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An Operational Risk Analysis Model for Container Shipping Systems considering Uncertainty 

Quantification

ABSTRACT

Different uncertain factors obstruct the analysis of operational risks in container shipping, especially 

those rooted from the subjectivity of multiple risk assessments and their aggregation. This paper 

proposes a risk analysis model featuring a quantification of the uncertainty level for each risk. 

Subjective probabilities (degree of belief) of a risk at different states is quantified by a Bayesian network 

based on a two-level parameter set. A set of three uncertainty indicators are developed to provide a 

quantitative diagnosis of the knowledge base, including expert ignorance, disagreement among experts, 

and polarization of their assessments. The relative risk situation is then visualized by risk mapping, 

using both Risk index and Uncertainty index. Investigating uncertainty through both subjective and 

objective indicators gains insights into the reliability of risk analysis and assessment. The empirical 

experiment is carried out on a shipping company not only confirmed the feasibility of the proposed 

model but also demonstrated its usefulness in analyzing highly uncertain risks.

Keywords: Risk assessment; Container shipping operation; Bayesian Network; Evidential Reasoning; 

Risk mapping



1. INTRODUCTION

The fast growth in complexity and scale puts container shipping systems under various risks posed by 

potential unfortunate events that occur in a company’s daily operations (Chang et al., 2015). Operational 

risks are considered as an important risk sector by stakeholders with the highest likelihood and pervasive 

impacts (Lam and Lassa, 2016, Liu et al., 2018). Undetected operational threats such as cargo 

misdeclaration, network infiltration, piracy and unexpected financial disruptions can lead to significant 

consequences for shipping companies. The hazardous events (HEs) such as the NotPetya attack, Tianjin 

port explosion, Maersk Honam fire, and Hanjin bankruptcy are well-observed by the industry. Container 

shipping operational risk (CSOR) management requires risk mitigation/prevention (RMP) plans that 

depend heavily on dedicated but limited resources (Chang et al., 2014, Lee and Song, 2017). Effective, 

informative, and holistic risk analysis, therefore, is crucial for a corroborated and confident decision-

making process. 

It is agreed in risk foundational studies that uncertainty should be comprehensively considered for an 

adequate and systematic risk approach (Levin, 2005, Aven and Zio, 2011). However, this objective is 

seemingly problematic for risk assessment in container shipping. On top of the system complexity, the 

physical movements of shipments require synchronization from both information and financial flows 

to maintain its seamlessness. The reliability of the system, therefore, is heavily affected by the 

accumulation of uncertain factors from its components (e.g., communication infrastructure, vehicles, 

human operations, handling equipment, containers, and shipments) (Ottomanelli and Wong, 2011). 

Although uncertainties are all epistemic (i.e., rooted in the lack of knowledge), their sources can be 

used to classify them. The non-determinate nature of a future HE causes outcome uncertainty ( ). In 𝑈𝑂

the container shipping context, it is observable that events of a same risk are hardly the same and even 

greatly different from one another. To narrow-down this variation in the CSOR analysis, expert 

assessments were widely implemented to indicate the most likely scenarios (see, for example, Chang et 

al. (2015)). However, the weakness of the knowledge base used for these assessments poses another 

type of uncertainty, termed by Levin (2005) as evidential uncertainty ( ). While most quantitative risk 𝑈𝐸

analysis (QRA) models handle uncertainty only through probability, their ability to investigate and 

communicate both  and  was scarcely featured (Goerlandt and Montewka, 2015b). 𝑈𝑂 𝑈𝐸

This study develops a novel QRA model for CSORs that has the ability to quantitatively detect the 

uncertainty level in the process of risk assessment. The core of our solution lies in the set of three 

uncertainty indicators. Expert’s ignorance, which conveys the subjective assessments of , is 𝑈𝐸

expressible through the concept of Degree of Belief (DoB) and Unassigned DoB (UDoB). Since this 

attribute might be vulnerable against subjective biases, the average disagreement among experts is 

employed to provide a more objective view of . Assessment polarization captures the  by the 𝑈𝐸 𝑈𝑂

degree to which a scenario cannot be indicated as more likely to happen than the others. This 



investigation is able to reveal cases of problematic implemented knowledge base. The enabling of 

uncertainty quantification allows the level of risk to be evaluated while maintaining an informative 

description of the knowledge base that render the reliability of the analysis results.

The remaining of this paper is structured as follows. Section 2 presents an analytical review to describe 

the knowledge gap as well as develop the key concepts of the QRA model. Section 3 proposes the QRA 

model composed of three main components: (1) The Evidential Reasoning (ER) algorithm to aggregate 

multiple expert assessments, (2) a Bayesian Network (BN) model that calculates the level of CSORs 

and (3) an uncertainty quantification module (UQM) based on uncertainty indicators that gauges the 

credibility of the CSOR analysis. The model validation process, including an illustrative case study, a 

validity assessment and a sensitivity analysis is introduced in Section 4. Finally, discussions and 

conclusions are provided in Section 5.

2. LITERATURE REVIEW AND CONCEPT DEVELOPMENT

Through reviewing and analyzing relevant literature, this section articulates an in-depth research 

background analysis with methodological-focused discussions to formulate the key concepts of the 

QRA. The contributions to literature of this study are presented at the end of the section.

2.1. The need for an assessment model with effective uncertainty treatment for CSORs

The current risk understanding considers The prior HE (A), its Consequence (C), and the involved 

Uncertainty (U) as the three main elements in the concept of risk ( ) (Zio, 2007, Aven, 2012). 𝑅 = 𝐴,𝐶,𝑈

Winkler (1996) concluded that all uncertainties are essentially epistemic. However, we concur with 

Aven and Renn (2010) that an effective differentiation is handy in capturing uncertainty 

comprehensively as well as drawing useful insights into the risk situation. Since the HE is non-

determinate in the present timeframe,  is inherently irreducible (Levin, 2005, Aven, 2012). On the 𝑈𝑂

other hand,  is reducible through improving the quality of the knowledge base (Apeland et al., 2002). 𝑈𝐸

The differentiation and dedicated treatments of  and  is the key to complete awareness and 𝑈𝑂 𝑈𝐸

proactive handling of .𝑈

Although the incremental role of risk analysis in maritime transport has been shown in subsections such 

as navigation safety (Goerlandt and Montewka, 2015b), and offshore human elements (Eleye-Datubo 

et al., 2008, Akhtar and Utne, 2014), the attention of the maritime academia was superficially paid in 

the risk managerial perspective, particularly with CSORs (Lee and Song, 2017). In addition, studies in 

maritime transport risk suffer from lack of uncertainty awareness and anticipation (Goerlandt and 

Montewka, 2015b). Studies often consider probability as the core of the risk concept while uncertainty 

was not communicated any further than its probabilistic description. For example, in the CSOR analysis 

conducted by Chang et al. (2014), Chang et al. (2015) as well as those related to maritime shipping 

systems by Berle et al. (2011), and Yang (2011) the subjective assessments could be vague and 



uncertain, and thus difficult for a crisp scale without specific descriptions to capture effectively. Using 

linguistic assessments in combination with fuzzy theory can provide a partial expression of  (see, for 𝑈𝐸

example, Tseng et al. (2013)). However, this approach lacks a distinguishable realization of  and . 𝑈𝑂 𝑈𝐸

The assessors could not express their extents of confidence, which heavily depend on the base of 

knowledge, in their assessments. An uncertainty-aware QRA model is necessary to promote more 

reliable practices in the maritime risk research community, considering that not yet a concrete cost-

effectiveness validation method for QRA is available (Aven and Heide, 2009, Goerlandt et al., 2017).

2.2. Subjective risk assessments and the Uncertainty Quantification Module (UQM)

A realist risk approach is unlikely to be compatible with assessing multiple CSORs. Ex post risk 

analyses require enriched risk historical databases as the primary input for risk assessment. A sizeable 

and compatible recorded risk database, however, is difficult to gather in the field of container shipping. 

Additionally, an anticipative QRA result is needed for timely RMP (Aven and Krohn, 2014). Relying 

exclusively on historical data effectively assumed that an HE can be repeated multiple times to establish 

an objective probability (the law of large number), which cannot be justified in a highly dynamic risk 

situations as container shipping operations. A promising alternative here is a rational constructivist 

approach that involves expert predictive assessments. The unavoidable subjective biases are controlled 

by the connections between these assessments and reality through a knowledge base of evidence and 

reasonings (Rae and Alexander, 2017). The insights into the quality of the implemented knowledge 

base, therefore, crucial in constituting the reliability of the QRA.

A set of DoBs and UDoB can be utilized as a form of subjective probability that reflect the experts’ 

distributions of likelihood for exclusive states of the risk parameters (e.g., Financial impact: 50% Low, 

20% Medium, 10% High, and 20% UDoB). The average disagreement among experts is computed in 

this stage (Figure 1, Indicator 1). UDoB is a means to subjectively express the weakness of the 

knowledge base. Here, ER, rooted in the Dempster – Shafer theory (Shafer, 1976), can be used to 

aggregate multiple experts’ assessment of a risk parameter and extract aggregated UDoBs to have the 

total expert’s ignorance indicator (Figure 1, Indicator 2). The total polarization of normalized 

aggregated DoBs, which is now contained merely risk magnitude information, can also be calculated 

(Figure 1, Indicator 3). In this system, Indicator 1 and 2 indicate the weakness of the knowledge base 

related to the available evidence ( ) while Indicator 3 captures the outcome uncertainty degree to 𝑈𝐸

which a scenario cannot be identified as more likely to happen than others ( ).𝑈𝑂



FIGURE 1 Design of the proposed Uncertainty Quantification Module (UQM)

The aggregation of these indicators is carried out by the Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS), which was proposed by Hwang and Yoon (1981). TOPSIS is suitable to 

aggregating multiple numeric values of incongruous dimensions and monotonically varying. In our 

model, TOPSIS is employed to aggregate three uncertainty indicators to derive the Uncertainty index 

(UI) for each risk, which provides insights into the foundation of the risk assessments. The integration 

of DoB, UDoB, ER, and TOPSIS forms the UQM of the QRA model. Its mathematical description will 

be presented in Section 3.3.

2.3. The integration of BN into the risk parameter structure

BN is well known for its implementations in risk assessment and analysis practices (Aven, 2012, Duijm, 

2015). BNs allow correlation among variables and predictions to be made even when direct evidence 

or observations are missing (Krieg, 2001). Integrating the Bayesian theorem into risk parameter set is a 

technique in quantitative assessment of CSORs (see, for example, the QRA models of Yang et al. (2008) 

and Alyami et al. (2014) with the parameters based on Failure Mode and Effects Analysis (FMEA)). 

The BN model proposed by Yang et al. (2008) is able of calculating failure priority value at the cost of 

bulky and arduous quantification of all causal relationships. Alyami et al. (2014) proposed a simpler 

but more rigid method where the DoB in the states are distributed linearly with the evidence in risk 

parameters. The importance of parameters is expressible in the model of Wan et al. (2019). However, 

uncertainty was not adequately considered even though cases of notable difference between experts’ 

assessments are observable in the applications of both Alyami et al. (2014) and Wan et al. (2019)’s 

models. For instance, averaging 0% and 90% assessments to 45% effectively ignored crucial 

phenomena of the knowledge base (e.g., ambiguity, conflicts of understandings). Again, an UQM 

developed for this family of models is significant considering these potential weaknesses of the risk 

analysis.

Additionally, there is a gap from extant literature of a rational-structured parameter set for CSOR. 

Firstly, the tailored-made parameter sets (e.g., the four-parameter model proposed by Alyami et al. 



(2014)) increased the fragmentation of risk parameter sets in the literature. This multiplicity, however, 

obstructs the communications of QRA results among CSOR studies and, therefore, impedes the 

establishment of a robust CSOR understandings (Goerlandt and Montewka, 2015b, Aven and Zio, 2014). 

Secondly, the generality and, in some cases, even vagueness in the meaning of parameters might cause 

ambiguity in the input extraction process and affect the reliability of the QRA. For example, the impact 

to the resilience of port in the model of Alyami et al. (2014) can be understood as a form of consequence 

though it was structured as a separate risk parameter; the parameter of damage to quality in the model 

of Wan et al. (2019) is difficult to be distinguished from the physical damage to shipments and 

infrastructures, and the quality of the transport services, which is expressible in term of delays (time). 

Therefore, a clear-cut parameter set based on the perspective of bearers in the context of CSOR is crucial 

to develop a reliable QRA model. 

2.4. An interpretative approach to risk mapping

Risk mapping is a widespread tool for analyzing risks (Ale et al., 2015, Goerlandt and Reniers, 2016, 

Cox, 2008). In CSOR studies, risk mapping has been used extensively in risk prioritization and RMP 

strategies (see, for example, the applications of Yang (2011), Tseng et al. (2013), and Chang et al. 

(2014)). However, multiple disadvantages of this method were mentioned in the literature. Firstly, the 

knowledge base was not communicated in these risk maps, uncertainty is only visualized through 

probability or likelihood. Secondly, Cox (2008) proved that the risk of matrices could be worse than 

useless if the matrix is poorly constructed (i.e., size, system of classification), especially if  of risks 𝑈𝑂

are high. Thirdly, “risk ties”, mainly due to the low resolution of risk maps (Goerlandt and Reniers, 

2016, Duijm, 2015, Cox, 2008), exist in the risk maps of Yang (2011), Tseng et al. (2013) and Chang 

et al. (2014).

Several proposals were recommended to address these flaws such as design normative properties (Cox, 

2008), uncertainty presence (Goerlandt and Reniers, 2016), continuous diagram (Duijm, 2015), and 

three-dimensional presentation (Aven, 2013). Yet, although more data could be jam-packed into a risk 

diagram, the limitation of both typesetting options (Goerlandt and Reniers, 2016) and the ability of 

human brain in perceiving effectively more than three spatial dimensions seem to hinder the application 

of risk mapping as a primary risk analysis tool. In this study, risk mapping is implemented as a tool to 

support demonstrating overall risk situation, including both quantified risk levels and the attached 

uncertainty. This application exploits the forte of risk mapping as a straightforward, decision-making 

support and conspicuous method for risk visualization and interpretation. 

2.5. Research objectives, novelty, and contributions to existing literature

To fill the gap of a managerial QRA model for CSORs that is capable of detecting the weakness of the 

knowledge base, this study (1) recognizes the importance of uncertainty awareness in the process of 



risk quantification; (2) designs a module to gain insights into the uncertainty situation of risk and 

address it beyond the traditional probability expression; and (3) enables the expression and 

consideration of both  and  throughout the QRA. This paper has three primary novelties as 𝑈𝑂 𝑈𝐸

presented below.

 This study confirms the criticality of uncertainty awareness in risk assessment. Through 

the analysis of literature and the case study, uncertainty recognition and the separation of  and  𝑈𝑂 𝑈𝐸

are proved critical to the reliability of QRA. The realization of uncertainty and its visualization by risk 

mapping opened another dimension of RMP strategy in continuously improving the knowledge base.

 A sound QRA model for CSOR assessment and prioritization is developed considering 

both  and . The combination of multiple methodologies including BN, ER, and TOPSIS facilitate 𝑼𝑶 𝑼𝑬

a systematic capturing of uncertainty in assessing CSORs to support decision-making. The four qualities 

of uncertainty handling for QRAs considered in this paper are as follows:

1. The concept of  is introduced unambiguously.𝑅

2.  is considered as a main component of, but not .𝑈 𝑅

3.  and  are differentiated from one another.𝑈𝑂 𝑈𝐸

4.  and  are expressible in the quantification process.𝑈𝑂 𝑈𝐸

 The case study validates two important motivations of this study. Initially, the case study 

pragmatically confirms the phenomenon of weak knowledge base in quantitatively analyze CSORs 

based on subjective probability distributions. Additionally, the integration of the UQM reveals the 

instances of experts’ limited ability in assessing the knowledge base of the whole panel.

This study has also made methodological contributions including:

 To CSOR assessment and analysis studies: (1) A well-defined two-level BN is established for 

CSOR assessment. Parameters are supported by events experienced by the industry and presented with 

clear and customizable definitions of states. (2) ER is employed to aggregate and separate UDoBs from 

DoBs. The ER algorithm allows the subjective expression of  and the separation of  and . This 𝑈𝐸 𝑈𝐸 𝑈𝑂

ability enables the rational calculation of assessment polarization (capturing ), which was previously 𝑈𝑂

obstructed by the intertwinement of  and  in each risk assessment.𝑈𝐸 𝑈𝑂

 To Bayesian Network based risk assessment studies: An UQM with a set of one subjective 

and two objective indicators is integrated into QRA. The UQM allows an insightful and informative 

quantification of uncertainties while preserving the intersubjectivity of QRA inputs. Based on the results 

from the UQM and risk map, solutions to improve the knowledge base for risk assessment could be 

inferred.



 To the application of risk mapping: Risk mapping is not used directly to assess risks but 

visualize the situation of risk and the attached weakness of the knowledge base. Risk level (Risk index) 

is displayed in combination with Uncertainty level (Uncertainty index) to depict an interpretative 

overview that supports risk-related decision-making.

3. AN ADVANCED CSOR ASSESSMENT MODEL WITH UNCERTAINTY EVALUATION

This section introduces the QRA model. The input data are extracted from the expert panel and then 

processed by ER to separate the DoBs (risk level data) from the attached UDoBs (uncertainty data). 

Three uncertainty indicators are calculated along the process of data manipulation by the UQM and put 

into TOPSIS to calculate Uncertainty Index (UI). The normalized aggregated DoBs are fed into the BN 

model to derive Risk Index (RI), which will later be presented together with UIs to describe the risk 

situation in a risk map. A stepwise illustration of the model is in Figure 2.

FIGURE 2 The structure of CSOR assessment model and methods of validation

3.1. Input extraction



Risk assessments are first extracted from multiple experts in the form of subjective probability 

distributions (see Section 2.2 for an example). Each assessment includes (1) DoBs of that expert for 

different states of a parameter, and (2) a UDoB, so-called “ignored belief mass” that expresses the 

ignorance/lack of knowledge in that individual assessment (Yang and Xu, 2002). In other words, 

UDoBs represent the weakness of the knowledge base ( ) in conjecturing the DoBs in different states. 𝑈𝐸

For each assessment task, experts will first deduct an amount of UDoB from a whole unit of belief 

(100%) according to their judgment on the quality of the acquired knowledge base (i.e., understandings 

of the related phenomena, and the availability and reliability of the collected evidence). Then, the 

remainder can be distributed to the states of the assessed subject as DoBs. Other available 

supplementary sources of data such as recorded historical events, operational reports, forecasts, and 

third-party consultations should also be utilized to support experts in this step.

3.2. Risk assessments aggregation by the ER algorithm

In this step, DoBs and UDoBs from experts will be mathematically aggregated by the ER algorithm. 

ER is developed based on the evidence combination rule of the Dempster–Shafer theory that allows the 

aggregation of multiple sets of beliefs. Unlike the arithmetic average method, a set of probabilities based 

on a significant foundation of evidence and understandings should not be considered as equal with those 

that are not. The degree to which the weakness of the knowledge base is presented in ER in the form of 

“ignored belief mass” – the amount of probability that is not distributed to any possibility. Those 

characteristics of ER are presented through an example illustrated in Table 1. This study uses the ER 

algorithm proposed by Yang and Xu (2002) for its superiority in satisfying synthesis axioms.

TABLE 1 An example of combining subjective probability using arithmetic average and ER

Expert 1 Expert 2 Arithmetic average ER algorithm

Possibility 1 0.5 0.05 0.275 0.3218

Possibility 2 0.2 0.1 0.15 0.1673

Possibility 3 0.1 0.25 0.175 0.1764

Ignored belief mass 0.2 0.6 0.4 0.3345

In our model, risk knowledge is divided into two disparate realms: the risk evaluation data (DoBs) – 

the belief mass, and the ignorance realization (UDoBs) – the ignored belief mass. Assume that there are 

 experts and sets of probabilities regarding  states of an individual risk parameter. Let  be the 𝑁 𝑀 𝑑𝑚𝑛

DoB that the expert  assigned for the state  and  be the remained unassigned belief mass of the 𝑛 𝑚 𝑢𝑛

expert . The results include aggregated DoBs  and aggregated UDoB , which is an 𝑛 (𝐷1,…,𝐷𝑀) 𝐷𝑈

expression of  (Equation 1). It is noteworthy that ER also supports the difference in importance of 𝑈𝐸



the experts, but since there are no reliable method and evidence to quantify that aspect, their assessments 

are considered as equally important in this study. DoBs are then normalized using Equation 2.

𝐸𝑅([ 𝑑11 ⋯ 𝑑𝑁1
⋮ ⋱ ⋮

𝑑𝑀1 ⋯ 𝑑𝑀𝑁
𝑢1  ⋯   𝑢𝑁

]) = [ 𝐷1
⋮

𝐷𝑀
𝐷𝑈

] (1)

𝐷𝑚 =
𝐷𝑚

𝑀

∑
𝑚 = 1

𝐷𝑚

    𝑚 = 1,…,𝑀
(2)

3.3. Evaluation of the uncertainty situation – The UQM

The uncertainty in CSOR assessment will be quantified in a relative manner since it is difficult and 

unnecessary to establish a baseline for such concept. Qualitative classification schemes for this purpose 

could be found in the studies of Goerlandt and Montewka (2015a) and Askeland et al. (2017). While 

 is expressible through the concept of UDoB, it is subjective and only based on the individual 𝑈𝐸

knowledge base, thus cannot depict the whole picture of uncertainty. Hence, this study considers three 

factors as the main indicators for the strength of knowledge: (1) Average disagreement among experts; 

(2) Expert’s ignorance, expressed by aggregated UDoBs; and (3) Expert assessment polarization (see 

Section 2.2). All indicators are weighted in the calculation process with each parameter ( ) and then 𝜔𝑐

normalized (denoted with a “ ” symbol) for a set of  risks.^ 𝑌

(1) Average disagreement among experts ( ): The average discrepancy among assessments 𝛥𝐴

provided by  experts across all  states and  parameters. Since DoBs and UDoBs are not 𝑁 𝑀 𝐶

discriminated in this indicator, it is computed directly from the extracted assessments from step 1 

(Equation 3). In the dividend,  and  are the DoBs of expert  and  on parameter  and state 𝑑𝑐𝑚𝑗 𝑑𝑐𝑚𝑘 𝑗 𝑘 𝑐

.𝑚

𝛥𝐴 =

𝐶

∑
𝑐 = 1

𝑀

∑
𝑚 = 1

𝑁

∑
𝑘 = 1
𝑗 < 𝑘

𝜔𝑐|𝑑𝑐𝑚𝑗 ‒ 𝑑𝑐𝑚𝑘|

𝑁(𝑁 ‒ 1)
2

𝛥𝐴𝑖 =
𝛥𝐴𝑖

𝑌

∑
𝑖 = 1

𝛥𝐴
2
𝑖 (3)

(2) Total expert ignorance expressed by UDoBs ( ):  of each risk is the weighted sum of ∑𝐷𝑈 ∑𝐷𝑈

UDoBs, which are denoted as  with parameter .  is calculated using Equation 4 with results 𝐷𝑈𝑐 𝑐 ∑𝐷𝑈

derived after the ER aggregation step (Equation 1). 



∑DU =
𝐶

∑
𝑐 = 1

𝜔𝑐𝐷𝑈𝑐 ∑DU
𝑖

=
∑DU

𝑖

𝑌

∑
𝑖 = 1

∑DU
2

𝑖

(4)

(3) Total expert assessment polarization : The deviation of the expert assessment from the ∑Δ𝑃

totally random assessment, denoted by  with . It is computed using Equation 5 based on the 𝜉 𝜉 = 𝑀 ‒ 1

normalized aggregated DoBs  derived after ER (Equation 2).𝐷𝑚

∑Δ𝑃 =
𝐶

∑
𝑐 = 1

𝜔𝑐

𝑀

∑
𝑚 = 1

|𝐷𝑚 ‒ 𝜉| ∑Δ𝑃
𝑖

=
∑Δ𝑃𝑖

𝑌

∑
𝑖 = 1

∑Δ𝑃
2

𝑖

(5)

TOPSIS is employed here to aggregate the uncertainty indicators. For each risk, we have three data 

entries . The geometric distances from each risk to the positive and 𝑅𝑖 = (𝛥𝐴𝑖,∑𝐷𝑈𝑖,∑Δ𝑃𝑖) (𝑖 = 1,2,…,𝑌)

negative “ideal risks” (PIR and NIR in Equation 6) that have the superlative uncertainty conditions is 

used to calculate UI (Equation 7). It is noteworthy that unlike  and ,  negatively correlates 𝛥𝐴 ∑𝐷𝑈 ∑Δ𝑃

with the overall uncertainty level. Higher UI indicates a higher level of uncertainty and lower strength 

of knowledge base. 

 PIR = {max(𝛥𝐴),max(∑𝐷𝑈),min(∑Δ𝑃)}
 NIR = {min(𝛥𝐴),min(∑𝐷𝑈),max(∑Δ𝑃)} 

(6)

𝑈𝐼𝑖 =
∑(𝑅𝑖 ‒ 𝑁𝐼𝑅)

2

∑(𝑅𝑖 ‒ 𝑃𝐼𝑅)
2

+ ∑(𝑅𝑖 ‒ 𝑁𝐼𝑅)
2

× 100%,(𝑖 = 1,2,…,𝑌) (7)

3.4. Risk level assessment model

A BN model is developed to calculate the relative risk level. Two primary components of a BN are the 

network structure and the quantitative causal relationships. A system of three states (Low, Medium, 

High) and the reasoning mechanism of BN are implemented to cover outcome uncertainty ( ). The 𝑈𝑂

Risk Index (RI) values are calculated to prioritize risks. 

3.4.1.  A two-level parameter set for CSOR assessment

The traditional approach of FMEA uses only three parameters (Likelihood of occurrence ; Severity (𝐿)

of consequence  and Probability of being undetected ) to measure Risk level . However, the (𝑆) (𝑈) (𝑅)

excessive generality of the parameters, especially , might affect the ability of experts in giving their 𝑆

assessments. Our model implements the parameter set proposed by Nguyen and Wang (2018) with 



explicit definition and example for each parameter (Figure 3).

From the view of a container shipping company, the consequences of an HE could be separated into 

three aspects: Financial impact , Reputational impact  and Operational impact .  captures (𝐹) (𝐼) (𝑂) 𝑭

the damage on the revenue of the company and is expressed through financial losses (e.g., fines, 

additional fees, damages to infrastructures, or compensations).  captures the negative effects of the 𝑰

event toward the company’s credibility in the view of customers as well as their standing in the industry 

perceived by partners (Stopford, 2009, Yuen et al., 2018), which could be observed through complaints, 

breach of contracts or agreement, or decreases in stock prices.  captures the effects on the operational 𝑶

plans of a shipping company including unexpected but inescapable adjustments in voyage schedule and 

reallocation or intensification of human resources in response to the consequences (Bakshi et al., 2011, 

Nguyen and Wang, 2018). An example is the NotPetya cyberattack on A.P. Møller-Maersk in 2017. 

The attack was described in detail by Greenberg (2018). Maersk estimated a 250-300 million USD loss, 

which can be considered as .  is observable through the fact that many partners of the company had 𝑭 𝑰

to abruptly change their transport plan and even production with much higher costs; new customers had 

to book their slot through inconvenient channels of information.  of this attack is relatively heavy. 𝑶

Normal operations of the company was totally disrupted and human resources had to be rearranged to 

respond to the HE (e.g., handle new booking orders, reestablish the IT system including computers and 

servers).

FIGURE 3 The risk parameter structure for CSOR (Nguyen and Wang, 2018)

The ability to detect instances of risk and its HE is presented by the Level of detectability . In (𝐷)

container shipping, a more “hidden” and “self-concealed” HE is emphatically more dangerous since it 

is more difficult to be detected and hence, harder to be prevented by risk-bearers. For example, in the 

case of Maersk Honam, the risk of fire originated from flammable cargoes was already well-known, 

but it is still relatively hard to be early detected and prevented because of cargo misdeclaration (Porter, 

2018). Risk being undetected  here is the parameter by which such a characteristic could be assessed. (𝑈)



Besides, the HE detection lateness  is also critical since it negatively affects the effectiveness of (𝑇)

companies’ responses to limit the damages caused by the occurrence of a particular HE. For instance, 

an outage of a reefer stack is usually detected and resolved within several hours (Filina and Filin, 2008) 

while a cargo self-ignition is harder to be noticed, eliminated, or effectively controlled within minutes 

before it spreads to other containers or causing explosions.

3.4.2. A BN model for CSOR assessment

Normalized DoBs from Step 2 ( ) are put into the BN model to calculate the relative level of risk. 𝐷𝑚

The network structure follows Figure 3, parameters are presented as nodes in the BN. A mechanism to 

inject risk perspective into the conditional probability tables (CPTs) (see an example in Table 2) is 

necessary. The BN should be able to reflect unequal importance of different risk parameters according 

to different risk management strategies or companies’ situations. Denote the probability of a node at 

the state  (Low, Medium, and High) as .  can be calculated by adding the weight of all parent 𝑚 𝑝𝑚 𝑝𝑚

nodes (lower-ranked parameters) at the same state  (Equation 8). A similar interpolation method 𝑤𝑃𝑚

was proposed by Alyami et al. (2014), Nguyen and Wang (2018), and developed to be customizable by 

Wan et al. (2019) and Nguyen et al. (2019). For example, assume ; ;  with 𝑤𝐿 = 𝑥 𝑤𝑆 = 𝑦  𝑤𝐷 = 𝑧 𝑥

. The CPT of  when  is Low is shown in Table 2.+ 𝑦 + 𝑧 = 1 𝑅 𝐿

𝑝𝑚 = ∑𝑤𝑃𝑚 (8)

TABLE 2 The CPT of Risk level  with Likelihood of occurrence  is Low(𝑹)  (𝑳)

𝑳 Low
𝑺 Low Medium High
𝑫 Low Medium High Low Medium High Low Medium High

Low 1 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑧 𝑥 𝑥 𝑥 + 𝑧 𝑥 𝑥
Medium 0 𝑧 0 𝑦 𝑦 + 𝑧 𝑦 0 𝑧 0

High 0 0 𝑧 0 0 𝑧 𝑦 𝑦 𝑦 + 𝑧

The probability calculation of the risk level follows the Bayes' theorem. For example, the probability 

of the child node  in state , , denoted by , whose parent nodes are  and , is 𝐴 𝑎 (𝑎 = 1,2,3) 𝑝(𝐴𝑎) 𝐵 𝐶

calculated as Equation 9 (Yang et al., 2008).

𝑝(𝐴𝑎) =
3

∑
𝑏 = 1

3

∑
𝑐 = 1

𝑝(𝐴𝑎|𝐵𝑏,𝐶𝑐) 𝑝(𝐵𝑏) 𝑝(𝐶𝑐) (9)

By getting the final probability distribution of risk level , Risk Index (RI) value of risk  can be 𝑝(𝑅𝑟) 𝑖

computed by using utility values ( ) for states as Equation 10 (Alyami et al., 2014). Here, a logarithmic 𝑉

scale is defined as ; ;  to express the criticality of each state. An HE with a 𝑉1 = 100 𝑉2 = 101 𝑉3 = 102

higher RI is considered having a higher risk level.



𝑅𝐼𝑖 =
3

∑
𝑟 = 1

𝑝(𝑅𝑟)𝑉𝑟; (𝑖 = 1,2,…,𝑌) (10)

3.5. Risk mapping

In this study, UI is considered as the key concept in providing insights into the strength of the knowledge 

base for each CSOR. The response of the system manager after the risk prioritization process is a focus 

here: Could individual RMP plans be developed immediately, or more data and knowledge should be 

collected beforehand, or both, in parallel? A interpretative method to support decision-making will be 

beneficial in this situation. A risk map is developed in a 2-dimensional space of RIs and UIs (Figure 4). 

By identifying the most enigmatic risks, shipping companies could continuously investigate their 

operational risk situation and be able to make well-informed RMP decisions.

FIGURE 4 Risk mapping with qualitative interpretations of areas

4. VALIDATION PROCESS OF THE PROPOSED CSOR ASSESSMENT MODEL

The validity of a QRA could be divided into two primary aspects: conceptual and foundational; and 

pragmatic (Goerlandt et al., 2017). In this study, an empirical case study was conducted, followed by 

an evaluation of the validity evaluation, and finally the investigation on the sensitivity of both the BN 

network and the complete model.

4.1. The application of the proposed method – A case study

While risk quantification studies are usually reasoned and supported by scientifically proved theories, 

the missing of actual applications negatively impacts their reliability (Aven and Zio, 2014, Goerlandt 

and Montewka, 2015b). A case study was conducted in a container shipping company to examine its 

functionality, feasibility, and advantages in filling the mentioned gaps in Section 2.5.

4.1.1.  Risk identification

Based on the introduced risk concept, risks in container shipping operations could be recognized in the 

form of potential HEs. Activities in container shipping can be divided into three logistics flows: 

Information, Physical, and Payment. Focusing on the QRA model, this study utilizes the CSOR list 



provided by Chang et al. (2015) and Nguyen and Wang (2018) in Table 3 because of two main features. 

Firstly, they identified typical CSORs from the particular view of shipping company, thus compatible 

with the targeted user of our proposed QRA model. Secondly, these studies described risks in the form 

of potential HEs with clarifications of causing factors and possible consequences, hence compatible 

with the risk concept of our model ( ) and avoid ambiguity of experts in understanding the HE 𝑅 = 𝐴,𝐶,𝑈

scenarios to be assessed. Risks are coded based on their original flows and categories.

TABLE 3 List of CSORs implemented for the case study

Flow Category Potential HEs
Risk 
code

Differences between communication interfaces ID1
Lateness in information transmittance from partners ID2

Information 
delay

Unexpected postponement of compulsory formalities ID3
Cyberattacks on the connected IT systems II1
Incompleteness and asymmetry of information received II2
Incompatibility between implemented IT systems II3
Additional information required by partners or customers II4

Information 
incompletion 
or inaccuracy

Misdeclaration of cargoes in containers II5
Erroneous operations of IT components (system 
deficiencies)

IT1

Information

IT technical 
failures

Human-caused errors on the IT systems IT2

Halts of port due to strike, unrest or war situation TD1
Port or terminal congestion TD2
Low port/terminal container handling productivity TD3
Unforeseen slow steaming or stoppage of vessel TD4
Shortage of empty container TD5
Rigid operation and management of the fleet TD6
Detainment of shipments or ships by authorities TD7

Transportation 
delay

Acts of God TD8
Inland transport deficiencies (e.g., accidents, congestion) TL1
Maritime accidents (include inland waterway) TL2
Accidents in cargo handling operations TL3
HEs caused by dangerous goods (e.g., leak, fire, explosion) TL4
Failures in maintaining reefer containers’ temperature TL5
Shipments being stolen or container being tampered with TL6

Physical

Loss/damage 
of 

goods/assets

Acts of piracy and terrorism in the maritime legs TL7



Payment delays by partners or shippers PP1Payment 
delay Unrealized contract or agreement PP2

Fluctuation of currency exchange rate PD1
Unexpected rise of fuel costs PD2
Financial difficulties or bankruptcy of partners or customers PD3
Breaks of contract and/or reduce of the booking volume PD4
Having partners or customers with low credibility PD5

Payment Decrease or 
total loss of 

payment

Abandonment of containers at the port of destination PD6

4.1.2.  Risk assessment and result analysis

A case study was conducted on a shipping company in Haiphong, Vietnam. The company has container 

shipping and logistics integrated services as one of its core businesses. Shipping and consolidation 

services for customers in the northern industrial zones is also an important segment of the company. 

Regarding the transport capacity, the company has five feeder-size container ships with the gross 

capacity of more than 5000 TEU. The fleet is fed by container barges and semi-trailer trucks operated 

by both the company and its outsourcing partners. Six experts were recruited for the input extraction 

phase (Table 4). A broad range of experts with diversified background experience is recommended in 

application of this model, especially with companies that consist of higher number of departments 

involved to ensure a certain extent of intersubjectivity and the larger knowledge base. The scope of the 

conducted analysis covers all the processes related to container shipping operations of the company 

including booking, hauling, consolidation, transshipment, and maritime transport. The calculation tasks 

were performed on MATLAB and Hugin Expert software.

TABLE 4 Expert’s position and experience background in the case study

Department Position Position experience and professional background

Vice 
manager

17 years of experience in the shipping industry, 14 years 
as a mariner with 3 years as captain of 2 vessels

Operation and Trade: 
work directly with 
customers, partners and 
managing related operations 
of the fleet

Sale 
coordinator

11 years worked in 2 shipping agencies before joining 
the current company

Department 
manager

21 years of working experience in 3 shipping 
companies. 5 years in the current position

Financial and Accounting: 
in charge of financial affairs 
including tax, payment, 
portfolio and payroll 
management

Accounting 
assistant

12 years of experience in different accounting positions 
of the current company



Deputy 
manager

13 years of experience working in the parent company 
as a mariner, 4 years as a chief engineer and 4 years in 
the current company as a technical advisor

Technical and Supply: in 
charge of technical support 
and supply managing for 
onshore and offshore 
operations IT 

specialist

11 years in the field with 3 years in the current position. 
Specialized in maintenances and operations of IT 
system in the company

Step 1: Input extraction – CSOR survey and data collection process

Since there is no significant difference between the experts in terms of their experience background and 

no substantial evidence was found in this aspect, the weights of experts were considered as equal for 

this case study (see Rae and Alexander (2017) for mechanisms that constitute “expertise” in risk 

assessment). A questionnaire was designed to collect assessments from these experts (see Section 3.1 

for the description of the process). The definitions for individual states of risk parameters (Table 5) 

were improved to be more exclusive and graspable based on the studies of Nguyen and Wang (2018), 

Wan et al. (2019), and Nguyen et.al, (2019). The thresholds (e.g., the range of financial impact) were 

discussed and determined deliberatively by the expert panel to suit the perspective of the current 

company. The estimation of UDoBs in Table 6 is based on the framework of Goerlandt and Montewka 

(2015a) and agreed upon by the experts before the input extraction process. To ensure relatively 

consistent reasoning pathways have been used by experts to deduce risk assessments, a second round 

of questionnaire was conducted after the first round, separated by a short time period (days). The 

consistency in the assessments of experts through two rounds is monitored individually. Experts whose 

assessments exhibit >15% disparity were informed to give their final verdicts. The rest of the final 

database would be filled with arithmetic averages of Round 1 and 2. The rate of inconsistency detected 

is as follows, Expert 1: 9.34%, Expert 2: 11.74%, Expert 3: 5.18%, Expert 4: 13.38%, Expert 5: 11.49%, 

Expert 6: 15.53%. These rates are computed based on the total of 33 𝑟𝑖𝑠𝑘𝑠 × 6 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ×

 subtasks of assessment.(3 𝐷𝑜𝐵𝑠 + 1 𝑈𝐷𝑜𝐵) = 792

TABLE 5 Concepts of states for assessment of risk parameters

State of assessment
Parameter

Low Medium High

𝑳

The HE is considered as 
unlikely to occur

The frequency of events 
can be enumerated as 
equal or less than once 
every six months

The HE is considered as 
likely to occur but only 
occasionally

The range of frequency is 
from twice every six months 
to once every two months

The HE is considered as likely to 
occur frequently

The frequency is twice every 
two months or more often



𝑭

All the below conditions 
are met:

Minor or insignificant  cut 
considering the revenue 
from freight

Financial damage of less 
than 12,000 USD/event

Negligible negative effect 
on the solvency or 
liquidity of the company

One of the below 
conditions is met:

Significant cut considering 
the revenue from freight

Financial damage ranges 
from 12,000 to 50,000 
USD/event

Noticeable negative effect 
on the solvency or liquidity 
of the company

One of the below conditions is 
met:

Substantial cut or deficit 
considering the revenue from 
freight

Financial damage of above 
50,000 USD/event

Substantial negative effect on 
the solvency or liquidity of the 
company

𝑰

All the below conditions 
are met:

No noticeable damage on 
the image of the company

No noticeable effects on 
the relations with partners 
and customers

No observable impacts on 
the stock price

One of the below 
conditions is met:

Negatively affected image 
of the company but 
recoverable in short term

Noticeable effects on the 
relations with partners and 
customers (e.g., received 
multiple or major 
complaints)

Observable decreases in 
stock price

One of the below conditions is 
met:

Considerably affected 
company’s image and 
credibility

Substantial effects on the 
relations with partners and 
customers (e.g., discontinuation 
of cooperation, breaking 
contracts or agreements)

Significant decreases in stock 
price

𝑶

All the below conditions 
are met:

Negligible disruptions 
with insignificant 
negative effects on the 
operations of the fleet 

No HR rearrangement or 
escalation

One of the below 
conditions is met:

Noticeable disruptions with 
significant negative effects 
on the operations of the fleet 
(e.g., skip of ports) 

Minor rearrangement or 
escalation of HR

One of the below conditions is 
met:

Substantial disruptions with 
significant negative effects on 
the operations of the fleet (e.g., 
halts of vessel, line, and 
company business)

Major rearrangement or 
escalation of HR

𝑼

All the below conditions 
are met:

High chance of reliable 
early warning before the 
HE

Well-prepared by 
effective and officially 
implemented detection 
methods or leading 
indicators (e.g., protocols, 
regulations) before 
operation, leg, or voyage

One of the below 
conditions is met:

Difficult to foresee or detect 
the HE before its occurrence

The detection methods or 
leading indicators are 
known but not officially  
implemented or 
implemented but not 
effective

One of the below conditions is 
met:

Impossible or extremely 
difficult to foresee or detect the 
HE reliably before its 
occurrence

The detection methods or 
leading indicators are not known 
or not implemented



𝑻

All the below conditions 
are met:

High chance of timely 
detection of the HE after it 
occurred

The HE is likely to be 
early detected when 
impacts might be already 
developed, but the 
severity is still minor and 
considered as easily 
recoverable

One of the below 
conditions is met:

Unlikely to be detected right 
after the HE occurred.

The symptoms of the 
consequences are usually 
subtle but can be detected 
during the casual operation

Likely to be detected and 
responded when the HE has 
already caused medium 
level severity of 
consequences

One of the below conditions is 
met:

Extremely rare to be detected 
right after the HE occurred 

Very likely to progress in a 
delitescent manner, can only be 
discovered and responded with 
active investigation

Likely to be detected and 
responded when the HE has 
already caused high level 
severity of consequences

TABLE 6 The concept of ranges used for UDoB estimation

UDoB 

range
Range description

[0.8;1)

Experience are not available. The key factors affecting the states of parameters and the 

development of scenarios are not yet or poorly understood, causing severe hesitation in 

giving assessments. Information regarding the HE, affecting factors, and possible 

scenarios are required before any act of RMP

[0.6;0.8)

Data are only available in sporadic mentions in reports. The key affecting factors and the 

related phenomena are poorly understood; the development of scenarios is difficult to 

cover, causing significant hesitation in giving assessments. More insights regarding 

occurred instances (e.g., industrial peer examples, internal investigations) as well as 

reasoning of likely scenarios are strongly recommended before RMP

[0.4;0.6)

Data are available but are incomplete, incompatible with the current parameters, or limited 

to brief reports. The key affecting factors and the related phenomena are somewhat 

understood, but the development of scenarios are only dubiously conjecturable, causing 

noticeable hesitation in giving assessments. More insights regarding likely scenarios are 

recommended before RMP. Risk RMP can be planned and implemented but with high 

cautions

[0.2;0.4)
Data are available and compatible with the current parameters. The key affecting factors 

and the related phenomena are reasonably understood. The development of scenarios are 



conjectured with a sense of confidence. Risk RMP can be planned and implemented with 

degrees of confidence

[0;0.2)

Data are available, compatible with the current parameters, and recorded with details. The 

key affecting factors and the related phenomena are well understood. The development of 

scenarios are conjectured with high confidence. Risk RMP can be planned and 

implemented with confidence

Experts also gave their assessments regarding their perceived importance of the risk parameters. 

Various weighting methodologies could be used for this purpose (Wang and Nguyen, 2016). In this 

case study, a simple 1-5 Likert scale in combination with linguistic variables (Very Low, Low, Medium, 

High, and Very High) was used. It could be interpreted from the results in Table 7 that the panel in this 

case study leaned toward a more “reactive” risk perspective (Safety-I) where risk likelihood and 

consequences (  and ) were considered as more significant than risk detectability and responsiveness 𝐿 𝑆

. Financial impact  was dominant in different types of consequences while the self-concealing (𝐷) (𝐹)

character of risk ( ) had higher influence than the lateness of detection  on the overall risk level 𝑈 (𝑇)

.(𝑅)

TABLE 7 Weights of risk parameters

Criteria 𝐿 𝑆 𝐷 𝐹 𝐼 𝑂 𝑈 𝑇
Notation of 
weights

𝑤𝐿 𝑤𝑆 𝑤𝐷 𝑤𝐹 𝑤𝐼 𝑤𝑂 𝑤𝑈 𝑤𝑇

Weights 0.3 0.4375 0.2625 0.4396 0.2637 0.2967 0.5238 0.4762

Step 2: Risk assessments aggregation

After the input extraction process, an ER algorithm was applied to aggregate risk assessments. An 

example of aggregation for the criteria Financial impact  of the HE ID1 is illustrated in Table 8. (𝐹)

While the normalized aggregated DoBs ( ) are processed as inputs for the BN model, the total expert 𝐷𝑚

ignorance ( ) will be used in combination with the average disagreement ( ) and total assessment ∑𝐷𝑈 𝛥𝐴

polarization ( ) in calculating UI in the next step.∑Δ𝑃

TABLE 8 An example of data aggregation and normalization

DoBs
Low Medium High

UDoB

Expert 1 0.6 0.2 0.05 0.15
Expert 2 0.5 0.15 0.05 0.3
Expert 3 0.5 0.15 0.1 0.25
Expert 4 0.475 0.225 0 0.3



Expert 5 0.6 0.2 0.1 0.1
Expert 6 0.6 0.2 0.15 0.05

Aggregated 0.5927 0.1700 0.0640 0.1733
Normalized 0.7169 0.1787 0.0668 0.1733

Step 3: Risk and knowledge base assessment

Equations 3-5 were used to calculate the normalized values , , and . These data are the 𝛥𝐴 ∑𝐷𝑈 ∑Δ𝑃

inputs of Equations 6 and 7 to compute the UI value of each CSOR. Regarding RI, all the CPTs 

employed in the BN model were built by the normalized weights of risk parameters (Table 7) and 

applying Equation 8. For example, the CPT of  when is Low was constructed as in Table 9.  were 𝑅 𝐿  𝐷𝑚

put into the Equation 9 (BN model) where the final DoBs could be derived. Finally, the RI value of 

each risk was calculated using Equation 10. An example of the risk code ID1 is illustrated in Figure 5. 

.𝑅𝐼𝐼𝐷1 = 0.7129 + 0.2057 × 10 + 0.0814 × 100 = 10.9099

TABLE 9 The CPT of Risk level  with Likelihood of occurrence  is Low(𝑹)  (𝑳)

𝐿 Low
𝑆 Low Medium High
𝐷 Low Medium High Low Medium High Low Medium High

Low 1 0.7375 0.7375 0.5625 0.3 0.3 0.5625 0.3 0.3
Medium 0 0.2625 0 0.4375 0.7 0.4375 0 0.2625 0

High 0 0 0.2625 0 0 0.2625 0.4375 0.4375 0.7

FIGURE 5 The BN model for assessment of the risk ID1

Step 4: Risk prioritization and mapping



After the calculation of all RI values, a prioritized list of identified CSORs was drawn up as in Table 

10. Overall, the model proved its separability with no coequal risks in the list. In this case, the 

dominance of physical risks as the most critical CSORs were well-observed with 60% of the five and 

50% of the ten most critical risks originated from this flow. The ranked first three physical are from the 

Loss/damage of goods/assets category including HEs that actually inflicts damages on the cargoes or 

the ships: Acts of piracy and terrorism in the maritime legs (TL7); Maritime accidents (include inland 

waterway) (TL2) and HEs caused by dangerous goods (TL4). While these risks were assessed by 

experts as not likely to occur (very high probability of the “Low” state), their financial impact can be 

tremendous even when parts of the damages are compensable by insurance and, their effects on the 

company’s credibility and the continuity of its operations can be substantial. This result also highlights 

the ability of the proposed QRA model in addressing the risks that have very high consequences but 

very low likelihood of occurrence, which might be underestimated by the traditional method of (

) (Rosqvist, 2010, Berle et al., 2011, Ale et al., 2015).𝑅𝑖𝑠𝑘 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

TABLE 10 Prioritized list of CSORs based on RI values

Risk 
code

Hazardous event RI value Rank

TL7 Acts of piracy and terrorism in the maritime legs 42.0799 1
TL2 Maritime accidents (include inland waterway) 40.9874 2
PD2 Unexpected rise of fuel costs 40.6989 3
II5 Misdeclaration of cargoes in containers 39.7401 4

TL4 HEs caused by dangerous goods (e.g., leak, fire, explosion) 39.3130 5
II2 Incompleteness and asymmetry of information received 35.9821 6

TD2 Port or terminal congestion 34.5352 7
PD6 Abandonment of containers at the port of destination 33.8768 8
TL3 Accidents in cargo handling operations 33.5519 9
PD3 Financial difficulties or bankruptcy of partners or customers 32.4497 10
TD3 Low port/terminal container handling productivity 32.3167 11
TD7 Detainment of shipments or ships by authorities 30.4461 12
PP1 Payment delays by partners or shippers 29.7495 13
IT2 Human-caused errors on the IT systems 29.3162 14
TD6 Rigid operation and management of the fleet 28.5719 15
Risk 
code

RI value Rank
Risk 
code

RI value Rank
Risk 
code

RI value Rank

TL6 27.9767 16 TD4 23.5666 22 TL5 20.1679 28
PD1 26.4430 17 TD1 23.3209 23 ID2 19.6075 29
TL1 25.1808 18 TD8 23.1889 24 PD5 19.5819 30
PP2 24.6042 19 IT1 21.3563 25 PD4 17.9178 31
II4 24.2683 20 ID3 21.0361 26 II3 12.9350 32
II1 23.6281 21 TD5 20.2416 27 ID1 10.9104 33



The most crucial payment and information risks are Unexpected rise in operational costs (PD2) and 

Shippers hiding cargo information (non-declare) (II5) (Table 10). While the most critical CSORs in the 

information flow belong to the “Information incompletion or inaccuracy” category (II5, II2), the 

contribution of the “Decrease or total loss of payment” in the payment flow is observable (PD2, PD6, 

and PD3). II5 attracted significant concerns because of its “delitescent” nature of related accidents. It 

was described as a great risk where dreadful results could happen when the dangerous characteristics 

of cargo were not fully or deceptively described, hence safety procedures such as safely stuffing, lashing, 

and segregation cannot be applied. High frequency of recent accidents with chemical substance 

shipments onboard container vessels or terminals such as Maersk Honam, Yantian Express and Tianjin 

Port are well-observed (Leander and Lin, 2015, Porter, 2018). In the payment flow, while PD2 is able 

to cause a serious damage to the profitability of the fleet, adaptive solutions to this risk are still limited. 

Although fuel hedging might appear as a promising contractual tool for stabilizing against fuel price 

fluctuations, forecasting failures can cause backfires with even larger financial damages. Another 

strategy is applying bunker surcharge, which is observable in the industry as experiencing protests by 

major shippers – causing reputational damages.

TABLE 11 Ranked list of CSORs based on UI values

Risk 
code

Hazardous event UI Rank

II5 Misdeclaration of cargoes in containers 78.3637 1
PD2 Unexpected rise of fuel costs 73.7543 2
II2 Incompleteness and asymmetry of information received 73.1525 3
IT1 Erroneous operations of IT components (system deficiencies) 71.6836 4
IT2 Human-caused errors on the IT systems 71.2873 5
TD4 Unforeseen slow steaming or stoppage of vessel 70.6216 6
TD6 Rigid operation and management of the fleet 65.8434 7
PD1 Fluctuation of currency exchange rate 62.3990 8
TD5 Shortage of empty container 61.2888 9
TD3 Low port/terminal container handling productivity 55.2797 10
PP1 Payment delays by partners or shippers 54.9113 11
II1 Cyberattacks on the connected IT systems 54.2196 12

TL6 Shipments being stolen or container being tampered with 54.1807 13
TL3 Accidents in cargo handling operations 53.6413 14
TD8 Acts of God 53.0439 15
Risk 
code

RI value Rank
Risk 
code

RI value Rank
Risk 
code

RI value Rank

PD3 49.1025 16 ID2 42.8052 22 PD4 35.1870 28
PP2 46.9143 17 TD1 42.0003 23 TD7 35.0438 29
TD2 46.8868 18 TL7 39.5214 24 TL2 34.4575 30
II3 46.5422 19 PD6 39.2905 25 ID3 34.3154 31
II4 46.4312 20 PD5 36.7438 26 TL4 28.6791 32



TL1 43.0290 21 TL5 36.2375 27 ID1 24.2138 33

The results of uncertainty assessment are presented in Table 11, which shows a different prioritization 

result in comparison with that of risk assessment. The usefulness of recognizing and actively assessing 

the uncertainty dimension is observed through three aspects. Firstly, deeper investigation is helpful in 

tracking down and filling in knowledge weaknesses in a prioritized order. The dedicated UQM module 

was able to pinpoint the improvable “blind spots”. For example, CSORs from the information flow 

occupied 4/5 highest positions (II5, II2, IT1, and IT2) while the risks of transportation delay (TD4, 

TD6, TD5, TD3) and payment damage (PD1, and PD2) were assessed with high uncertainty. Secondly, 

the UQM model was able to provide deeper insights into the symptoms and causes of the perceived 

weak knowledge base. For instance, the higher uncertainty in various transportation delay risks 

suggests a possible systematic shortage of historical data related to experienced frequency and time 

delayed, which is the main factors influencing their likelihood and consequences. Thirdly, the heatmap 

in Figure 6 indicates a counter-bias mechanism where different indicators were utilized in cross-

checking symptoms of inadequate knowledge base. PD2 and II2 were decisively agreed among the 

experts as having high level of uncertainty (low , , and high ). Meanwhile, the RI values of 𝛥𝐴 ∑Δ𝑃 ∑𝐷𝑈

TD1 and TD4 was assessed with confidence (low ) but the expert judgements were significantly ∑𝐷𝑈

dissimilar (high ), exhibited a degree of overconfidence in the QRA result.𝛥𝐴

FIGURE 6 The heatmap of normalized uncertainty indicators of the case study

The analysis of the UQM in the context of CSOR is meaningful in two ways towards QRA models that 

involve subjective probabilities from experts. Firstly, the knowledge base is a critical aspect in assessing 

risk that is worth attention of risk analysts. The case study showed a diversified situation of knowledge 

base’s quality that might be critical if risks were treated out of their proportion (under- or overestimation) 

due to knowledge base deficiencies. Secondly, relying solely on experts to assess the knowledge base 

(UDoBs) can overlook other weaknesses of it (e.g., ambiguity, discrepancies in reasoning). This 

limitation is explainable by (1) the fact that UDoBs are only estimated based on individual knowledge 

bases, and (2) the subjectivity of expert in self-assessment, even with the support of a clear framework 

(i.e., description of UDoB scale in Table 6). This phenomenon validated the usefulness of the UQM 

that can provide a more reliable evaluation of the expert panel’s overall knowledge base.

The values of RI and UI are visualized in a 2-dimensional space to provide a graphic relative view of 

both risk level and the strength of knowledge base (Figure 7), which has three main features. Firstly, 



there are HEs that have relatively low RI and UI values such as ID1, PD4, PD5, and TL5 in Zone 3. 

These CSORs have low priorities and relatively low uncertainty, thus could be considered as 

temporarily ignorable and should be put into a watch list since the resources of the company should be 

better distributed to other risks. Secondly, CSORs with high-RI and low-UI such as TL4, TL2, TD7, 

TL7, and PD6 were assessed with significant confidence. Their RMP strategies can be developed 

immediately. Finally, the chance of type-II error with low-RI risks such as II1, TD5, IT1, and TD4 in 

Zone 4 or type-I error with high-RI risks such as IT2, II2, II5 and PD2 in Zone 2 could be lowered by 

strengthening the knowledge base through further investigation into the influencing factors and 

potential scenarios. There are different strategies for that purpose such as encouraging the interaction 

of experts in the panel (deliberative assessment), using third-party shipping financial consultants, 

increasing the number of experts in the panel, and obtaining more critical data about individual risks 

from the flow. As being demonstrated, the proposed risk mapping method is helpful in suggesting the 

needed immediate actions for CSORs in an orderly manner.

FIGURE 7 Risk map generated from the case study

4.2. The case study’s evaluation of validity

CSORs continuously change under multiple dynamic factors of the industry (e.g., human, natural, 

policies, involved parties) and causing highly unique HEs, even under the same risk (i.e., low 

repeatability). The confrontation of risk assessments with the realistic data collected afterward, 

therefore, is difficult to be considered as yielding the QRA’s validity. This problem with the validation 

QRA model and the criticisms toward the accuracy claim have been argued by Aven and Heide (2009) 



and Goerlandt et al. (2017) extensively. Based on the conducted case study, the QRA model in this 

study was checked for multiple validity criteria mentioned in the literature (Table 12). The derived 

results are displayed in Table 13 with all the aspects were attained in the case study, proving that the 

proposed QRA model is capable of assessing CSORs in a descriptive and reliable manner.

TABLE 12 Recommended factors for validation of the proposed risk assessment method

Category Aspect Explanation

Cognitive assessment 
transformability

The degree to which the assigned subjective probabilities 
adequately describe the assessor’s uncertainties of the unknown 
quantities considered (Aven and Heide, 2009)

Uncertainty treatment 
completeness

The degree to which the uncertainty assessments are complete 
(Aven and Heide, 2009)

Conceptual 
and 

foundational

Quantities addressing 
rightness

The degree to which the analysis addresses the right quantities 
(Aven and Heide, 2009)

Methodologies
The clear explanation and adequate compatibility of the 
proposed method (Okrent et al., 1982, Rae et al., 2014)

Assessor panel
The expertise and constitution of the assessor panel (Rae and 
Alexander, 2017)

Supporting database
The compatibility and transparency of the supporting database 
(Okrent et al., 1982, Rae et al., 2014)

Calculation process The correctness and transparency of the computing process

Pragmatic

Results and 
interpretation

The usability and accessibility of the users to the results in the 
decision-making process (Okrent et al., 1982, Rae et al., 2014)

TABLE 13 Validity evaluation of the conducted case study 

Aspect Evidence

Cognitive assessment 
transformability

Experts are able to provide (1) risk assessments that, by design of the model, 
cover the whole range of possible values; (2) uncertainty assessments, 
through the concept of UDoB in risk assessments.

Uncertainty treatment 
completeness

The uncertainty awareness of the proposed method is explained in Section 
2.2 and the UQM is presented in Section 3.3. The UQM was illustrated in 
the case study with the handling of both  and 𝑈𝑂 𝑈𝐸

Quantities addressing 
rightness

The experts were able to produce subjective assessments with high 
consistency rate (~80%) with the introduced processes and the model 
configurations in the conducted case study



Methodologies
The proposed methodologies are combined based on both risk theoretical  
understandings and their applicability to the container shipping industry. 
The model’s mathematical reliability is validated by a sensitivity test

Assessor panel

Experts with experience and managing positions in the company was 
recruited for the case study to ensure both private information and domain 
knowledge mechanisms of expertise (see Rae and Alexander (2017) for their 
explanations)

Supporting database
Insights about the supporting database were gained through the proposed 
UQM featured three indicators. The case study proved the UQM’s 
usefulness

Calculation process
Calculation processes were carried out automatically on MATLAB and 
the .NET APIs of Hugin Expert software to ensure the computation 
accuracy1

Results and 
interpretation

Both risk level and the strength of the knowledge base were communicated 
in the final risk map. The case study illustrated the usefulness of risk map in 
assisting the decision-making process with informative visualization

4.3. Sensitivity test

A sensitivity test is designed to generalize the effectiveness of the proposed QRA model to the whole 

set of possible inputs. By adjusting input values followed by observation of the corresponding RI and 

UI values, insights into the mathematical reliability of the model can be gained. Four axioms below are 

employed. Three first three axioms are based on the study of Yang et al. (2008) while the fourth axiom 

is added by the authors to take the impacts of the agreement among experts into account. 

Axiom 1. Any adjustment of the input certainly results in a relative variation in the output of the model, 

including RI and UI values. This axiom ensures the power of the model in distinguishing multiple risks.

Axiom 2. The total influence magnitudes of multiple input adjustments that have the same effects 

(positive or negative) on the output are always greater than any one of its subsets. This axiom ensures 

the significance of all inputs as well as the rightness in the modelling process.

Axiom 3. The tendency and degree of variations in the output with any adjustment of the input align 

with the expected influencing mechanisms. This axiom ensures the rightness in the quantification of the 

risk perception.

Axiom 4. The fluctuations of output caused by the same input adjustment are in accordance with degrees 

of agreement between experts. This axiom ensures the robustness of the model in dealing with unilateral 

or minor fluctuations of the input.

1 MATLAB® written functions can be provided upon request



4.3.1.  BN sensitivity test

Probability was changed with steps of 1% from an “absolute low” assessment (100, 0, 0), to “absolute 

medium” (0, 100, 0) and finally to “absolute high” (0, 0, 100). The derived RI values are monitored 

along the process and shown in Figure 8.

Figure 8 demonstrates that the BN model satisfied the first axiom. The magnitudes of affecting effects 

of the parameters on the final RI are indicated by the slope of the lines. All RI values increased 

considerably sharper after the 100th case since the attached utility value ( ) was raised from 10 to 102 𝑉𝑟

(Equation 10). The RI values grew linearly with the adjustments of the input data with all parameters. 

“Hard evidence” was arbitrarily set on  and  to check their influential magnitudes on . The results 𝑆 𝐷 𝑅

in Figure 8 also follow the relative weights of parameters (Table 7), thus satisfies Axiom 2. Axiom 3 is 

satisfied based on the fact that the “all input nodes” scenario has the highest impact; and both  and  𝑆 𝐷

have larger impacts than their secondary parameters. These experiment results also validate the CPT 

building method presented in Equation 8. Since the BN model does not consider multiple experts, it 

was exempted from Axiom 4.

FIGURE 8 The RI values recorded in experimental scenarios with different parameters

4.3.2. Complete method sensitivity test

Another series of experiments were conducted to test the sensitivity of the whole QRA model. The DoB 

was moved from the Low to Medium based on a baseline distribution of (30, 30, 30, 10), reached (0, 

60, 30, 10) and then to High state by 1% per step to the final distribution of (0, 0, 90, 10). The experiment 

was repeated on all the parameters of the proposed QRA model in the order of ascending importance as 

shown Figure 8 ( ). Three dummy experts were created to 𝑂 < 𝐼 < 𝑇 < 𝑈 < 𝐹 < 𝐷 < 𝐿 < 𝑆 < 𝑅

investigate the response of the model with extents of agreement in an expert panel. With the exception 



of the targets of adjustment, other inputs remained at baseline throughout the experiment. The results 

of (  cases are illustrated in Figure 9.91 × 9) × 3 = 2457

Firstly, as the input changed, the experiment results exhibited different results of the UI and RI 

combination. The indicators of uncertainty ( , , and ) also responded to input adjustments. 𝛥𝐴 ∑𝐷𝑈 ∑Δ𝑃

Hence, the QRA model satisfies Axiom 1. Secondly, the influence magnitudes of input adjustments 

satisfy Axiom 2. While the changes of all recorded values in different risk criteria showed similar types 

of variation, the primary parameters displayed a more impactful role than its secondary ones (

). Thirdly, the model behaved as expected regarding the 𝑅 > 𝐿,𝑆 𝑎𝑛𝑑 𝐷;𝑆 > 𝐹,𝐼, 𝑎𝑛𝑑 𝑂;𝐷 > 𝑈 𝑎𝑛𝑑 𝑇

tendency of variations resulted from changes of different input parameters. The degree of fluctuation 

also aligned with the predefined order based on weighted importance (

). This quality could be observed across all scenarios, thus proves 𝑂 < 𝐼 < 𝑇 < 𝑈 < 𝐹 < 𝐷 < 𝐿 < 𝑆 < 𝑅

the satisfaction of the proposed QRA model with Axiom 3. Finally, as the agreement among experts in 

the panel increased, the impacts of input adjustment varied accordingly. The growth of RI and decline 

of UI is obvious in Figure 9. It is noteworthy that while the  value raised with the deviation of ∑Δ𝑃

inputs from the baseline and lowers UI,  did not. The same  values were derived in 1/3 and 2/3 𝛥𝐴 𝛥𝐴

experts scenarios since the quantified disagreement among experts was kept unchanged. In the 3/3 

experts scenario,  was reasonably reduced to 0. The reflection of higher confidence by the ER 𝛥𝐴

algorithm was also observed as the aggregated value of UDoB was lower than the inputs. However, that 

effect on  could only be observable in the case of total agreement (3/3) across the expert panel. ∑𝐷𝑈

Therefore, the proposed QRA model satisfies Axiom 4 and ultimately, the mechanistic sensitivity test.

FIGURE 9 Recorded results of indexes and uncertainty indicators in the experiment



5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The high volatility of operating conditions and low data availability environment of CSOR make the 

risk assessments of experts vulnerable to both  and . The epistemic nature of uncertainties points 𝑈𝑂 𝑈𝐸

toward the strength of knowledge base, which is not yet paid an adequate attention in current managerial 

QRA models. This study puts forward a solution of quantifying uncertainty through both  and  in 𝑈𝑂 𝑈𝐸

the process of CSOR assessment. The proposed UQM captures the uncertainty situation and facilitates 

a progressively better QRA through continuous improvement of the knowledge base. A set of three 

validation processes was applied on the QRA model including sensitivity analysis, validity evaluation, 

and pragmatic applicability.

The results of this study have three main contributions. Firstly, this study proves that the recognition 

and awareness of uncertainty, especially in the situation of low data availability, is critical with the 

reliability and significance of QRAs. The realization of uncertainty through UI calculation and risk 

mapping opens another dimension of RMP strategies with the improvement of the knowledge base. 

Secondly, despite being widely applied and well-established, this study suggests there are still rooms 

for improvement of risk analysis tools and their art of application with updated theoretical risk 

knowledge. The proposed QRA model attempts to comprehensively capture risk with uncertainty by 

the reasonable combination of multiple apparatuses. The reliability of the model was justified and 

validated by a comprehensive theoretical and pragmatic validation process. Finally, the case study 

found the limitations of experts in uncertainty self-awareness and the instances of CSORs that assessed 

with weak knowledge base. These findings prove the usefulness of the proposed QRA model and the 

UQM and effectively validate the motivation of this study. 

This paper also contributes to the family of QRA models that feature risk prioritization. Firstly, a two-

level parameter set is reasoned for assessing risks based on a strong connection with the context of 

CSOR. Expanding to a secondary level with specified aspects of consequence and detectability allows 

experts to assess risk with a higher level of details and better compatibility with the collected evidence. 

Secondly, the application of ER enables the subjective expression of the strength of knowledge through 

UDoBs, which is the basis to separate of  from  and, therefore, supports the complete handling of 𝑈𝐸 𝑈𝑂

uncertainty. Thirdly, a dedicated UQM is integrated into the QRA model. The awareness of uncertainty 

will contribute to continuously improving the knowledge base for risk assessment in a prioritized 

manner. Finally, through the visualization of risk map, counter-risk strategies can be planned 

considering the level of individual risks as well as its current basis of knowledge.

Three potential research directions are identified based on this study. The first direction is the utilization 

and cooperation of factual evidence and the deduction power of the expert panel need deeper and more 

rigorous investigations. One of the main focuses should be the balance and controllable interaction 

among experts. It is intuitive and rational to encourage a deliberative and communicative environment 



for exchanging risk-rated knowledge. While allowing the beneficial effects of pooling knowledge, 

brainstorming, or cross-checking, group-based thinking and assessment are also vulnerable to various 

short comings such as social manipulation and intimidation, and contamination of misleading data. In 

this respect, the case study of Nguyen et al. (2019) proposed a QRA model in which a Risk 

Communication Platform (RCP) based on Delphi was used to establish a balance between mathematical 

and social aggregation. However, the model of Nguyen et al. (2019) has its own limitations that were 

addressed by the QRA model in this paper. Firstly, evaluating the knowledge base more objectively 

through the UQM with three different indicators revealed the possible subjective bias of the fuzzy self-

assessment system. Secondly, the current QRA model tolerate a larger and flexible number of assessors. 

Delphi inherently requires a significant effort of experts in order to stimulate the convergence of the 

assessments through multiple iterations, which will exponentially increase with the growth of the panel. 

The second direction is to investigate the optimal number of experts in the panel is not yet specified. It 

is expected that more experts could either contribute useful expertise or more outlier, or “noise”  into 

the analysis. There might be an equilibrium of this trade-off that would be useful for practical 

implementations. Regarding the third direction, identified HEs can be found in practical situations as 

having causal relationships, signaling for the existence of “key” events that could affect the risk picture 

of the whole system. For example, in the case of Maersk Honam fire or Tianjin port explosion, the 

original cause of the HE stemmed from the hiding or missing of critical cargo information. A QRA 

approach taking these connections into consideration will be beneficial toward the risk RMP processes. 

The applicability of the QRA model can go beyond its CSOR context. A range of applications is enabled 

by the model’s customizability potential that enables its adoptability in other dynamic risk environments. 

For example, it might be applicable to quantify operational risks of other parties in the container 

transport network such as logistic providers, port and terminal operators, shippers, and consignees. The 

model can also be applied to other sectors of transport such as dry bulk and liquid. A computer-based 

program can be developed based on this model to assist system managers in continuously monitoring 

the risk and uncertainty situation at hand, enables the ability of risk-informed decision making. Several 

elements and configurations of the model should be examined for compatibility before such applications. 

Firstly, the set of risk parameters and their weights should be based on the perspective of the risk bearer. 

For example, an organization might not value financial objectives as important as others (e.g., transport 

service users that does not operate for the financial benefits, or governmental parties such as customs 

and port authority). Definitions of different states of parameters, therefore, also need to be revised. 

Secondly, different parties in the transport network might not share a same risk list. A potential HE of 

a party or a transport sector might not be considered as a risk by another. Hence, risk identification has 

to be conducted for each case of application. 
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