), with data presented as amplicon sequence 312 

variants, or zero-radius operational taxonomic units (zOTUs, Edgar 2016), to maximise potential 313 

phylogenetic resolution. In brief, paired-end reads were merged, short sequences (<400 base pair, bp) 314 

and sequences containing N’s or homopolymer runs >8 bp were removed. Sequences were de-315 

replicated and those with <4 representatives removed. Chimeras were removed and zOTUs identified 316 

using the UNOISE3 algorithm(Edgar 2016). Quality-filtered sequences (including those <4 317 

representatives) were mapped to the zOTUs to create a sample-by-read abundance matrix. Taxonomy 318 

was assigned to each zOTU using the RDP Bayesian classifier (Wang et al. 2007) based on the SILVA 319 

v132 database (Yilmaz et al. 2014) and 60% probability cut-off. Lastly, zOTUs present in only one 320 

sample or with less than 10 reads across the dataset were removed. The number of reads per sample 321 

was 10,787-87,547 for moults, 13,083-72,384 reads for swabs, and 5,107-10,215 for the Sterivex 322 

filters, with the number of observed zOTUs approaching saturation at the minimum read depth for 323 

http://www.agrf.org.au/
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each sample type (Fig. S6). DNA sequence data for this study can be found in the NCBI database under 324 

BioProject ID: PRJNA505226. The zOTU table and mapping file are available on the Dryad data 325 

repository (Clarke et al. 2020).  326 

 327 

Differences in entire moult and strongly krill-associated (present in ≥50% of samples) bacterial 328 

community composition between swarms were explored using weighted and unweighted UniFrac 329 

distances (Lozupone & Knight 2005) in QIIME v1.8.0 (Caporaso et al. 2010) 330 

(beta_diversity_through_plots.py) based on a rarefied zOTU table (10,000 reads or 5,000 reads for 331 

entire moult and strongly krill-associated bacteria, respectively), with strength and significance of 332 

swarm assessed using the Adonis method (Anderson 2001) (compare_categories.py, 999 333 

permutations). The same method was used to characterise differences between krill microbiomes 334 

from separate aquarium tanks, with the zOTU table rarefied to 5,000 reads for analyses including the 335 

Sterivex filters. The phylogenetic tree used for the UniFrac analysis and to estimate the contribution 336 

of selection and dispersal processes to microbiome turnover (see below) was generated in QIIME using 337 

PyNAST (Caporaso et al. 2009) to align sequences against the Greengenes (v13_8) core set (McDonald 338 

et al. 2012), then filtering the alignment (removing 0.0005% most variable positions and those that 339 

were >80% gaps) and building the tree using FastTree 2.1.3 (Price et al. 2010).  340 

 341 

We defined core moult microbiome membership as zOTUs present in 85% or more moult samples 342 

(>131/155 samples) using QIIME (compute_core_microbiome.py). Ecological dissimilarity between 343 

krill moult bacterial communities was visualised by an UPGMA tree based on unweighted UniFrac 344 

distance created using the jackknifed_beta_diversity.py workflow in QIIME, with subsampling 345 

repeated 100 times. The Linear Discriminant Analysis (LDA) Effect Size (LEfSe, Segata et al. 2011) 346 

method was used to highlight zOTUs that showed different abundances between bacterial geographic 347 

clusters (Fig. 1). Default settings were used except the LDA threshold was increased to 3.0 and the α-348 

value reduced to 0.01 to highlight the most significant taxa discriminating between clusters.  349 
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 350 

We tested whether spatial (geographic distance) and/or environmental variables explained variation 351 

in krill microbial community composition between trawl sites using a linear mixed-effects (LME) 352 

modelling approach (R package ‘lme4’, Bates et al. 2015). Analyses were performed separately for 353 

both the entire moult community and strongly krill-associated bacteria. The response variable was 354 

calculated as the mean unweighted UniFrac distance across all pairwise krill samples for each pair of 355 

trawl sites (see Fig. 2a). We included a random-effects term for the non-independent error structure 356 

of pairwise datasets (Clarke et al. 2002; Row et al. 2017) by setting up the covariance structure such 357 

that a proportion (ρτ) of the total variance (σ2) is due to the correlation between data points that share 358 

a common site. Thus, the covariance for n pairwise data points that share a common site is ρτσ2 and 359 

zero for those that do not (Clarke et al. 2002; Van Strien et al. 2012). These results were compared 360 

against LME models that more straightforwardly specified the two trawl sites as crossed random 361 

effects. 362 

 363 

Predictor variables considered as fixed-effects included geographic distance (km) between trawl sites 364 

and a suite of environmental variables obtained from both ship-based underway (sea surface 365 

temperature [°C] and salinity [on the practical salinity scale, PSS]) and satellite-derived data (time 366 

[weeks] since sea-ice melt, surface chlorophyll-a [mg m-3]). Full descriptions of these environmental 367 

data are given in the Supporting Information. Euclidean distances were calculated for all 368 

environmental variable pairs between sites. We centred and scaled all predictor variables and ensured 369 

that the maximum correlation between predictor variables (all Pearson correlations <0.66) and 370 

variance inflation factors (all VIFs ≤ 1.52) were acceptably low prior to model fitting (Zuur et al. 2010). 371 

 372 

We adopted a multi-model inference and model averaging approach (Burnham & Anderson 2002; 373 

Burnham et al. 2011) using the R package ‘MuMIn’ (Barton 2019) to generate a set of models with all 374 

combinations of fixed-effects. We calculated the marginal (Rm
2) and conditional (Rc

2) coefficient of 375 
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determination (Nakagawa & Schielzeth 2013) for all models, and for model evaluation used the 376 

second-order Akaike Information Criterion (AICc) suitable for small sample sizes, ranking the models 377 

via Akaike weights. For model averaging we included all models with a ∆AICc ≤ 10 from the top-ranked 378 

model. We calculated the 95% confidence interval (CI) of the model-averaged regression coefficients 379 

(full average) and considered those which did not straddle zero to have a significant effect on the 380 

response under investigation. Results are presented in text as LME coefficient estimate ± SE [95% CI]. 381 

 382 

We used the procedures described by Stegen et al. (2013; 2015) to estimate the contribution of 383 

selection and dispersal processes to krill microbiome assembly. Variable selection generates divergent 384 

communities due to distinct selective environments, whereas homogeneous selection generates 385 

convergent communities due to their presence in similar selective environments. Similarly, divergent 386 

communities arising primarily due to low rates of dispersal, which causes communities to drift apart, 387 

is referred to as ‘dispersal limitation’, whereas high dispersal preventing drift is referred to as 388 

‘homogenising dispersal’. The fraction of community turnover where neither selection nor dispersal 389 

is the primary driver of community turnover (e.g., due to the combination of moderate dispersal and 390 

weak selection) is referred to as ‘undominated’ (called ‘drift’ in Stegen et al. 2013; Stegen et al. 2015).  391 

 392 

Firstly, we computed the between-community mean nearest taxon distance (βMNTD), the mean 393 

phylogenetic distance between each zOTU in one community and its closest relative in a second 394 

community. A null-model distribution of this parameter was generated by randomly shuffling zOTUs 395 

across the tips of the phylogeny (999 permutations). β-nearest taxon indices (βNTI) were calculated 396 

as the difference between the observed βMNTD and the mean of the null distribution, expressed in 397 

units of standard deviations; βNTI values < -2 or > +2 were deemed significant deviations and indicative 398 

of homogeneous selection or variable selection, respectively. Where pairwise comparisons showed 399 

|βNTI|< 2, we used the Bray-Curtis-based Raup-Crick metric (Chase et al. 2011; Stegen et al. 2013) to 400 

compare observed and expected turnover without using phylogenetic information to infer the 401 
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contribution of homogenising dispersal, dispersal limitation, or undominated processes (moderate 402 

dispersal and weak selection, referred to as ‘drift’ in Stegen et al. 2013). For pairwise comparisons 403 

where |βNTI| < 2, RCbray < -0.95 represented homogenising dispersal, RCbray > +0.95 represented 404 

dispersal limitation, and RCbray < |0.95| suggested no single ecological process dominated 405 

compositional turnover. We compared the relative contribution of each process for pairwise 406 

comparisons of krill bacterial communities within a swarm, between swarms within a bacterial 407 

geographical cluster (see Fig. 1), and between swarms in separate clusters; and within and between 408 

tanks for the aquarium populations.  409 

 410 

Data Acessibility  411 

DNA sequence data for this study can be found in the NCBI database under BioProject ID: 412 

PRJNA505226. 413 
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Figures 600 

 601 

Fig. 1. Spatial structuring of krill moult bacterial communities. a Map of Southern Ocean trawl 602 
locations off the East Antarctic coast used to study krill-associated bacteria. Trawls are coloured 603 
according to clustering in (b). The inset shows three trawls near Mawson station separated by 4-11 604 
km. Mean locations of the principal fronts (following Orsi et al. 1995) are shown as blue lines. PF – 605 
Polar Front, SACCF – southern Antarctic Circumpolar Current front, SB – Southern Boundary of ACC. b 606 
UPGMA clustering of krill moult bacterial communities based on unweighted UniFrac distance. Trawls 607 
within each region are differentiated by symbols. Jack-knife support is shown for central branches.  608 
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 609 

 Fig. 2. Krill microbiome differentiation driven by dispersal limitation over large geographic 610 

distances. a Geographic vs. ecological (unweighted UniFrac) distance for krill moult bacterial 611 

communities from separate trawls. The x-axis has been square-root transformed for clarity. Equation 612 

of the fitted line: y = 1/(2.354 - 0.116 * log(x)), adjusted R2 = 0.432, p < 2 × 10-16. Values are means ± 613 

SD unweighted UniFrac distance for all samples from each pair of trawls. b Contribution of ecological 614 

processes to krill moult bacterial community assembly at different geographical scales. The number 615 

of pairwise comparisons for each category is shown in brackets.   616 
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 617 

Fig. 3. Spatial structuring of krill microbiomes contrasted with lack of structure observed in SNP 618 

markers. Non-metric multidimensional scaling (nMDS) plots for krill from the vicinity of Mawson and 619 

Casey stations based on either (a) moult bacterial communities using unweighted UniFrac distance, or 620 

(b) Single Nucleotide Polymorphism (SNP) markers using Bray-Curtis dissimilarity of allelic sequence 621 

counts (data from Deagle et al. 2015). Krill-associated bacterial community data is from 3 and 5 trawls 622 

from the Casey and Mawson regions, respectively, coloured by bacterial geographic cluster as per Fig. 623 

1. 624 

 625 

 626 

Fig. 4. Relative abundance of dominant Colwellia zOTUs in krill moults shown relative to all other 627 

zOTUs, highlighting variability between swarms within a single genus. Samples are grouped by trawl 628 

and arranged west to east. Each of the seven zOTUs are members of the core microbiome (present in 629 

85% or more moult samples). 630 

 631 
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 632 

 633 

Fig. 5.  Differences between krill bacterial communities originating from a single swarm split across 634 

four aquarium tanks for seven months. Non-metric multidimensional scaling (nMDS) plot based on 635 

weighted (a) or unweighted UniFrac distance (b). c Contribution of ecological processes to krill 636 

epibiont bacterial community assembly within versus between aquarium tanks. The number of 637 

pairwise comparisons for each category is shown in brackets.  638 

 639 

 640 


