
Abstract  International Ocean Discovery Program Expedition 369 drilled four sites on the 
southwestern Australian continental margin, in the deep water Mentelle Basin (MB) and on the 
neighboring Naturaliste Plateau (NP). The drillsites are located on continental crust that continued 
rifting after seafloor spreading began further north on the Perth Abyssal Plain (PAP) between 
magnetochrons M11r and M11n (133–132 Ma), ending when spreading began west of the NP between 
chrons M5n and M3n (126–124 Ma). Drilling recovered the first in situ samples of basalt flows 
overlying the breakup unconformity on the NP, establishing a magnetostratigraphically constrained 
eruption age of >131–133 Ma, and confirming a minimal late Valanginian age for the breakup 
unconformity (coeval with the onset of PAP seafloor spreading). Petrogenetic modeling indicates the 
basalts were generated by 25% melting at 1.5 GPa and a potential temperature of 1380°C–1410°C, 
consistent with proximity of the Kerguelen plume during breakup. Benthic foraminiferal fossils 
indicate that the NP remained at upper bathyal or shallower depths during the last 6 Myr of rifting 
and for 3–5 Myr after breakup between India and Australia. The limited subsidence is attributed to 
heat from the nearby Kerguelen plume and PAP spreading ridge. The margin subsided to middle 
bathyal depths by Albian time and to lower bathyal (NP) or greater (MB) depths by late Paleogene 
time. Periods of rapid sedimentation accompanied a westward jump of the PAP spreading ridge 
(108 Ma), rifting on the southern margin (100–84 Ma), and opening of the southern seaway between 
Australia and Antarctica (60–47 Ma).

Plain Language Summary  The southwestern Australian margin formed during the breakup 
of the supercontinent Gondwana during the Late Jurassic and Early Cretaceous Periods. International 
Ocean Discovery Program Expedition 369 drilled four sites on the southwestern Australian rifted 
continental margin in order to better understand the subsidence and magmatic behavior of the margin 
during the final stages of rifting. Drilling shows that a widespread unconformity imaged in seismic data 
on the margin correlates with the onset of seafloor spreading on the Perth Abyssal Plain at 132–133 Ma. 
This was followed by eruption of basalts on the Naturaliste Plateau, which were generated from melting of 
the underlying mantle that was enhanced by the nearby Kerguelen mantle plume. Proximity of the plume 
kept the margin at shallow depths during rifting and for about 3–5 Myr after final separation of India and 
Australia at 126 Ma. The margin subsided to > 1,000 m depths between about 121 Ma and the present, 
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Key Points:
•	 �Continental breakup occurred at 

132–133 Ma on the Perth Abyssal 
Plain and at 126 Ma west of the 
Naturaliste Plateau

•	 �Volcanism on the Naturaliste 
Plateau with both plume and mid-
ocean ridge compositional affinities 
accompanied Perth Abyssal Plain 
breakup

•	 �Late synrift and early postrift 
subsidence was limited by proximity 
of the Kerguelen plume and Perth 
Abyssal Plain spreading ridge
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1.  Introduction
In this study, we present new constraints on the late syn- and postrift evolution of the southwestern Aus-
tralian continental margin from boreholes drilled during International Ocean Discovery Program (IODP) 
Expedition 369. The western Australian margin formed as a result of Late Jurassic through Early Cretaceous 
rifting as Greater India separated from Australia during the breakup of East Gondwana (the discussion 
here follows Gibbons et al., 2012, with ages modified to fit recent revisions to the geomagnetic time scale 
as discussed in Section 2.1). Rift basins formed beneath the continental shelf along most of the western 
Australian margin during this time, reactivating Permian rift structures in many areas (Hall et al., 2013; 
Yeates et al., 1987). On the southwestern part of the margin, extension occurred in the Perth Basin beneath 
the continental shelf and in the deep water Mentelle Basin and on the Naturaliste Plateau further offshore 
(Figure 1). Breakup was diachronous, with seafloor spreading beginning on the Perth Abyssal Plain no later 

than chron M10N (131 Ma) and between M11r and M11n (133–132 Ma) 
on the central part of the margin. Seafloor spreading did not begin until 
between chrons M5n and M3n (126–124 Ma) on the southwestern part 
of the margin, west of the Naturaliste Plateau. The culmination of rift-
ing between Greater India and Australia is thus marked by two breakup 
events. The first, which we refer to as the Perth Abyssal Plain breakup 
event, occurred when seafloor spreading was established on the Perth 
Abyssal Plain and produced a widely recognizable breakup unconformity 
in the Perth Basin. The second, which we refer to as the Naturaliste Pla-
teau breakup event, occurred when seafloor spreading was established 
west of the Naturaliste Plateau. During the 6–9 Myr period between the 
two breakup events, the spreading ridge in the Perth Abyssal Plain mi-
grated westward along the northern margins of the Mentelle Basin and 
Naturaliste Plateau. The Perth Abyssal Plain breakup event was followed 
soon after by eruption of basalt flows, which lie on top of the breakup 
unconformity on the Naturaliste Plateau, in the western Mentelle Basin, 
and in the southern Perth Basin (Direen et  al.,  2017; Frey et  al.,  1996; 
Olierook et al., 2016). The culminating tectonic event on the margin was 
the Cretaceous through Eocene rifting episode that led to opening of the 
Southern Ocean between Australia and Antarctica. This rifting event be-
gan around 100 Ma on the southern margin of western Australia, leading 
to slow spreading by about 84 Ma that propagated eastward until separa-
tion of the South Tasman Rise from Antarctica at about 45 Ma (Cande & 
Mutter, 1982; Lawver et al., 1992; Mutter et al., 1985; Sayers et al., 2001; 
Tikku & Cande, 1999; Tikku & Direen, 2008; Veevers, 1986, 2006; L. T. 
White et al., 2013; Williams et al., 2013). IODP Expedition 369 obtained 
the first in situ record of the volcanic sequence on the Naturaliste Plateau 
and a complete record of the late syn- and postrift strata on the south-
western Australian margin in order to understand the magmatic and sub-
sidence histories of the margin and their relations to the tectonic events 
described above (Hobbs et al., 2019; Huber et al., 2018).

2.  Geological Background
2.1.  Plate Motions and Seafloor Spreading

The timing of continental breakup in the northeastern Indian Ocean 
and on the southwestern Australian margin is constrained primari-
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with intervening periods of relatively rapid sedimentation associated with adjustments to the spreading 
ridge configuration in the Indian Ocean at 108 Ma, and rifting events between southwestern Australia and 
Antarctica at 100–84 Ma and 60–47 Ma.

Figure 1.  Naturaliste Plateau (NP), Perth Abyssal Plain (PAP), Mentelle 
Basin, and Perth Basin. Fracture zones and seafloor spreading isochrons 
(gray lines) from Borissova, (2002) and Gibbons et al. (2012), with isochron 
names modified to use more recent notation (Table 1). The Mentelle Basin 
is subdivided into an eastern part that overlies the central and western 
Yallingup Shelf, and a western part that includes the deep water basin and 
a portion overlying the eastern edge of the Naturaliste Plateau (Borissova 
et al., 2010). Ocean-continent transition (brown dashed line) after (Hall 
et al., 2013; Williams et al., 2011). Darling Fault (heavy black line) and 
other faults (thin gray lines) after (Borissova et al., 2010; Hall et al., 2013). 
Labeled red circles—Deep Sea Drilling Project (2xx) and International 
Ocean Discovery Program (U15xx) drilling sites; triangles—Bunbury 
Basalt outcrops; AFO, Albany-Fraser Orogen; LC, Leeuwin Complex; NC, 
Northampton Complex. Thin light gray lines show bathymetry (contour 
interval = 1,000 m). Thick red line indicates location of seismic profile 
S310-05 shown in Figure 3. Blue lines show locations of seismic profiles 
S310-03 (trending WSW) and S310-17 (trending NNW) shown in Figure 9.

200 km
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ly from seafloor spreading magnetic anomalies (e.g., Ali & Aitchison, 2014; Direen et al., 2017; Gaina 
et al., 2007; Gibbons et al., 2012, 2013; Hall et al., 2013; Watson et al., 2016; L. T. White et al., 2013; Whit-
taker et al., 2016; Williams et al., 2013 and earlier references found in those papers). In this study, we 
use the magnetic anomaly identifications described in the plate reconstructions of Gibbons et al. (2012) 
and Williams et al. (2013). The ages assigned to the Cenozoic magnetic chrons are from the time scale 
of Ogg et al.  (2016). The Late Cretaceous chron ages are from Malinverno et al.  (2012), with the ages 
of chrons M0r through M11r revised here to match the Valanginian to Barremian stage ages indicat-
ed by recent radio-astrochronological data integrated with bio- and chemostratigraphy (Aguirre-Urreta 
et al., 2019; Bodin et al., 2006; Frau et al., 2018; Martinez et al., 2013; Olierook, Jourdan et al., 2019) (Ta-
bles 1 and 2). From these works, the Hauterivian Stage started at 131.3 ± 0.2 Ma, the Barremian Stage at 
126.1 ± 0.2 Ma, and the Aptian Stage at 121.5 ± 0.2 Ma. The revised stage and chron ages imply ages for 
the Early Cretaceous events described below that are 3–5 Myr younger than in the plate reconstructions 
of Gibbons et al. (2012, 2013).

Opening of the Indian Ocean was preceded by a Permian extensional episode that created a rift system 
with branches between Australia and Antarctica and on either side of India (Harrowfield et al., 2005; 
Maritati et  al.,  2020; Veevers,  2006; Yeates et  al.,  1987) (Figure  2a). This was followed by a period of 
tectonic quiescence and regional subsidence extending into Middle Jurassic time, punctuated with 
minor extensional events during the Triassic and Early Jurassic Periods (Norvick, 2004; Plumb, 1979). 
Rifting was renewed during the Middle Jurassic Period as East and West Gondwana began to separate 
(Besse & Courtillot, 1988; Lawver et al., 1992; Norton & Sclater, 1979; C. M. Powell et al., 1988; Royer & 
Sandwell, 1989). This was accompanied by counterclockwise rotation of India away from Australia/Ant-
arctica, resulting in northwest oriented extension on the western Australian margin and minor extension 
between Australia and Antarctica beginning about 165 Ma (Ball et al., 2013; Direen et al., 2008, 2011; Gib-
bons et al., 2013; Lawver et al., 1992; C. M. Powell et al., 1988) (Figure 2b). At this time, the Naturaliste 
Plateau was located at the juncture of the Indian Plate and the future boundary between the Australian 
and Antarctic plates. Two smaller continental blocks, Batavia and Gulden Draak Knolls, lay respectively 
to the north and southwest of the Naturaliste Plateau (Gibbons et al., 2013; Whittaker et al., 2016; Wil-
liams et al., 2013). Seafloor spreading between Greater India and Australia began on the Cuvier Abyssal 
Plain bordering the northwestern Australian margin, where it was underway by anomaly M11n to M10N 
time (132–131 Ma) (Fullerton et al., 1989; Gibbons et al., 2012; Heine & Müller, 2005; Markl, 1978; Robb 
et al., 2005). This was contemporaneous with or followed soon after by seafloor spreading on the Perth 
Abyssal Plain bordering the central western Australian margin (the Perth Abyssal Plain breakup event), 
which was also underway by anomaly M11n to M10N time (Gibbons et al., 2012; Markl, 1974, 1978; C. 
M. Powell et al., 1988; Williams et al., 2013) (Figure 2c). Seafloor spreading was not established west of 
the Naturaliste Plateau (the Naturaliste Plateau breakup event) until anomaly M5n to M3n time (126–
124 Ma) (Gibbons et al., 2012; Müller et al., 2000) (Figure 2d).

The difference in ages of breakup west of the Naturaliste Plateau and on the Perth Abyssal Plain indicates 
that extension continued on the Naturaliste Plateau/Mentelle Basin portion of the southwestern Austral-
ian margin for ca. 6–9 Myr after seafloor spreading had begun further north. The spreading ridge on the 
Perth Abyssal Plain migrated westward along the northern Mentelle Basin and Naturaliste Plateau margins 
during this period, followed by a westward jump at anomaly M0r time (121.8 Ma) (Gibbons et al., 2012). 
Gulden Draak and Batavia Knolls remained attached to the Indian plate until about 108 Ma, when the ridge 
again jumped westward and transferred these continental fragments to the Australian plate (Whittaker 
et al., 2016; Williams et al., 2013) (Figure 2e).

A change in plate motions occurred at about 100 Ma as India began to move northward (Gibbons et al., 2012, 
2013; Mathews et al., 2012; Whittaker et al., 2013, 2016) (Figure 2f). This was accompanied by reorienta-
tion of the Indian Ocean spreading system and the onset of rifting between Australia and Antarctica. A 
period of either slow seafloor spreading (Ball et al., 2013; Cande & Mutter, 1982; Müller et al., 2000; Mutter 
et al., 1985) and/or mantle exhumation (Direen et al., 2011; L. T. White et al., 2013) began diachronously 
between about 84 and 47 Ma as spreading propagated eastward along the southern margin (Figures 2g and 
2h). Steady state seafloor spreading and generation of new basaltic oceanic crust was underway between 
Australia and Antarctica by chron C21 to C19 time (47–42 Ma) (Direen et al., 2011; Gibbons et al., 2012; 
Mutter et al., 1985; L. T. White et al., 2013; Williams et al., 2013).
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2.2.  Structure and Stratigraphy

Extensional structures on the western Australian rifted margin lie west of the Darling Fault, a long-lived 
structure bordering the western edge of the Archean Yilgarn Craton (Veevers, 2006) (Figure 1). The Perth 
Basin, a rift basin containing up to 15 km of late Paleozoic, Mesozoic, and Cenozoic strata, lies to the west 
of the Darling Fault and follows the trend of the older Permian rift system beneath the continental shelf 
and slope (Harris, 1994; Norvick, 2004; Song & Cawood, 2000; Yeates et al., 1987). On the central part of the 
margin, the west side of the Perth Basin (Houtman and Zeewyck subbasins) is separated from oceanic crust 
on the Perth Abyssal Plain by a discontinuous structural high marking the ocean-continent transition zone 
(Bradshaw et al., 2003). On the southern part of the margin, a structural high underlain by continental crust 
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Age Chron

Geologic time scales Key spreading anomalies

Gee and 
Kent (2007)

Ogg 
et al. (2016) Malinverno et al. (2012) This studya

Gibbons 
et al. (2013) This studya

Begin 
(Ma)

End 
(Ma)

Begin 
(Ma)

End 
(Ma) Begin (Ma)

End 
(Ma)

Begin 
(Ma)

End 
(Ma) Chron

Age 
(Ma) Chron

Age 
(Ma)

C34n - - 125.93 84.19 120.95 - - - C34n - C34n 84–121

Aptian M0r 121.00 120.60 126.30 125.93 121.54 120.95 121.8 - M0 120.4 M0r 122

Barremian M1n 123.19 121.00 128.32 126.30 123.51 121.54 123.0 121.8 - - - -

M1r 123.55 123.19 128.66 128.32 123.92 123.51 123.2 123.0 - - - -

M2n 124.05 123.55 - - - - - - - - - -

M3n - - 129.11 128.66 124.58 123.92 123.7 123.2 M2 124.1 M3n 124

Barremian M3r 125.67 124.05 130.60 129.11 126.05 124.58 125.8 123.7 - - - -

M5n 126.57 125.67 131.43 130.60 127.19 126.05 126.7 125.8 M4 126.7 M5n 126

Hauterivian M5r 126.91 126.57 131.74 131.43 127.98 127.19 127.0 126.7 - - - -

M6n 127.11 126.91 131.92 131.74 128.15 127.98 127.1 127.0 M6 127.2 M6n 127

M6r 127.23 127.11 132.04 131.92 128.33 128.15 127.2 127.1 - - - -

M7n 127.49 127.23 132.27 132.04 128.54 128.33 127.4 127.2 - - - -

M7r 127.79 127.49 132.55 132.27 129.00 128.54 127.7 127.4 - - - -

M8n 128.07 127.79 132.80 132.55 129.32 129.00 128.1 127.7 M8 128.2 M8n 128

M8r 128.34 128.07 133.05 132.80 129.67 129.32 128.4 128.1 - - - -

M9n 128.62 128.34 133.30 133.05 130.02 129.67 128.8 128.4 - - - -

M9r 128.93 128.62 133.58 133.30 130.43 130.02 129.3 128.8 - - - -

M10n 129.25 128.93 133.88 133.58 130.76 130.43 130.0 129.3 M10 130.5 M10n 130

M10r 129.63 129.25 134.22 133.88 131.07 130.76 130.5 130.0 - - - -

M10Nn.1n 129.91 129.63 134.48 134.22 131.35 131.07 130.9 130.5 M10N 131 M10N 131

Hauterivian M10Nn.1r 129.95 129.91 134.51 134.48 131.47 132.35 131.0 130.9 - - - -

M10Nn.2n 130.22 129.95 134.76 134.51 131.71 131.47 131.3 131.0 - - - -

Valanginian M10Nn.2r 130.24 130.22 134.78 134.76 131.83 131.71 131.4 131.3 - - - -

M10Nn.3n 130.49 130.24 135.00 134.78 132.01 131.83 131.6 131.4 - - - -

M10Nr 130.84 130.49 135.32 135.00 132.30 132.01 131.9 131.6 - - - -

M11n 131.50 130.84 135.92 135.32 132.67 132.30 132.5 131.9 M11 132.1 M11n 132

M11r 131.91 131.50 136.29 135.92 132.99 132.67 132.9 132.5 - - M11r 133
aChron ages from geomagnetic time scale of Ogg et al. (2016) adjusted to fit stage and ammonite zone boundary ages of Aguirre-Urreta et al. (2019) complemented 
with cyclostratigraphy of Bodin et al. (2006) from M1n to M0r and of Martinez et al. (2013) from M10Nn.2n to M11r as shown in Table 2. The base of chron M0r 
is assigned to the middle of the last ammonite zone of the Barremian stage as indicated by chemo- and biostratigraphic data of Frau et al. (2018), giving an age 
that corresponds to the youngest age assessed by Olierook, Jourdan et al. (2019) and Olierook, Jiang et al. (2019).

Table 1 
Cretaceous Geomagnetic Time Scales and Ages of Seafloor Spreading Anomalies
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(the Yallingup Shelf) borders the west side of the Perth Basin, separating it from the deep water Mentelle 
Basin (Figure 1).

Seismic reflection profiles image a breakup unconformity in the Mentelle Basin that is similar to the wide-
spread breakup unconformity drilled in the Perth Basin and has been inferred to be of similar (Valanginian) 
age (Figure 3) (Borissova, 2002; Borissova et al., 2010; Bradshaw et al., 2003; Maloney et al., 2011). The 
eastern Mentelle Basin, located beneath the continental slope in water depths of 500–2000 m, contains up 
to 1 km of postrift sedimentary strata above the unconformity that thins and onlaps onto the western side 
of the Yallingup Shelf (Figure 3a). Strata below the seismically imaged breakup unconformity in the eastern 
Mentelle Basin are heavily extensionally faulted, as in the Perth Basin. The western Mentelle Basin lies in 
water depths of 2,000–4,000 m and contains up to 2.7 km of postrift strata that onlap and cover the eastern 
flank of the Naturaliste Plateau (Figures  3b and 3c). The western Mentelle Basin contains fewer faults 
than the eastern Mentelle Basin, but abundant volcanic features on top of the breakup unconformity that 
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Chron Position in ammonite zone (Ogg et al., 2016)

Age at 
base of 

ammonite 
zone (Ma)

Age at 
top of 

ammonite 
zone (Ma)

Revised 
age at 

base of 
chron 
(Ma)a

Gee and 
Kent (2007) 
age at base 

of chron 
(Ma)

Age 
difference 

(m.y.)

Malinverno 
et al. (2012) 
age at base 

of chron 
(Ma)

Age 
difference 

(m.y.)

M0r 50% within Sarasinib 122.019 121.519 121.8 121.00 0.8 121.54 0.3

M1n 27% within Sartousiana 123.199 122.339 123.0 123.19 0.2 123.51 0.5

M1r 96% within Vandenheckii 123.999 123.199 123.2 123.55 0.3 123.92 0.7

M3n 38% within Vandenheckii 123.999 123.199 123.7 124.05 0.3 124.58 0.9

M3r 43% within Hugii 126.079 125.539 125.8 125.67 0.1 126.05 0.3

M5n 18% within Ohmi 126.835 126.079 126.7 126.57 0.1 127.19 0.5

M5r 79% within Balearis 127.497 126.835 127.0 126.91 0.1 127.98 1.0

M6n 57% within Balearis 127.497 126.835 127.1 127.11 0.0 128.15 1.1

M6r 42% within Balearis 127.497 126.835 127.2 127.23 0.0 128.33 1.1

M7n 13% within Balearis 127.497 126.835 127.4 127.49 0.1 128.54 1.1

M7r 63% within Ligatus 128.145 127.497 127.7 127.79 0.1 129.00 1.3

M8n 11% within Ligatus 128.145 127.497 128.1 128.07 0.0 129.32 1.2

M8r 69% within Sayni 129.099 128.145 128.4 128.34 0.1 129.67 1.3

M9n 30% within Sayni 129.099 128.145 128.8 128.62 0.2 130.02 1.2

M9r 74% within Nodosoplicatum 129.992 129.099 129.3 128.93 0.4 130.43 1.1

M10n 97% within Loryi 130.520 129.992 130.0 129.25 0.8 130.76 0.8

M10r 9% within Loryi 130.520 129.992 130.5 129.63 0.9 131.07 0.6

M10Nn.1n 49% within Radiatus 131.292 130.520 130.9 129.91 1.0 131.35 0.4

M10Nn.1r 40% within Radiatus 131.292 130.520 131.0 129.95 1.1 131.47 0.5

M10Nn.2n 89% within Furcillata 131.935 131.292 131.4 130.22 1.2 131.71 0.3

M10Nn.2r 86% within Furcillata 131.935 131.292 131.4 130.24 1.2 131.83 0.4

M10Nn.3n 51% within Furcillata 131.935 131.292 131.6 130.49 1.1 132.01 0.4

M10Nr Base Furcillata 131.935 131.292 131.9 130.84 1.1 132.30 0.4

M11n 59% within Peregrinus 133.393 131.935 132.5 131.50 1.0 132.67 0.2

M11r 34% within Peregrinus 133.393 131.935 132.9 131.91 1.0 132.99 0.1
aRevised chron ages are interpolated from position of chron from base of reference ammoniate zone and ages of ammonite zone (Ogg et al.,  2016) using 
revised stage ages of Aguirre-Urreta et  al.  (2019) complemented with cyclostratigraphy of Bodin et  al.  (2006) from M1n to M3n and cyclostratigraphy of 
Martinez et al. (2013) from M10Nn.2n to M11r. Geomagentic time scales of Gee and Kent (2007) and Malinverno et al. (2012) shown for comparison. bThe 
biostratigraphic position of chron M0r was revised in Frau et al. (2018). The age given here assumes the base of this chron is in the middle of the Sarasini Zone.

Table 2 
Revised Hauterivian and Lower Barremian Chron Ages
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are similar to features imaged on seismic data from the main part of the Naturaliste Plateau further west 
(Borissova, 2002). Seismic reflection data show several rift basins beneath the unconformity on the Natu-
raliste Plateau and in the western Mentelle Basin that are filled with divergent dipping reflectors suggestive 
of either siliciclastic or volcanic/volcaniclastic growth strata (Borissova, 2002; Hall et al., 2013; Maloney 
et al., 2011), but these strata have not been drilled.

Basement rocks dredged from the southern Naturaliste Plateau include Mesoproterozoic metasedimentary 
rocks and orthogneiss that have been correlated with similar rocks exposed in the Albany-Fraser-Wilkes oro-
gen onshore on the southern Australian margin and the conjugate Antarctica margin (Halpin et al., 2008, 
2020) (Figure 1). Mafic clasts recovered from dredge hauls on the north and south margins of the plateau, 
volcaniclastic strata drilled above the breakup unconformity at Deep Sea Drilling Project (DSDP) Sites 258 
and 264 (located on the northeastern and southern margins of the plateau, respectively) and seismic profil-
ing have shown the basement of the plateau is capped with basaltic rocks that are similar in age and geo-
chemical characteristics to the Bunbury Basalt that outcrops onshore and has been drilled in the southern 
Perth Basin (Coleman et al., 1982; Direen et al., 2017). Gravity models indicate the thickness of the crust 
(including the syn- and postrift sediments) is more than 35 km beneath the Yilgarn craton, 30–35 km be-
neath the Yallingup Shelf, 20–25 km in the Perth Basin, 18–20 km on the Naturaliste Plateau, and about 
17 km in the northern Mentelle Basin (Direen et al., 2007; Olierook et al., 2016). Gravity models permit that 
the crystalline crust in the western Mentelle Basin (excluding postrift strata) may be less than 5 km thick 
(Johnston et al., 2010). Assuming a prerift crust thickness similar to that on the Yallingup Shelf or Yilgarn 
Craton (30–35 km), the corresponding extension factors are β ≈ 1.4–1.6 on the Naturaliste Plateau and in 
the Perth Basin and β ≈ 3 beneath the central Mentelle Basin (Olierook et al., 2016).

2.3.  Magmatism and the Role of the Kerguelen Plume

Continental breakup in the eastern Indian Ocean was accompanied by mafic volcanism between 137 and 
130 Ma in the southern Perth Basin (exposed onshore as the Bunbury Basalt) (Olierook et al., 2016) and be-
tween at least 131 and 128 Ma on the Naturaliste Plateau (Direen et al., 2017; Olierook et al., 2017). Seismic 
reflection data show volcanic edifices and flows atop the breakup unconformity on most of the Naturaliste 
Plateau and throughout the western Mentelle Basin, and seaward dipping reflectors interpreted to be vol-
canic flows have been imaged near the ocean-continent boundary in the northern Perth Basin and on the 
margin of the Wallaby Plateau (Borissova, 2002; Bradshaw et al., 2003; Colwell et al., 1994; Goncharov & 
Nelson, 2012; Owens et al., 2018; Norvick, 2004; Symonds et al., 1998). Similar age basalts are present on 
the conjugate Greater Indian margin, now exposed in southern Tibet (the 140–130 Ma Comei basalts; Liu 
et al., 2015; Zhou et al., 2017; Zhu et al., 2009). Based on spatial proximity and trace element and isotopic 
similarities, the Bunbury Basalt, Naturaliste Plateau basalts, and Comei basalts have been inferred to be 
petrogenetically related to younger basalts produced by the Kerguelen mantle plume on the Wallaby Pla-
teau (124 Ma) (Olierook et al., 2015), eastern Indian margin (the 118 Ma Rajmahal Traps and Cona Basalts) 
(Baksi, 1995; Baksi et al., 1987; Ingle et al., 2004; R. W. Kent et al., 2002; D. Zhu et al., 2008), and Kerguelen 
Plateau (>119–100 Ma) (Coffin et al., 2002; Duncan, 2002; Frey et al., 2000; Ingle et al., 2002; Mahoney 
et al., 1995; Whitechurch et al., 1992). The presence of a ca. 1,000 km diameter Kerguelen plume head be-
neath the lithosphere at the time of breakup has been proposed to account for the broad paleogeographic 
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Figure 2.  Opening of the southeastern Indian Ocean. Plate reconstructions from GPlates based on the plate model of Gibbons et al. (2013) and geomagnetic 
time scale in Table 1. Extent of Greater India and location of Kerguelen plume from Gibbons et al. (2012). (a) Middle Permian—extension along the margins 
of the East Gondwana continents. (b) Late Jurassic—renewed extension along the Permian rift trend. (c) Late Valanginian—seafloor spreading begins between 
India and Antarctica and in the Perth Abyssal Plain between Greater India and Australia. Volcanism in the southern Perth Basin (130–137 Ma Bunbury Basalt; 
Olierook et al., 2016), near the ocean-continent transition in the northern Perth Basin, in the western Mentelle Basin and on the Naturaliste Plateau (128–
132 Ma; Direen et al., 2017), and on the conjugate Greater Indian margin (140–130 Ma Comei Basalts; Zhou et al., 2017). (d) Early Barremian—shortly after 
seafloor spreading begins between Greater India and the Naturaliste Plateau, coeval with volcanism on the Wallaby Plateau (124 Ma; Olierook et al., 2015). (e) 
Albian—a ridge jump transfers Gulden Draak and Batavia Knolls to the Australia-Antarctica plate. Volcanism was underway on the southern Kerguelen Plateau 
(118–119 Ma; Coffin et al., 2002; Duncan, 2002), on the conjugate Indian margin (Rajmahal Traps, 118 Ma; Ingle et al., 2004; R. W. Kent et al., 2002) and on 
Gulden Draak Knoll (117 Ma; Whittaker et al., 2016). (f) Albian—India begins to move northward after reorientation of the Southeast Indian Ridge. Extension 
between Australia and Antarctica and volcanism on the central Kerguelen Plateau and Broken Ridge begins. (g) Late Cretaceous—Mantle exhumation and/or 
slow seafloor spreading begins between Antarctica and Australia ca. 85 Ma. Continued Kerguelen hotspot volcanism begins to construct the Ninetyeast Ridge. 
(h) Paleogene—normal seafloor spreading begins between Australia and Antarctica.



Geochemistry, Geophysics, Geosystems

HARRY ET AL. 8 of 26

10.1029/2020GC009144

Figure 3.  Portions of seismic reflection profile S310-05 showing structural and stratigraphic characteristics of the 
southwestern Australian continental margin. Seismic sections align at edges as indicated by dotted lines to form a 
single profile, with 60 km gap between (a) and (b) and 7 km overlap between (b) and (c). (a) Portion of the eastern part 
of the profile crossing Yallingup Shelf and eastern Mentelle Basin showing location of International Ocean Discovery 
Program (IODP) Site U1515. Solid vertical line shows Hole U1515A, with colored bars indicating boundaries between 
lithostratigraphic units discussed in text (roman numerals). (b) Portion of the central part of the seismic profile, 
crossing deep water western Mentelle Basin. (c) Portion of the western part of the seismic profile, crossing western edge 
of Mentelle Basin and eastern flank of the Naturaliste Plateau. Locations of IODP Site U1513 and DSDP Site 258 (not 
distinguishable from Site U1513 on this projection) are projected along structural strike from 20 km to the south. WD, 
water depth in meters; other numbers indicate depth below seafloor. Locations shown in Figure 1. Seismic profile is 
available from Geoscience Australia National Offshore Petroleum Information Management System (https://nopims.
dmp.wa.gov.au/nopims). Seismic interpretation is modified after Hall et al. (2013), updated with IODP Expedition 369 
drilling results using the time-depth conversions published in the Expedition 369 Proceedings for Sites U1513 (Huber 
et al., 2019a) and U1515 (Huber et al., 2019b).
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distribution of these basalts (Figure 2c) (Direen et al., 2017; Frey et al., 1996; Ingle et al., 2002, 2004; R. W. 
Kent et al., 2002; Olierook et al., 2016, 2017; Storey et al., 1989; Zhou et al., 2017; Zhu et al., 2009). However, 
other models for petrogenesis of the basalts emplaced around the Indian Ocean during rifting and breakup 
have also been proposed. Regional contamination of the asthenospheric mantle by the broad Kerguelen 
plume head has been suggested to have increased the fertility and enriched the isotopic and trace element 
compositions of the mantle prior to rifting, perhaps creating an antecedent plume-like reservoir that was 
tapped at various times and places during rifting (R. Kent, 1991; Storey et al., 1989). Alternatively, the Ker-
guelen plume may have fragmented or segregated into spatially distinct rising limbs, thus accounting for the 
broad and irregular distribution of the volcanic rocks (Coffin et al., 2002). Lastly, isotopic data suggesting 
a mixture of both depleted and enriched sources have been interpreted to indicate derivation from sources 
in the depleted asthenospheric mantle combined with either sublithospheric mantle (Olierook et al., 2016) 
or lithospheric mantle (Olierook, Jiang et al., 2019) that was enriched in incompatible elements during the 
Late Proterozoic assembly of East Gondwana. Thus, the relationship between plumes and Early Cretaceous 
basalts in the eastern Indian Ocean remains uncertain. Opening of the Southern Ocean between Australia 
and Antarctica in Late Cretaceous through Paleogene time appears to have been amagmatic prior to the 
onset of seafloor spreading (Direen et al., 2011).

3.  Findings From IODP Expedition 369
IODP Expedition 369 drilled one site at the western edge of the Mentelle Basin above the eastern flank 
of the Naturaliste Plateau (Site U1513), two sites in the central Mentelle Basin (Sites U1514 and U1516), 
and one site in the eastern Mentelle Basin near the Yallingup Shelf (Site U1515) (Hobbs et al, 2019; Huber 
et al., 2018) (Figure 1). Key outcomes of the expedition were recovery of (i) strata spanning the breakup un-
conformity in the eastern Mentelle Basin; (ii) the first samples of in situ basalts on the Naturaliste Plateau, 
which provide new constraints on the thermal state of the mantle during rifting; (iii) a complete clastic 
succession containing weathered volcanic material deposited on the Naturaliste Plateau between the Perth 
Abyssal Plain and Naturaliste Plateau breakup events; and (iv) nearly complete postbreakup successions on 
the Naturaliste Plateau and in the Mentelle Basin, which provide new constraints on the subsidence history 
of the southwestern Australian margin.

IODP Hole U1515A was drilled to a depth of 517 m below seafloor (mbsf) in 850 m of water on the eastern 
margin of the Mentelle Basin, on the continental rise adjacent to the Yallingup Shelf (Figures 1 and 3a). Two 
lithostratigraphic units were identified (Figure 4). Unit I consists of a Pleistocene to upper Campanian or 
upper Santonian dominantly ooze, chalk, chert, and limestone sequence encountered in the upper 129 m of 
the hole. Benthic foraminifera indicate deposition in bathyal water depths (200–2000 m) for most of unit I, 
with outer neritic (up to 200 m) to upper bathyal (200–600 m) depths in the uppermost part of the unit. An 
interval of poor recovery across a detachment surface separates unit I from glauconitic sandstone, sand, and 
silty sand in lithostratigraphic unit IIa between 210 and 325 mbsf. A 10 m interval of poor recovery separates 
unit IIa from unit IIb. At its top, unit IIb is dominantly sandstone with interbedded siltstone and claystone 
that is distinguished from unit IIa by the presence of pyrite and less abundant glauconite. Unit IIb transi-
tions downward across a poorly recovered boundary between 376 and 402 mbsf into lithostratigraphic unit 
IIc, which is an organic-rich silty sandstone and claystone containing coal, plant debris, fern pollen, fresh-
water algae, and possible indicators of dinoturbation. Palynomorphs indicate an earliest Cretaceous (Val-
anginian or younger) age for lithostratigraphic unit IIb and a Late Jurassic (Kimmeridgian to Tithonian) 
age for unit IIc (Wainman et al., 2020). Unit IIc is interpreted to have been deposited in a fluvio-lacustrine 
environment in the upper part of the synrift strata filling one of several small fault bounded basins imaged 
on seismic data in the eastern Mentelle Basin (Figure 3a). Unit IIb is interpreted to be nearshore facies de-
posited on a subsiding coast, with increasing marine incursions near the top that culminated in deposition 
of the glauconitic sandstone in unit IIa. A prominent reflector from the boundary between lithostratigraph-
ic units IIc and IIb at Site U1515 can be traced into the western Mentelle Basin, where it manifests as an 
undated unconformity below the basalt flows at the top of the faulted synrift strata (Figure 3c).

IODP Sites U1514 (water depth 3,850 m) and U1516 (2,675 m) are respectively located in the northern and 
southern parts of the central Mentelle Basin, where the basin is structurally and bathymetrically deep-
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est (Figure  1). Drilling at both sites encountered up to 400  m of Pleistocene to Miocene or late Eocene 
ooze (lithostratigraphic unit I) overlying Eocene to Paleocene chalk that grades downward into claystone 
(lithostratigraphic unit II at Site U1514, and subunits Ib and Ic at Site U1516) (Figure 4). At Site U1514, 
lithostratigraphic unit II conformably overlies a Paleocene through Albian claystone and silty claystone 
(unit III). At Site U1516, a detachment separates the base of the Paleocene claystone (subunit Ic) from 
an underlying Turonian cherty chalk and claystone (unit II). Unit II conformably overlies a Cenomanian 
through Albian succession of chalk and claystone (units III and IV). Benthic foraminifera indicate middle 
bathyal (600–1,000 m) to lower bathyal (1,000–2000 m) water depths for deposition of units I and II, and 
bathyal water depths for unit III at Site U1514. Bathyal water depths are indicated throughout the succes-
sion cored at Site U1516.

IODP Site U1513 is located at 2,788 m water depth on the western edge of the Mentelle Basin, overlying 
the eastern margin of the Naturaliste Plateau (Figures 1 and 3c). Six lithostratigraphic units are identified 
in a composite stratigraphic section created from five clustered boreholes, extending to a maximum depth 
of 774 mbsf (Figure 4). The upper 65 m of strata consists of Pleistocene through late Miocene dominantly 
calcareous ooze (lithostratigraphic unit I). A depositional hiatus associated with a hardground separates 
unit I from an underlying 181 m thick Cenomanian through Campanian calcareous ooze and chalk interval 
(lithostratigraphic unit II). Benthic foraminifera indicate bathyal and middle bathyal water depths for depo-
sition of units I and II, respectively. Unit II is underlain by a 209 m thick Cenomanian through Albian clay 
and claystone deposited in middle bathyal to bathyal water depths (lithostratigraphic unit III, 22 m thick; 
and unit IV, 187 m thick). The clay and claystone beds conformably overlie a 235 m thick lithic-rich clay-
ey siltstone and sandstone interval ranging from early Aptian to earliest Hauterivian in age that contains 
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Figure 4.  Stratigraphic columns for International Ocean Discovery Program boreholes in the Mentelle Basin. Boreholes are arranged from west to east (white 
indicates no recovery). Compiled from Hobbs et al. (2019).
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glauconite, pyrite, shell fragments, plant debris, and abundant volcanic 
mineral grains and clasts (lithostratigraphic unit V) (Huber et al., 2019a, 
2019b; Lee et al., 2020). A similar lithostratigraphic unit, rich in volcanic 
clasts and with a ferruginous detrital claystone at its base, was encoun-
tered at nearby DSDP Site 258 (Davies et al., 1974). These strata are in-
terpreted to be epiclastic deposits comprised primarily of material weath-
ered from nearby (but perhaps not immediately local) volcanic sources. 
Unit V matches the definition of secondary (epiclastic) volcaniclastic 
deposits used by many authors (Fisher,  1961; Mulder,  2011), but more 
recent usage has excluded epiclastic deposits from the volcaniclastic clas-
sification (Manville et al., 2009; McPhie et al., 1993). Following the more 
recent usage, we refer to unit V in this study as a volcanogenic clastic, or 
simply an epiclastic succession. Taken together, the sedimentary struc-
tures, trace fossils, benthic foraminifera, and palynomorphs indicate dep-
osition in shallowing water depths downward in the section from upper 
bathyal to neritic for unit V. An 83 m thick interval of interbedded basalt 
flows and volcaniclastic flows recording at least five eruption episodes 
(lithostratigraphic unit VI) lies below unit V, but the total thickness of 
unit VI is undetermined (Figure 4) (Huber et al., 2019a, 2019b; Tejada 
et al., 2020). The entire volcanic and volcanogenic clastic interval (units 
VI and V) was hydrothermally altered prior to deposition of unit IV, but 
the least (weakly to moderately) altered samples from unit VI have SiO2 
contents (43.7–52.5 wt%), total alkali contents (2.11–2.38 wt%), and Zr/Y 
and Zr/Nb ratios typical of tholeiitic basalts (Figures 5a and 5b). The unit 
VI flows with the lowest total alkali contents appear to be less altered 
than either the Bunbury Basalt or other mafic rocks recovered by previ-
ous dredging on the Naturaliste Plateau (Figures 5a and 5c). The basalt 
flows in unit VI are undated, but the magnetostratigraphic age of unit V 
spans chrons M10Nn.1n to M0r (131–121 Ma) (Huber et al., 2019a, 2019b; 
Lee et al., 2020). The underlying basalt flows of unit VI thus predate the 
end of chron M10Nn.1n. This gives a minimum age of 131 Ma (earliest 
Hauterivian) for their emplacement, indicating that the flows were likely 
contemporaneous with the Bunbury Basalt eruptions (130–137 Ma; Oli-
erook et al., 2016).

4.  Analysis: New Constraints on Breakup, Basalt 
Petrogenesis, Extension, and Subsidence
4.1.  Stratigraphic Record of the Rift to Drift Transition on the 
Southwest Australian Margin

The basalt flows of lithostratigraphic unit VI at Site U1513 lie on top of 
the breakup unconformity imaged in seismic reflection data (Figure 3c), 
as envisioned by Maloney et al. (2011). The seismic unconformity can be 
traced into the eastern Mentelle Basin where it is equivalent or nearly 
equivalent to the Valanginian breakup unconformity encountered at Site 
U1515. Pillow structures present in some flows and oxidation of most 
flows suggest eruption in a nearshore shallow water to subaerial envi-
ronment (Huber et al., 2019a; Tejada et al., 2020). We interpret the basalt 
flows to have been erupted near sea level during the last stages of ex-
tension on this part of the southwestern Australian margin, immediately 
after seafloor spreading had begun on the Perth Abyssal Plain between 
magnetochrons M11r and M11n (133–132 Ma) but before the onset of sea-
floor spreading west of the Naturaliste Plateau between magnetochrons 
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Figure 5.  Major element binary plots and trace element ratio plots for 
volcanic rocks and dikes recovered from volcanic unit VI at International 
Ocean Discovery Program Site U1513 (data from Huber et al., 2019a, 
2019b). Shown for comparison are data for dredged basaltic rocks 
from the Naturaliste Plateau (Coleman et al., 1982; Direen et al., 2017; 
Ford, 1975; Mahoney et al., 1995; Storey et al., 1992), Bunbury Basalt 
(Direen et al., 2017; Frey et al., 1996; Olierook et al., 2016), and Kerguelen 
Plateau basalts (Doucet et al., 2005; Frey et al., 2000; Kurnosov et al., 2003; 
Wallace, 2002; Weis & Frey, 2002). (a) Total alkali versus silica, showing 
basaltic composition of Site U1513 mafic rocks (classification diagram 
after Le Bas et al., 1986). (b) Representative trace element composition, 
showing Site U1513 and Kerguelen Plateau basalts to lie along a mixing 
trend between the Southeast Indian Ridge and Kerguelen plume basalts. 
(c) Major element composition, showing overlap with Kerguelen Plume, 
Southeast Indian Ridge, and Kerguelen Plateau basalts. High-MgO basalts 
are used for petrogenetic modeling as described in the text.
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M5n and M3n (126–124 Ma). The overlying epiclastic sequence of unit V contains volcanic mineral grains 
and lithic fragments interpreted to be eroded from volcanic rocks on the Naturaliste Plateau or perhaps 
further south on the conjugate Antarctica margin, which were reworked and deposited in shallow marine 
to upper bathyal conditions (Lee et al., 2020) as the Perth Abyssal Plain spreading center migrated westward 
along the northern margin of the plateau. A similar interpretation was made of the volcaniclastic strata en-
countered at nearby DSDP Site 258 (Davies et al., 1974). The breakup unconformity imaged on seismic data 
below the basalt flows is thus interpreted to be associated with the onset of seafloor spreading on the Perth 
Abyssal Plain, in keeping with previous interpretations (Borissova et al., 2010; Hall et al., 2013). If anomaly 
M11n is accepted as the oldest seafloor spreading anomaly on the Perth Abyssal Plain (Markl, 1974; Robb 
et al., 2005), then breakup must have occurred after chron M11r (133 Ma, Table 1). As noted in Section 3, 
the basalt flows encountered above the breakup unconformity at IODP Site U1513 must predate chron 
M10Nn.1n (131 Ma). This implies a narrowly constrained and approximately coeval age of 132–133 Ma for 
the Perth Basin breakup event and emplacement of the Site U1513 basalts.

The onset of seafloor spreading west of the Naturaliste Plateau (the Naturaliste Plateau breakup event) oc-
curred during deposition of the upper part of lithostratigraphic unit V. We associate this breakup event with 
a conformable upward transition from clayey siltstone (subunit 3) to silty claystone (subunit 2) and corre-
sponding decreases in the abundance of fossils, bioturbation, and volcanic material (Huber et al., 2019a, 
2019b; Lee et al., 2020). Benthic foraminifera indicate deepening of the seafloor from neritic to upper bathy-
al depths during this interval, followed by subsidence to at least middle bathyal water depth during Aptian 
time between deposition of unit V and the marine claystones of unit IV. The transition between subunits 
2 and 3 is near the boundary between chrons M5n and M3r (Lee et al., 2020), indicating an age of 126 Ma 
(Table 1) for the Naturaliste Plateau breakup event (in agreement with the age range indicated by the sea-
floor spreading anomalies).

4.2.  Constraints on Melting Conditions for the Naturaliste Plateau Basalts

Several of the basalt flows from Site U1513 have relatively high MgO (8.7–11.8 wt%) and low TiO2 (0.31–0.60 
wt%) contents that are respectively suggestive of relatively high degrees of melting and low degrees of 
fractionation. These primitive composition basalts (MgO > 8 wt%) provide the first constraints on melting 
conditions and primary magma composition for Naturaliste Plateau volcanic rocks. Petrogenetic modeling 
based on major element data from the least altered high-MgO sample, using PRIMACALC_2.10 with CO-
MAGMAT3.72 (Kimura & Ariskin, 2014), indicates a primary magma composition with Mg# = 0.77 and 
equilibrium olivine forsterite content Fo = 92%. This primary magma can be generated from approximately 
25% melting of a lherzolite source at 1.5 GPa (approximately 50 km depth), with modeled magmatic tem-
peratures of 1369°C–1413°C (Figure 6, Table 3). These magmatic temperatures are equivalent to mantle 
potential temperatures of 1380°C–1410°C, with a nominal value of 1400°C, estimated using (Ocean Basalt 
Simulator Version 1 [OBS1]; Kimura & Kawabata, 2015). Except for the most altered samples (LOI > 5 wt%), 
the major element and trace element compositions of the Site U1513 basalts overlap with the compositional 
fields of basalts encountered at ODP Site 1,140 on the Kerguelen Plateau (e.g., Figures 5b and 5c). The origin 
of the Site 1,140 basalts has been interpreted to be mixing of Kerguelen plume and Southeast Indian Ocean 
Ridge depleted mantle sources (Dosso et al., 1988; Wallace et al., 2002; Weis & Frey, 2002). We infer a similar 
origin for the Naturaliste Plateau basalts.

4.3.  Crustal Thinning and the Amount and Distribution of Extension

Paleo drainage patterns determined from detrital zircons indicate that the western Australian margin was a 
relatively flat peneplain in Early Jurassic time (Sircombe & Freeman, 1999). Assuming Airy isostasy, a prer-
ift elevation at sea level, and postrift thermal reequilibration of the rifted lithosphere, the minimum amount 
of thinning of the crust, ΔH, can be determined from the present depth of the breakup unconformity:

 
 

 
 

m w m s

m c m c
ΔH WD ST

   
   

 
 

 
� (1)
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where WD is water depth (2,788 and 850  m at Sites U1513 and U1515, respectively), ST is strata thick-
ness above the unconformity (∼800 and 335  m), and ρm, ρc, ρs, and ρw are the densities of the mantle 
(3,300  kg  m−3), crust (2,800  kg  m−3), postrift strata (2,300  kg  m−3), and water (1,000  kg  m−3) (e.g., Lee 
et al., 2019). This indicates that the crust has been thinned by at least 14 and 5 km at Sites U1513 and U1515, 
respectively. The thickness of the crust prior to extension is unknown, but is likely to have been similar to 
the unextended crust beneath either the Yilgarn Craton east of the Perth Basin onshore, or the relatively 
unextended Yallingup Shelf that lies between the Perth and Mentelle Basins. Gravity, seismic refraction, and 
receiver function studies show the thickness of the crust in the western Yilgarn Craton typically ranges be-
tween 32 and 38 km, and may locally be as thick as 43 km (Dentith et al., 2000; B. L. N. Kennett et al., 2011; 
Olierook et al.,  2016; Reading et al.,  2003; Saygin & Kennett,  2012). The thickness of the crust beneath 
the Yallingup Shelf is similar to that of the craton, ranging from 30 to 35 km (Direen et al., 2007; Olierook 
et al., 2016). Taking the extremes (30 and 43 km) as indications of the prerift crust thickness suggests that 
the crust has been thinned a minimum of 33%–44% at Site U1513 in the western Mentelle Basin, and by 
12%–16% at Site U1515 in the eastern Mentelle Basin. If thinning is attributed entirely to extension, the cor-
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Figure 6.  Modeled potential temperature (Tp) versus melting temperature, melting pressure, and degree of melting for 
mid-ocean ridge basalts, ocean island basalts, and oceanic plateau basalts and picrites obtained from the Ocean Basalt 
Simulator Version 1 (OBS1) petrogenetic model (adapted from Kimura & Kawabata, 2015). Symbols show OBS1 models 
for locations indicated in the legend. The green box shows modeling results for International Ocean Discovery Program 
Site U1513 basalts (this study). (a) Modeled melting temperature at the termination of melting (Tmt) as a function of 
mantle potential temperature (Tp). Gray circles and vertical bars indicate corresponding mantle solidus temperature 
(Tm) at the mean melting pressure estimated from the OBS1 models. Horizontal and vertical red lines labeled 
PM2 indicate Tp and Tm at the olivine liquidus estimated using PRIMELTS2 (Herzberg & Asimow, 2008; Herzberg 
et al., 2007) for the indicated eruptive centers. Shaded areas indicate nominal ranges. Thick red curved line indicates 
Tm–Tp correlation curve, with thin red lines indicating range. (b) Modeled mean melting pressure as a function of Tp. 
Shaded bars illustrate correlations within tectonic settings. (c) Mean melt fraction as a function of Tp. Symbols with red 
outlines indicate melt mixing trends as discussed by Kimura and Kawabata (2015).
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responding extension factors are β = 1.5–1.8 at Site U1513 and β = 1.1–1.2 at Site U1513. Similar amount of 
extension, β = 1.4–1.6, were estimated by Olierook et al. (2016) for the southern Perth Basin and the Natu-
raliste Plateau, although they estimate higher values (β = 3) in the central Mentelle Basin. However, it need 
be recognized that additional alterations of the crust thickness, beyond extensional thinning, likely occurred 
during rifting and affected the isostatic state of the margin. Specifically, some portion of crust thinning was 
likely accommodated by erosion during uplift in the early stages of rifting (e.g., Falvey, 1974). Additionally, 
it is possible that the base of the crust was inflated by magmatic intrusion (e.g., Mutter et al., 1982). The 
margin lacks the large potential fields highs typically associated with magmatic underplating or intrusion, 
and so significant magmatic inflation of the crust is unlikely. The amount and spatial distribution of erosion 
of the prerift crust beneath the southwestern Australian marginal basins is unknown, and so the amount of 
crustal thinning by extension given above may be overestimated.

4.4.  Subsidence and Sedimentation History

The highest sedimentation rates encountered in the boreholes are in lithostratigraphic unit V at Site U1513 
in the western Mentelle Basin, above the eastern flank of the Naturaliste Plateau (Figure 7). This 250 m 
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Major elements Sample 67R-01W measured composition (wt %)a
Modeled magma chamber 

composition (wt %)
Modeled primary basalt 

magma composition (wt %)

SiO2 49.11 49.09 48.54

TiO2 0.54 0.53 0.50

Al2O3 18.99 18.97 17.63

FeO 7.76 7.78 7.79

MnO 0.16 0.15 0.15

MgO 11.66 11.67 14.44

CaO 9.41 9.40 8.73

Na2O 2.31 2.32 2.15

K2O 0.03 0.03 0.03

P2O5 0.04 0.05 0.04

SUM 100.00 100.00 100.00

Other key compositional indicators Modeled magma chamber Modeled primary basalt

Ni content of olivine (wt%) 0.35 0.49

Forsterite content of olivine (wt%) 91.0 91.9

Mg# of basalt 0.73 0.77

FeO/Fe2O3(total) ratio 0.87 0.89

Water content (wt%) 0.00 0.01

Modeled melting conditions Modeled magma chamber Modeled primary basalt

Magma temperature using method of Ariskin (1999) (°C) 1,296 1,369

Magma temperature using method of Kimura and Ariskin (2014) (°C) - 1,413

Magma temperature using method of Herzberg and Asimow (2008) (°C) - 1,413

Modeled mantle potential temperature (°C) - 1,380–1,410

Melting pressure (GPa) 0.00 1.5

Degree of melting - 24.8

Degree of fractionation - 10
aBased on X-Ray Fluorescence analysis using AXIOS Plus (Panalytical) instrument at University of Oldenburg on shipboard residual sample powder previously 
analyzed by inductively coupled plasma-atomic emission spectrometry (Huber et al., 2019a).

Table 3 
Petrogenetic Modeling Input Parameters and Results
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thick unit was deposited between 131 and 121.8 Ma, encompassing the time interval between the Perth 
Abyssal Plain and Naturaliste Plateau breakup events. Benthic foraminifera indicate water depths increased 
only slightly during this time, from neritic to upper bathyal (Lee et al., 2020). The amount of tectonic subsid-
ence, St, during this period is estimated from the change in the depth to the base of the unit after correcting 
for sediment and water loading (Steckler & Watts, 1978):

m s m
t u

m w m w
Δ ΔS T SF SL  

   
   

         
� (2)

where Tu is the uncompacted thickness of the unit (273 m: Lee et al., 2020 supplemental data), ΔSL and ΔSF 
respectively are the changes in eustatic sea level (60 m; Haq, 2014) and seafloor depth that occurred during 
deposition of the unit, and ρm, ρs, and ρw are the densities of the mantle, sediments, and water, respectively. ΔSF 
is nominally estimated to be 300 m (the distance between the midpoints of the neritic and upper bathyal depth 
ranges), with a maximum of 600 m (innermost neritic to lowermost upper bathyal). Using the densities from 
the previous section, Equation 2 indicates 333–633 m of tectonic subsidence during deposition of unit V, which 
corresponds to 1,650–3,030 m of crustal thinning (Equation 1). The densities used here are representative of the 
lithosphere after thermal reequilibration. The proximity of the Kerguelen plume and Perth Abyssal Plain spread-
ing ridge and the relatively high melting temperature estimated for the unit VI basalts suggest hotter conditions 
at the time of breakup. Assuming an accordingly lower mantle density of 3,100 kg m−3 and a higher crust density 
of 2,900 kg m−3 (representing a more mafic crust) results in a similar amount of tectonic subsidence (315–615 m) 
as the cooler model, but much larger estimates of crustal thinning (3,612–6,762 m). In either case (warm or 
cool lithosphere), the amount of crustal thinning inferred to have occurred between the Perth Abyssal Plain 
and Naturaliste Plateau breakup events is less than the total amount of thinning estimated to have occurred on 
the margin in the previous section (14 km). We conclude that 50%–75% of the thinning at Site U1513 took place 
prior to the Perth Abyssal Plain breakup event and was most likely coeval with extension in the Perth Basin. We 
attribute most of this crustal thinning to extensional tectonism, but we note that nonextensional thinning of the 
lithosphere prior to breakup is also likely to have occurred due to erosion at the top and possibly thermal thinning 
of the base of the lithosphere. The amounts of these types of thinning are unknown.

Despite 14 km or more of cumulative crustal thinning, the seafloor at Site U1513 remained at neritic depths 
between the two breakup events on the margin and at upper bathyal depths for 3–5 Myr following the Nat-
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Figure 7.  Ages of strata recovered in International Ocean Discovery Program boreholes in the Mentelle Basin as a 
function of depth below seafloor. Green lines indicate ages of key tectonic events. Shaded areas represent intervals 
of rapid sedimentation with numbers indicating sedimentation rates (m Myr−1). Site U1515 is not shown due to poor 
age resolution. Curve at top shows global SL relative to the modern datum (Haq et al., 1987). SFS, onset of seafloor 
spreading; SL, sea level.
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uraliste Plateau breakup event (during deposition of the upper part of unit V). The basalts at the top of unit 
V erupted near the seafloor and underwent no more than about 630 m of tectonic subsidence during this 
time. The one-dimensional pure shear thinning model of McKenzie (1978) predicts more than 1,200 m of 
subsidence at Site U1513 using the densities above, the previously estimated extension factor β = 1.9, and 
assuming a 125 km thick prerift lithosphere and a mantle potential temperature of 1300°C. We attribute the 
approximately 570 m deficit in synrift and early postbreakup subsidence on the Naturaliste Plateau to lat-
eral (southward) flow of heat from the Perth Abyssal Plain spreading ridge, which was migrating westward 
along the northern margins of the Mentelle Basin and Naturaliste Plateau during this time. Alternatively 
(or in addition), heat from the nearby Kerguelen plume may have kept the margin elevated during rifting. 
The plume moved southwestward away from the Australian margin after breakup, so its thermal effect on 
the margin through time would have been similar to that of the Perth Abyssal Plain spreading ridge. Sedi-
mentation rates at Site U1513 were low or zero for approximately 20 Myr following the Naturaliste Plateau 
breakup event as the margin cooled and subsided to middle bathyal depths (Figure 7).

The postrift depositional hiatus at Site U1513 was followed by a second phase of rapid sedimentation be-
tween about 110 Ma and at least 82 Ma (Figure 7). The beginning of the second phase of rapid sedimenta-
tion at Site U1513 approximately coincides with the ridge jump at 108 Ma that transferred Gulden Draak 
and Batavia Knolls from the Indian Plate to the Australian Plate (Gibbons et al., 2012; Whittaker et al., 2016; 
Williams et  al.,  2013) (Figure  2e). The second phase of rapid sedimentation may have begun as late as 
105 Ma at Sites U1514 and U1516, approximately corresponding with the onset of rifting on the southern 
margin between Australia and Antarctica (Figure 2f). Sedimentation rates slowed at Sites U1514 and U1516 
after about 88 Ma, approximately coinciding with the transition to slow seafloor spreading and/or mantle 
exhumation on the southern margin by 84 Ma (Figure 2g).

Slow sedimentation continued through the Paleogene, interrupted by periods of relatively rapid sedimenta-
tion at Site U1514 between 60 and 55 Ma and at Sites U1514 and U1516 between 47 and 32 Ma (Figure 7). 
The onset of the latter episode of rapid sedimentation coincides with the transition from slow spreading to 
normal seafloor spreading on the southern margin between 47 and 42 Ma (Figure 2f). However, we consider 
it unlikely that either of the Paleogene periods of rapid sedimentation were a direct result of subsidence 
produced by extension on the southern margin, because the Australian and Antarctic plates presumably 
became decoupled after slow spreading was established at about 84 Ma. We consider it more likely that 
changes in the sedimentation rates on the southwestern margin during the Paleogene are a result of chang-
es in carbonate productivity, perhaps influenced by changing ocean circulation patterns as the Southern 
Ocean opened. Sediment accumulation rates decreased again after about 32 Ma and remained relatively 
low until 15 Ma at Sites U1513 and U1514 until the present time (increasing slightly after the end of the Mi-
ocene Epoch). This Oligocene through middle Miocene interval of low sedimentation rates correlates with 
an upper Miocene unconformity at DSDP Sites 258 and 264 on the Naturaliste Plateau, which Luyendyk 
and Davies (1974) attributed to seafloor erosion and nondeposition following establishment of a strong cir-
cumpolar current after opening of the Australia-Antarctic seaway during the Oligocene Epoch (J. P. Kennett 
et al., 1972). The sedimentation rate increased slightly at Sites U1513 and U1514 after about 15 Ma, as has 
been observed globally (Molnar, 2004), and more dramatically at Site U1516 (Figure 7).

5.  Discussion: Implications for Rifting and Magmatism on the Southwest 
Australian Margin
5.1.  Tectonic Evolution and Subsidence

The tectonic, stratigraphic, and magmatic evolution of the southwestern Australian continental margin is 
summarized schematically in Figure 8. The Late Jurassic through Early Cretaceous rifting that led to open-
ing of the eastern Indian Ocean followed the trend of older north to north-northwest striking rift basins 
that initially formed during early to middle Permian extension (Veevers, 2006). A period of relative tectonic 
quiescence and slow thermal subsidence followed, during which time the western Australian margin re-
mained near sea level, as evidenced in the Perth Basin by Early Triassic shallow marine beds grading up-
ward to Early Triassic through Early Jurassic deltaic deposits, coal measures, and red beds (Hall et al., 2013; 
Norvick, 2004; Veevers, 2006; Yeates et al., 1987) (Figure 8a). Extension was renewed during Middle Jurassic 
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Figure 8.  Evolution of the southwest Australian rifted margin. Left column—view of upper crust based on seismic profile S310-05 (Figure 3). Right column—
schematic view of entire crust based primarily on gravity studies summarized in text. The profile crosses westward from the eastern edge of the southern Perth 
Basin across the Yallingup Shelf, Mentelle Basin, and Naturaliste Plateau. Extension direction is northwest (to left and into page) in (c and d), and southward 
(out of page) in (e and f). (a) Middle Jurassic (prerift). Late Permian through Early Jurassic postrift strata cover synrift strata filling older Middle and Early 
Permian rift basins. (b) Late Jurassic (early synrift). Onset of rifting between Greater India and Australia, accompanied by formation of fault-bounded rift 
basins, uplift, and erosion west of the Darling Fault. (c) Late Valanginian (Perth Abyssal Plain breakup). Onset of seafloor spreading on the Perth Abyssal 
Plain (north of profile), accompanied by basaltic volcanism in the southern Perth Basin and on the Naturaliste Plateau and in the western Mentelle Basin, 
where extension continues. Flows and sills in rift basin below the unconformity (red) are hypothetical. (d) Early Barremian (Naturaliste Plateau breakup). 
Greater India and Australia separate and seafloor spreading west of the Naturaliste Plateau begins. Last volcanic eruptions on the Naturaliste Plateau occur 
immediately after breakup, followed by weathering and redistribution of basaltic material near sea level. (e) Late Cretaceous (immediately prior to breakup 
between Australia and Antarctica). Most of the margin subsided to midbathyal or greater depths prior to rapid subsidence immediately before the onset of 
normal seafloor spreading on the southern margin. (f) Rapid postrift subsidence of the central Mentelle Basin followed the onset of seafloor spreading between 
Australia and Antarctica during the Neogene, producing the modern bathymetry. CMB, crust-mantle boundary.
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time, accompanied by faulting and accumulation of Late Jurassic through earliest Cretaceous synrift fluvial 
and deltaic strata within half-grabens, many of which formed on reactivated Permian faults (Bradshaw 
et  al.,  2003; Norvick,  2004). Seismic profiles show abundant faults below the breakup unconformity on 
the Naturaliste Plateau and in the Perth and Mentelle Basins (Borissova, 2002; Borissova et al., 2010; Hall 
et al., 2013; Maloney et al., 2011) (Figure 3), indicating that Jurassic through Early Cretaceous extension 
was accommodated by normal faulting that spanned the breadth of the southwestern Australian margin. 
Extension was focused most strongly within the central and eastern Mentelle Basin and in the outboard 
parts of the Perth Basin, where the crust was thinned by factors of β ≈ 1.7–3 and 1.2–1.6, respectively (Ol-
ierook et al., 2016, and this study). We interpret the Late Jurassic to earliest Cretaceous fluvio-lacustrine 
sequence (lithostratigraphic unit IIc) at Site U1515 to be part of the synrift strata that filled one of the 
several fault-bounded subbasins within the emergent rift. Regional uplift coeval with faulting and filling of 
the subbasins is indicated by (i) erosional truncation of fault blocks by the breakup unconformity on the 
flanks of the rift basins (Figure 3) (Borissova, 2002; Borissova et al., 2010; Crostella & Backhouse, 2000; Hall 
et al., 2013); and (ii) the ages of detrital zircons in the lower part of the synrift strata in the Perth Basin, 
which indicate dominantly local sources from within the Proterozoic Pinjarra and Albany-Fraser orogens 
that form the basement beneath the Australian margin (Sircombe & Freeman, 1999). The upper synrift 
strata are missing in the Perth Basin due to Early Cretaceous erosion at the time of breakup (Bradshaw 
et al., 2003) (Figure 8b). The Late Jurassic synrift fluvio-lacustrine deposits at Site U1515 transition upward 
into marine strata (units IIb and IIa), indicating subsidence and marine transgression in the eastern Ment-
elle Basin beginning in late Valanginian time following breakup and the onset of seafloor spreading on the 
Perth Abyssal Plain at 132 Ma (Figure 8c).

Emplacement of the Bunbury Basalt in the Perth Basin (137–130  Ma), the basalt flows at Site U1513 
(>131 Ma), and the mafic rocks dredged from the margins of the Naturaliste Plateau (132–128 Ma; Direen 
et al., 2017) were synchronous with seafloor spreading on the Perth Abyssal Plain, but preceded the onset of 
spreading west of the Naturaliste Plateau. Seismic profiles show many faults in the western Mentelle Basin 
extend upward into Barremian strata (Borissova, 2002; Borissova et al., 2010), consistent with ongoing ex-
tension on this portion of the southwestern Australian margin between the onset of spreading on the Perth 
Abyssal Plain during the late Valanginian at 133–132 Ma and the onset of spreading west of the Naturaliste 
Plateau during the early Barremian at 126 Ma (Gibbons et al., 2012; Williams et al., 2013) (Figure 8d). The 
margin transitioned from volcanically active to inactive between 132 and 126 Ma, with the volcanic se-
quence deposited atop the breakup unconformity being eroded and re-deposited in the volcanogenic clastic 
succession on the Naturaliste Plateau (Figure 3c).

Shallow water and/or subaerial emplacement of the basalts at Site U1513, the transition from terrestrial 
to shallow marine deposition across the stratal equivalent of the unconformity in unit IIb at Site U1515, 
and the recovery of similar shallow water upper Jurassic strata below the unconformity in the Perth Basin 
(Crostella & Backhouse, 2000) indicate that the entire southwestern Australian margin was near sea level 
at the time seafloor spreading began on the Perth Abyssal Plain. Benthic foraminifera and sedimentary 
features in the epiclastic section overlying the basalt flows at Site U1513 show that the Naturaliste Plateau 
remained at or near neritic depths following the Perth Abyssal Plain breakup event at 133–132 Ma, and at 
upper bathyal depths for at least 3 Myr following the Naturaliste Plateau breakup event at 126 Ma. The mar-
gin underwent no more than about 630 m of tectonic subsidence between the two breakup events, in spite 
of ongoing extension. The lack of greater amounts of subsidence during the final stages of rifting and im-
mediately afterward can be attributed to the proximity of either (i) the Perth Abyssal Plain spreading ridge, 
which was migrating westward along the northern edges of the Mentelle Basin and Naturaliste Plateau 
between 132 Ma and 124 Ma, or (ii) the Kerguelen plume, which was moving southwestward away from the 
margin during this time. The approximately 1400°C mantle potential temperature indicated by petrogenetic 
modeling of the basalt compositions at Site U1513 supports the presence of a warm buoyant plume head 
beneath the rift at the time of breakup.

The onset of a depositional hiatus and the end of deposition of the volcanogenic clastic strata (unit V) on the 
Naturaliste Plateau occurred at chron M0r time (Lee et al., 2020), coinciding with a westward jump of the 
Perth Basin spreading ridge away from the Australian margin (Gibbons et al., 2012). We infer that thermal 
subsidence of the Naturaliste Plateau began at this time, as the marine claystones of unit IV at Site U1513 
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indicate that the eastern Naturaliste Plateau had reached at least middle bathyal depths by early Albian time 
(110 Ma) (Figure 8e). We attribute the reduction in sedimentation rate after deposition of unit V to the in-
creased depth of the plateau and the corresponding reduction in the supply of clastic sediments weathered 
from the subsiding volcanic terranes. Sediment from potential distal sources in Greater India and Australia 
would have been prevented from reaching the Naturaliste Plateau by the newly opened seaway to the west 
and by the subsiding Mentelle Basin to the east. The water depth in the central Mentelle Basin (Sites U1514 
and U1516) is loosely constrained to have been within the broad bathyal depth range in early Albian time.

Following the depositional hiatus at Site U1513, a period of relatively rapid sedimentation occurred on the 
Naturaliste Plateau (Site U1513) and in the central Mentelle Basin (U1514 and U1516) beginning between 
110 and 100 Ma and lasting to at least 82 Ma (Figure 7). The beginning of this period of rapid sedimentation 
was coincident with a westward jump of the Indian Ocean spreading ridge at 108 Ma and with the onset 
of rifting on the southern Australian margin. The high sedimentation rates during this period may reflect 
ongoing thermal subsidence on the margin after breakup between Australia and Greater India, possibly 
with increased sediment input from the southern rift, or it may reflect subsidence related to extension on 
the southern margin. The latter possibility is supported by the modest decrease in sedimentation rates after 
about 88 Ma at Sites U1515 and U1516, which may indicate decreased coupling between the Australian and 
Antarctic plates as slow spreading developed on the southern margin. Another interval of relatively rapid 
sedimentation in the central Mentelle Basin (Sites U1514 and U1516) began at about 47 Ma, when normal 
seafloor spreading was established and final separation occurred between Australia and Antarctica (this 
was preceded at Site U1514 by a short interval of rapid sedimentation between 60 and 55 Ma). The periods 
of rapid sedimentation beginning at 100, 60, and 47  Ma correlate with tectonic events on the southern 
margin, but we note that the post-Aptian strata are carbonate rich and so thickness changes are not nec-
essarily indicative of subsidence. The post-Aptian changes in sedimentation rate may be due to increased 
productivity in the water column that resulted from changes in ocean circulation patterns that occurred 
as the new seaway opened between Australian and Antarctica. Except for accumulation of about 250 m of 
carbonates in the southern part of the central Mentelle Basin (Site U1516), the margin has experienced little 
deposition since late Oligocene time as it subsided to its modern lower bathyal to abyssal (>2000 m) water 
depths (Figure 8f).

5.2.  Petrogenesis and Distribution of Synrift Basalts and Relation to the Kerguelen Plume

Petrogenetic modeling suggests that the most primitive basalts recovered at IODP Site U1513 were gener-
ated from approximately 25% melting of a lherzolite source at 1.5 GPa (approximately 50 km depth) and a 
mantle potential temperature of about 1400°C (with estimated primary magma temperatures ranging from 
1369°C to 1413°C). This temperature is high compared to the global average, which typically ranges from 
1250°C to 1350°C (Gudfinnsson & Presnall, 2005; Kimura and Kawabata, 2015; McKenzie & Bickle, 1988; 
McKenzie et  al.,  2005; Presnall et  al.,  2002), although global average potential temperatures as high as 
1420°C have been suggested (Herzberg et al., 2007; Putirka, 2005). The relatively high potential temperature 
seems indicative of the presence of an active or recently active plume at the time of breakup. The estimated 
mantle temperature is ≥ 100°C lower than expected for the axis of a plume, but within the expected range 
for a broad plume head (Campbell & Griffiths, 1990; R. S. White and McKenzie, 1995). The melting con-
ditions are thus consistent with either a large diameter Kerguelen plume head beneath the northeastern 
Indian Ocean during the Early Cretaceous Period (Direen et al., 2017; Olierook et al., 2016, 2017; Storey 
et al., 1989), or with multiple limbs from a fragmented or dismembered plume (Coffin et al., 2002).

The Bunbury Basalt and the basalt flows encountered in the western Mentelle Basin at IODP Site U1513 
represent late synrift and early postrift magmatism that, although geographically widespread, has a rel-
atively small net thickness for plume-related volcanism. The moderately high mantle potential tempera-
ture inferred from the Naturaliste Plateau basalts (1400°C) suggests a larger thickness of melt should have 
been produced during earlier stages of rifting, particularly in the highly extended central Mentelle Basin 
(where β > 3) (e.g., McKenzie & Bickle, 1988). Possible evidence of such earlier synrift magmatism are 
high-amplitude seismic reflectors imaged within the thick undrilled stratified interval below the lowermost 
(Valanginian) breakup unconformity in the central and western Mentelle Basin (Figure 9). These high-am-
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plitude reflectors could be produced by basalt flows interbedded within the Late Cretaceous synrift strata 
that has been previously interpreted to fill the fault bounded rift basins below the Valanginian breakup 
unconformity (Borissova et al., 2010; Maloney et al., 2011). Seismic velocities in this interval average about 
6 km s−1 (Maloney et al., 2011), which is high compared to most siliclastic rocks, which typically range from 
about 2.5 to 5.0 km s−1 (Castagna et al, 1985). The seismic velocity of basalt typically ranges from about 
5.2 to 6.5 km s−1 (Christensen & Stanley, 2003). Assuming a basalt velocity of 6.5 km s−1 (appropriate for 
low porosity flows or sills), volume averaging of the velocities suggests 67%–88% of the material filling the 
rift basins below the Valanginian unconformity in the central and western Mentelle Basin could be basal-
tic. Substantially larger volumes of basalt (up to 100%) may be implied if the basalt velocity is lower than 
6.5 km s−1, although this seems unlikely given the similarity of the deep reflections in the western Mentelle 
Basin with those imaged within the Permian and Jurassic synrift sedimentary strata further east on the 
margin in the Perth Basin (e.g., Borissova et al., 2010).

Alternatively, little basalt (potentially none) below the Valanginian breakup unconformity may be implied 
if the high velocity in the synrift clastic sediments is due to hydrothermal cementation, as is observed in the 
volcaniclastic sediments in unit V and in the interbedded flows of unit VI at IODP Site U1513. In such a case, 
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Figure 9.  Seismic reflection profiles showing high amplitude reflectors interpreted to be basalt flows. (a) Profile S310-
17 trending WSW across the Mentelle Basin, showing probable volcanic/intrusive complex and associated flows that 
lies along strike of the Perth Basin/Perth Abyssal Plain ocean-continent transition further north. (b) Profile S310-03 
trending NNW, showing reflectors that dip toward the ocean-continent boundary at the south edge of the Perth Abyssal 
Plain. Vertical dashed red line marks intersection of the two profiles. Profile locations shown in Figure 1. Seismic 
profiles available from Geoscience Australia National Offshore Petroleum Information Management System (https://
nopims.dmp.wa.gov.au/nopims).
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the Bunbury Basalt and the basalts of the western Mentelle Basin and Naturaliste Plateau may represent 
minor late-stage magmatism that occurred immediately prior to breakup on an otherwise amagmatic seg-
ment of the western Australia rifted margin. This is consistent with the model of Olierook et al. (2016), who 
suggested that the Bunbury Basalt originated from decompression melting of fertile domains in the upper 
mantle that were themselves products of older metasomatic episodes. However, although melting of fertile 
components may be a sufficient explanation for the Bunbury Basalt, the relatively high mantle tempera-
ture inferred from the Site U1513 basalts indicates some influence from a hot plume. This favors a hybrid 
interpretation, in which the Bunbury Basalt in the moderately extended southern Perth Basin is a result of 
melting of fertile domains within a metasomatized lithospheric mantle, whereas the basalts of the more 
highly extended central and western Mentelle Basin may be products of decompression melting of a warm 
sublithospheric mantle plume head or plume limb.

6.  Summary
IODP Expedition 369 drilled four sites on the southwestern Australian continental margin. At Site U1513, 
located in the western Mentelle Basin above the eastern flank of the Naturaliste Plateau, drilling penetrat-
ed into Early Cretaceous interbedded basalt flows and volcaniclastic layers that lie immediately above the 
seismically imaged breakup unconformity. Sites U1514 and U1516, located in the central Mentelle Basin, 
penetrated into an Early Cretaceous (Albian) postrift marine claystone unit. Drilling at Site U1515, near the 
eastern edge of the Mentelle Basin, penetrated through the postrift sequence and into late synrift lacustrine 
deposits. Drilling shows the seismically imaged breakup unconformity on the Naturaliste Plateau and in the 
western Mentelle Basin to be equivalent to the late Valanginian breakup unconformity that is present in the 
Perth Basin, which extends for 1,000 km along the western Australian margin beneath the continental shelf. 
The late Valanginian unconformity marks the onset of seafloor spreading on the Perth Abyssal Plain, which 
is inferred to have begun between chrons M11r and M11n (133–132 Ma). In the western Mentelle Basin/
Naturaliste Plateau (Site U1513), the Valanginian unconformity is overlain by basalt flows and interlayered 
volcaniclastic beds that were sampled in situ for the first time during IODP Expedition 369. Petrogenetic 
modeling indicates these basalts formed by approximately 25% melting of a lherzolite mantle source at 
1.5 GPa and with a mantle potential temperature of 1400°C. This moderately high mantle potential tem-
perature is most easily accounted for by the presence of a large Kerguelen plume head beneath the eastern 
Indian Ocean at the time of breakup, although the trace element geochemistry and melting trends also sug-
gest involvement of a mid-ocean ridge component. The magnetostratigraphy of the overlying strata show 
that the basalt flows at Site U1513 predate the end of chron M10Nn.1n (131 Ma). The breakup unconformity 
below the basalts is interpreted to have formed when seafloor spreading began on the Perth Abyssal Plain, 
no earlier than chron M11r (133 Ma). This implies that the flows encountered at Site U1513 were emplaced 
between 132 and 133 Ma, immediately after (or synchronous with) the onset of seafloor spreading on the 
Perth Abyssal Plain and contemporaneous with the Bunbury Basalt found in the southern Perth Basin. In 
the eastern Mentelle Basin at Site U1515, breakup on the Perth Abyssal Plain manifests as a rapid conform-
able upward transition from Late Jurassic to earliest Cretaceous synrift fluvio-lacustrine strata deposited in 
a fault bounded rift basin into transgressive marine strata deposited after breakup.

At Site U1513, the basalt flows are overlain by a 235 m thick epiclastic sequence deposited mostly at shelf 
depths that contains abundant weathered volcanic materials, presumably sourced from local volcanic edi-
fices. These strata demonstrate that the eastern Naturaliste Plateau remained at shallow depths for 3–5 Myr 
following breakup on the Perth Abyssal Plain. The uppermost part of the volcanogenic epiclastic strata 
contains marine silty claystone that was deposited in upper bathyal depths. This is interpreted to be the 
lower part of the postrift sequence, deposited after the second breakup event on the margin at 126 Ma that 
marked final separation of Greater India from Australia and the onset of seafloor spreading to the west of 
the Naturaliste Plateau.

Pillow structures and oxidation show that the basalt flows on the eastern Naturaliste Plateau and in the 
western Mentelle Basin (Site U1513) were erupted subaerially or in shallow water, indicating that the south-
western Australian margin was near sea level when seafloor spreading began on the Perth Abyssal Plain. 
The Naturaliste Plateau remained at shelf depths during the 6–9 Myr period between breakup on the Perth 

HARRY ET AL. 21 of 26

10.1029/2020GC009144



Geochemistry, Geophysics, Geosystems

Abyssal Plain to the north (132–133 Ma) and final breakup with Greater India to the west (124–126 Ma), 
and subsided to only upper bathyal depths during the 3–5 Myr period after the final breakup event. The 
lack of greater subsidence during this late synrift and early postrift period is attributed to heat from the 
nearby Perth Abyssal Plain spreading ridge, which migrated westward along the northern margins of the 
Naturaliste Plateau and Mentelle Basin between 132 and 124 Ma, and to proximity of the Kerguelen plume. 
A depositional hiatus or period of slow sedimentation occurred at Site U1513 on the Naturaliste Plateau 
between 121 and 110 Ma as the plateau and central Mentelle Basin (Sites U1514 and U1516) subsided to 
middle bathyal depths. Periods of rapid deposition occurred in the Late Cretaceous (100 Ma) and again in 
Paleogene time (47 Ma), coinciding respectively with the onset of rifting between Australia and Antarctica 
and with breakup and establishment of normal seafloor spreading on the southern margin. High sedimen-
tation rates in the Paleogene are likely due to increased carbonate productivity on the margin that resulted 
from establishment of a new ocean circulation pattern following separation of Antarctica from Australia.

Data Availability Statement
Downhole geological, geophysical, and geochemical datasets used in this research are accessible through 
the following International Ocean Discover Program publications and their supplemental information 
files: Hobbs et  al.  (2019) and Huber et  al.  (2019a), available online at http://publications.iodp.org/pro-
ceedings/369/369title.html. Seismic reflection profiles shown in this study are available from Geoscience 
Australia National Offshore Petroleum Information Management System (https://nopims.dmp.wa.gov.au/
nopims). X-ray fluorescence spectrometry data for volcanic and volcaniclastic samples recovered at IODP 
Site U1513 are available at the PANGEA website (doi:https://doi.pangaea.de/10.1594/PANGAEA.924535).
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