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Abstract 1 

Primary productivity of marine ecosystems is largely driven by broad gradients in 2 

environmental and ecological properties. In contrast, secondary productivity tends to be more 3 

variable, influenced by bottom-up (resource driven) and top-down (predatory) processes, 4 

other environmental drivers, and mediation by the physical structure of habitats. Here, we use 5 

a continental-scale dataset on small mobile invertebrates (‘epifauna’), common on surfaces in 6 

all marine ecosystems, to test influences of potential drivers of temperature-standardised 7 

secondary production across a large biogeographic range. We found epifaunal production to 8 

be remarkably consistent along a temperate to tropical Australian latitudinal gradient of 9 

28.6°, spanning kelp forests to coral reefs (~3500 km). Using a model selection procedure, 10 

epifaunal production was primarily related to biogenic habitat group, which explained up to 11 

45% of total variability. Production was otherwise invariant to predictors capturing primary 12 

productivity, the local biomass of fishes (proxy for predation pressure), and environmental, 13 

geographic, and human impacts. Highly predictable levels of epifaunal productivity 14 

associated with distinct habitat groups across continental scales should allow accurate 15 

modelling of the contributions of these ubiquitous invertebrates to coastal food webs, thus 16 

improving understanding of likely changes to food web structure with ocean warming and 17 

other anthropogenic impacts on marine ecosystems. 18 
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Introduction 22 

The production and transfer of biomass among constituents of an ecosystem is affected by a 23 

diversity of processes that differ among scales. At local scales, biotic interactions such as 24 

competition [1], predation [2] and facilitation or ecological complementarity (as related to 25 

local species richness [3, 4]) influence productivity. In contrast, regional patterns in 26 

productivity tend to relate to larger-scale variation in primary producer characteristics, 27 

temperature, and nutrient availability (i.e. ‘bottom up’ processes; [5]). Reconciling these 28 

varied drivers of community productivity has long been a goal of ecologists, particularly in 29 

marine systems [6].  30 

In this era of ‘big data,’ our capacity to simultaneously evaluate a suite of potential influences 31 

has yielded novel insights regarding productivity – a fundamental ecosystem property [7]. 32 

Phytoplankton productivity, for example, can now be readily assessed across large 33 

biogeographic scales using remote sensing tools [8-10]. However, secondary productivity—34 

particularly biomass production at the basal consumer level, including many small 35 

heterotrophs that funnel energy through the food web—is less easily quantified, with 36 

laborious field assessments generally required [11, 12]. For this reason, comparisons of 37 

secondary productivity across broad biogeographic scales are relatively rare, and generalized 38 

ecological and environmental drivers are yet to be identified (but see [13, 14]). 39 

Reef ecosystems are among the most productive and diverse on earth. The productivity of 40 

reefs is often quantified in terms of fish production [15], fisheries yield [16, 17], or the 41 

primary productivity generated by phytoplankton or benthic algae [18]. A substantial 42 

proportion of reef secondary production, though, is generated by small mobile invertebrates 43 

(‘epifauna’) that inhabit the surfaces of macroalgae, coral, and other benthic structures [11, 44 

19]. Epifauna are highly abundant, diverse and ubiquitous on shallow reefs worldwide, and 45 

represent the main trophic link between benthic primary producers and small carnivores [20, 46 
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21]. Despite their fundamental role in coastal food webs, the drivers of epifaunal 47 

productivity—and thus, ‘fuel’ for most coastal food webs—have rarely been examined 48 

outside highly-controlled experiments [22, 23] and a few local- to regional-scale 49 

investigations [5, 13, 24].  50 

Potential drivers of epifaunal productivity can be hypothesized based on documented patterns 51 

in other trophic groups and ecosystems, and on relationships described in previous studies of 52 

epifauna. Many biological processes are heavily influenced by temperature, and therefore 53 

strong latitudinal patterns in productivity are often reported. For example, in forests [25], 54 

open oceans [26], freshwater streams [14], and seagrass beds [27], productivity is generally 55 

highest at equatorial latitudes and lowest towards the poles, largely as a product of metabolic 56 

and growth rates scaling with temperature and light [28]. Concurrent spatial variation may 57 

also suggest unmeasured environmental factors, perhaps including evolutionary processes 58 

playing out over longer timeframes that favour more productive traits at low latitudes [29, 59 

30]. Moreover, epifaunal secondary productivity may not respond as consistently as primary 60 

productivity to latitudinal temperature gradients. Although tropical/temperate differences 61 

have been observed [31], previous research indicates there may be no clear pattern in 62 

epifaunal productivity across smaller gradients or distinct locations [13, 32]. 63 

Both biotic (ecological) interactions and environmental drivers are fundamental determinants 64 

of food web structure and function [33], and their relative importance has been debated for 65 

several decades [6, 34]. Local-scale biotic interactions such as predation are clearly important 66 

in marine food webs [2, 22, 35, 36], and as such, variation in epifaunal productivity has often 67 

been discussed in terms of predation pressure [37-39]. Relationships between epifauna and 68 

various metrics of predation pressure, however, are inconsistent [22, 40]. Predation effects 69 

are further complicated by mesopredator release [41] and the fact that functional groups in 70 

addition to obligate invertivores, such as scraping and browsing herbivores, may ingest and 71 
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assimilate epifauna [42, 43], leading to greater trophic transfer along unexpected pathways. 72 

The relationship between secondary productivity and biomass of potential predators may 73 

therefore vary along large-scale gradients due to both the functional composition of predator 74 

communities and the feeding behaviour within functional groups [44]. 75 

In concert with local-scale ecological interactions, broad-scale environmental drivers such as 76 

changes in resource supply can equally influence secondary productivity. This phenomenon 77 

may play out through changes in the abundance and composition of primary producers , 78 

which often correlate with changes in environmental conditions, for example light 79 

(moderated by factors such as depth and turbidity in marine ecosystems; [13, 45]) and 80 

nutrient availability [46]. Previous studies have indicated that food resources appear to set the 81 

ceiling on total production of epifaunal communities after accounting for metabolic 82 

contributions, with individuals redistributing along a size gradient to maximize community 83 

productivity depending on whether they are exposed to predators [22]. 84 

Local-scale environmental drivers may also affect secondary productivity, albeit often via 85 

interactions with local ecological processes or broad-scale environmental drivers. More 86 

complex, stable and/or diverse habitats may support higher faunal productivity through 87 

provision of greater abundance and diversity of food resources [11, 14, 47, 48], thus reducing 88 

competition among secondary producers, or through increased protection from predation 89 

[49]. Herbivorous amphipods often select more finely complex algal habitat based on the 90 

quality of predation refugia, rather than the nutritional quality of the algae [50]. In addition, 91 

while some algal species use chemical defences against fish herbivory, epifauna may be less 92 

sensitive to these defences, selecting better-defended algal habitats as a refuge against 93 

consumption by omnivores or herbivores [51]. Local-scale physical conditions – such as 94 

wave energy and current flow in marine systems [52, 53] – and nutrients [54] or pollutants 95 

[55], can all have substantial effects on faunal community structure and function. These 96 
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factors, and others such as removal of top predators [7, 56, 57], are often related to proximity 97 

and density of human populations [58], and nearby industrial or agricultural activities [59, 98 

60]. 99 

Here, we assembled a continental-scale dataset of shallow reef epifauna consistently surveyed 100 

along the east coast of Australia, with the overarching aim of identifying major drivers of 101 

variation in epifaunal secondary productivity across biogeographic provinces. Using multi-102 

model inference, we tested six hypotheses relating to expectations from ecological theory and 103 

prior evidence (Table 1). We hypothesized that, like primary production, the major 104 

constraints on local secondary production across large scales would be set by the amount of 105 

resources and the abiotic environment, with smaller roles for biotic and other factors.   106 

Methods 107 

Study area and field sampling 108 

Epifauna were sampled on shallow reefs at 11 eastern Australian locations, from southern 109 

Tasmania (43.3°S) to Lizard Island in the northern Great Barrier Reef (14.7°S) (Fig. 1). 110 

These locations represent a range of biogeographic regions, described in Appendix 1. A total 111 

of 132 samples of diverse benthic microhabitats (comprising the most common biogenic 112 

microhabitats available on rocky and coral reefs) and associated epifaunal invertebrates were 113 

collected via SCUBA. Site selection, and sample collection and preservation follow protocols 114 

described by Fraser, Stuart-Smith [61] and are presented in detail in Appendix 1.  115 

Laboratory processing and description of variables 116 

Productivity estimates 117 

Preserved invertebrates from each sample were passed through a nested series of 12 sieves 118 

stacked in descending order of mesh size, following a log√2 series (8, 5.6, 4.0, 2.8, 2.0, 1.4, 119 

1.0, 0.71, 0.5, 0.355, 0.25, 0.18, 0.125 mm, after Edgar [62]). Invertebrates retained on each 120 
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sieve were washed into petri dishes and counted under a dissecting microscope, with data 121 

binned by sieve mesh size.  122 

Epifaunal abundance data by size bin were standardized to 1 m2 planar seabed area (density) 123 

prior to analysis following Fraser, Stuart-Smith [61]. Standardization by seabed area was 124 

considered most appropriate for comparing epifaunal productivity to other trophic groups 125 

such as fishes in food web models. 126 

To calculate productivity, epifaunal biomass as ash-free dry weight (AFDW) of individuals 127 

within each size bin was first derived from published estimates of mean biomass across 128 

macrofaunal taxonomic groups [62]. Productivity estimates were calculated using the general 129 

allometric equation given by Edgar [62]: 130 

𝑃 = (10^((−2.31 + 0.8 ∗ log10(B ∗ 1000) + 0.89 ∗ log10T)))/1000  131 

where P is productivity of an individual (mg AFDW d-1), B is the biomass of an individual 132 

(mg AFDW), and T is water temperature (°C) at the time of sampling. Productivity estimates 133 

of individual animals were then multiplied by density within each size bin, and size bin 134 

productivity estimates summed to provide total productivity estimates (mg AFDW m-2 d-1) 135 

for each sample. Productivity was calculated for a standardized temperature of 20°C 136 

following Edgar [13], and hereafter referred to as P20. The use of P20 is recommended to 137 

eliminate the effects of temperature when investigating food webs, assuming that metabolic 138 

and growth rates respond similarly to temperature change across trophic levels [13]. We note 139 

that this method for estimating biomass and productivity was originally established for 140 

individuals ≥0.5 mm; here we assume the equations used by Edgar [62] also apply to smaller 141 

individuals (≥0.125 mm) based on linear extrapolation of well-supported trends (i.e. R2  142 

ranging from 0.87 to 0.98 [67]). In Appendix 1 we elaborate on methods used for 143 

productivity estimates for samples collected using the venturi air-lift (i.e. from massive corals 144 
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and turfing algae) and on methods used to visualize variation in epifaunal productivity among 145 

sampling locations. 146 

Predictor variables 147 

Predictor variables and the models in which they are applied are summarized in Table 1, 148 

while details of predictor variables are provided in Appendix 2. Appendix 1 presents detail on 149 

how and from where data were collected for each predictor variable. 150 

Data analyses 151 

Estimated epifaunal P20 per m2 of seabed (estimated by multiplying the fraction of benthic 152 

cover provided by each microhabitat within each site by the estimated P20 associated with that 153 

microhabitat) was averaged within each of the 11 sampling locations to give mean P20 (mg 154 

AFDW m-2 d-1) for each location. These data were plotted against latitude using a linear 155 

model in R (R Development Team 2017). 156 

Six hypotheses were tested using multiple regression models parameterized with the 157 

appropriate predictors (Table 1) in a multi-model inference framework [63] (see [64] for the 158 

dataset and R code used for analysis). We fit a separate linear model to log10 transformed P20 159 

(per m2 of individual microhabitat sampled) to test each hypothesis with the set of associated 160 

predictor variables using the full (not summarized per location) dataset (n = 115) (Table 1). 161 

Assumptions of each model were tested using variance inflation factors (VIF) for 162 

independence of predictors and residuals were examined to ensure normality. We then used 163 

Akaike information criterion with small sample correction (AICc) to evaluate the likelihood 164 

of each model. We selected the best-supported model based on the Akaike weight, which 165 

describes the relative likelihood of each model given the candidate set of models. The Akaike 166 

weight (AICwt) ranges from 0-1, with 0 being no support and 1 being total support [63]. The 167 

best supported models were further evaluated by Type-III ANOVA using the car package 168 
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[65] and Tukey post-hoc comparison of means. We fit the models using R version 3.6.3 [66] 169 

and used the AICcmodavg package to compute Akaike weights [67]. 170 

Analyses described above were also conducted using temperature-dependent productivity 171 

(results presented in Table S1). However, since modelling temperature-dependent 172 

productivity as a function of temperature could lead to mathematical dependence between the 173 

response and the predictor, P20 was chosen as the preferred response variable. 174 

Results 175 

Across 28.6 degrees of latitude, we found little variation in total epifaunal community 176 

productivity (P20; mg AFDW m-2 d-1), at both the individual sample level and the location 177 

level based on the contribution of different microhabitats to total benthic cover (Fig. 2a). The 178 

lack of variation in productivity standardized by temperature (P20) with latitude indicates that 179 

epifaunal productivity should maintain similar productivity relativities with other food web 180 

elements (e.g. fishes, primary producers), all equally varying with temperature as predicted 181 

by metabolic theory. 182 

The habitat group model was overwhelmingly the best supported model to explain variation 183 

in epifaunal P20 (AICwt = 0.96; Table 1), suggesting that epifaunal secondary productivity is 184 

predominantly driven by characteristics of the immediate habitat group occupied by an 185 

assemblage (i.e. macroalgae, live coral, sessile invertebrate, or turfing algae). The 186 

microhabitat model, which includes finer but more numerous microhabitat categories than the 187 

habitat group model, was supported to a much lesser degree (AICwt = 0.04), suggesting that 188 

the explanatory power gained by this increased resolution was not worth the loss of additional 189 

degrees of freedom, while all other hypotheses had no support according to their Akaike 190 

weights (Table 1). 191 
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Within the habitat group model, epifaunal P20 differed significantly among habitat groups (F-192 

value = 19.4, P <0.001; Fig. 2b; Table S2). Tukey pair-wise comparison of mean P20 among 193 

habitat groups indicated significant differences between macroalgae and live coral (P = 194 

0.0033), and between turfing algae and live coral (P = 0.010). Epifaunal P20 also showed a 195 

significant positive correlation with branching (F-value = 6.3, P = 0.011; Fig. 3a; Table S2). 196 

However, the effect of branching varied significantly among habitat groups (F-value = 3.3, P 197 

= 0.024; Table S2), with the overall positive correlation between branching and P20 largely 198 

driven by macroalgae and turfing algae habitat groups (Fig. 3a). 199 

Our model selection analysis suggests that the near constant epifaunal productivity observed 200 

on reefs along the east coast of Australia is a product of trade-offs in the dominant habitat 201 

groups across the latitudinal gradient (Fig. 4). Moving from tropical to temperate latitudes, 202 

the loss of live coral and associated secondary productivity is compensated by increased 203 

contributions by communities of epifauna inhabiting turfing algae and sessile invertebrate 204 

habitat groups, while macroalgal communities remain reasonably constant across the entire 205 

latitudinal range. 206 

Discussion 207 

Ecosystem productivity has historically been considered to be predominantly a function of 208 

environmental drivers that regulate the availability of resources [6, 7, 68]. Here, we find that 209 

habitat group primarily determines the degree of secondary productivity provided by small 210 

marine invertebrates to shallow reef food webs. Trade-offs in the local productivity afforded 211 

by each of four broad habitat groups (corals, macro- and turfing algae, and sessile 212 

invertebrates) led to a remarkably consistent trend in epifaunal secondary productivity from 213 

temperate to tropical zones. 214 
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While community structure and function have long been viewed through the lens of resource 215 

control, the controlling resource has often been framed in terms of biomass and energy 216 

transfer among trophic groups (i.e. carbon acquisition) [7, 13, 69, 70]. However, niche theory 217 

also acknowledges space as an important resource (i.e. the ‘Hutchinsonian’ niche), harkening 218 

back to seminal contributions on the organization of sessile organisms in rocky intertidal 219 

ecology [71, 72]. Habitat resources, additional to food resources, appear responsible for 220 

large-scale patterns in epifaunal community structure [61, 73]. This seems also to be the case 221 

in the current study with regards to their production, echoing a recent finding in communities 222 

of freshwater stream invertebrates in North America [14]. 223 

Why is habitat so important? 224 

Several potential mechanisms may explain our finding. First, while epifaunal assemblages 225 

comprise a diversity of functional groups, herbivores (the ‘mesograzers’) typically dominate 226 

[13, 74]. Mesograzers tend to rely on microphytobenthic films and filaments, with some 227 

larger animals consuming macroalgae [75]. Macroalgal habitats present abundant food 228 

resources in the form of microphytobenthos and host algal tissue, potentially facilitating 229 

greater productivity of epifauna than habitats without these resources [35]. Filamentous 230 

turfing algae, in addition to offering a direct food source for mesograzers, tends to host 231 

microalgal films and capture high volumes of detritus [76], presenting an abundance and 232 

diversity of trophic resources for different epifaunal functional groups [75]. By contrast, live 233 

hard coral offers minimal food for herbivorous mesograzers [77, 78], making it largely food 234 

resource-poor except for particles trapped by coral polyps and the coral mucus consumed by 235 

some larger decapod taxa [79]. Epifauna selecting soft coral and sponge habitats, comprising 236 

the sessile invertebrate habitat group, are likely to encounter fewer food resources. Soft corals 237 

use allelopathic defences to resist colonisation by microphytobenthos and epiphytes, and 238 
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consumption by epifauna [80]. Sponge tissue is consumed by some epifauna, however most 239 

sponge-dwellers consume external food sources [81, 82].  240 

Variation in epifaunal productivity may also be influenced by differential predation 241 

susceptibility among benthic habitats. Habitat structural complexity and its role in shaping 242 

predator-prey relationships has long been discussed [49, 78, 83, 84], and may be a factor 243 

determining the relationship between epifaunal productivity and habitat groups. Epifaunal 244 

productivity increased with our metric of habitat complexity (degree of branching) (Fig. 3a), 245 

presumably due to the added protection from predators offered by more complex habitat [84, 246 

85]. However, the degree to which this benefit is realized depends greatly on the habitat type 247 

(Fig. 3a, 3b). For example, macroalgal habitat was the most highly branched and supported 248 

among the highest estimates of epifaunal productivity, however live coral was also highly 249 

branched but supported the least productive epifaunal assemblages.  250 

This apparent inconsistency raises the question of whether physical complexity provides 251 

actual or perceived refuges for epifaunal prey [78] and may be partly resolved by considering 252 

the scale at which complexity is quantified. While live branching coral is complex at scales 253 

ranging from millimetres to centimetres, the complexity of turfing algae is at a sub-millimetre 254 

to millimetre scale, and macroalgae complexity ranges from sub-millimetre through to 255 

centimetres [31]. In studies comparing macroalgae species [86] or artificial algal habitats of 256 

differing complexity [87], small invertebrates generally select more finely complex habitat 257 

that offers predation refugia appropriate for the invertebrate body sizes. Macroalgae 258 

complexity can also be finely partitioned by much larger herbivorous fishes [88]. If 259 

microhabitat complexity were quantified to higher resolution, for example by using fractal 260 

dimensions [89], stronger relationships between epifaunal productivity and habitat 261 

complexity would perhaps be evident, as would consistency between the complexity of 262 

habitat groups and the productivity they support.  263 
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In addition to complexity, predation pressure may vary as a result of particular characteristics 264 

of the different habitat groups. For example, while the heterotrophy of hard corals largely 265 

involves the consumption of zooplankton [90, 91], small epifaunal invertebrates could fall 266 

prey to coral polyps. Hard corals also often use physical defence strategies, such as ‘sweeper 267 

tentacles’, to resist colonization by small epiphytes and epifauna [92]. In addition, the rigid 268 

structure of branching hard coral limits the ability of mobile invertivores (e.g. fish) to 269 

penetrate the habitat in order to extract epifaunal prey [93]. Hence, branching coral can 270 

provide refugia for larger epifaunal invertebrates that may be less susceptible to consumption 271 

by coral polyps [39, 73, 94].  272 

Fish communities on tropical reefs have been shown to comprise proportionally more 273 

herbivores compared with temperate reefs, which support more omnivorous fishes, while 274 

invertivores are consistently common across all latitudes [95]. While total fish biomass is 275 

used here as a proxy for predation pressure, understanding the differences in predation 276 

exposure for epifauna among different microhabitats would require more detailed study of the 277 

functional composition and feeding behaviour of local fish communities. For example, 278 

predation by omnivores or consumption of epifauna by herbivores may vary among algal 279 

microhabitats depending on chemical defences against fish herbivory or the palatability of 280 

algae, as epifaunal invertebrates may be insensitive to chemical defences [51] or choose less 281 

palatable algal microhabitats based on refuge quality [50]. 282 

Interestingly, neither site-scale estimates of predator biomass, nor temperature or primary 283 

productivity (assessed using water column chlorophyll content as a proxy) appeared to be 284 

explicitly related to variation in epifaunal productivity. Our use of P20 controls for a major 285 

environmental factor, temperature, although theory and recent studies suggest that 286 

temperature effects are most likely to manifest through enhancing the (consumable) resource 287 

base, rather than acting directly on community production [14, 96, 97]. Metabolic rate scales 288 
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with temperature at approximately similar rates across trophic levels, resulting in 289 

proportionally similar production/temperature changes [13]. Given that habitat group affects 290 

potential food resources available for epifauna, whereas temperature had little apparent 291 

influence on secondary productivity, our results are consistent with the hypothesis that 292 

epifaunal productivity is limited predominantly by food resource ceilings [13, 22].  293 

Ecological implications 294 

Epifaunal invertebrates are extremely prolific in coastal and shallow reef ecosystems, with a 295 

very high proportion of their biomass consumed by larger invertebrate predators and fishes 296 

[11]. Consequently, epifaunal communities comprise a critical basal component in shallow 297 

marine food webs [85]. Understanding the factors that promote productive epifaunal 298 

communities is crucial for the goal of ensuring high trophic transfer and food web stability 299 

for coastal and shallow reef ecosystems. Given that the biotic habitat group occupied by the 300 

epifaunal assemblage was here found to explain >45% of the variance in secondary 301 

productivity along an extensive biogeographic gradient, understanding changes to benthic 302 

habitat group availability is the critical first step to achieving this goal.  303 

In selecting microhabitats to sample, we attempted to include all common types of biogenic 304 

cover found on shallow coral and rocky reefs in eastern Australia. However, direct 305 

anthropogenic stressors, combined with climate change, are shifting the distribution and 306 

abundance of biogenic habitat groups common to rocky and coral reefs [98-100]. Our results 307 

reveal an important indirect pathway for the effects of global, regional, and local scale 308 

environmental changes to alter reef ecosystems. Ocean temperature has been identified as the 309 

most important driver of the benthic composition of biogenic habitat groups on both rocky 310 

and coral reefs [101]. Other important drivers include human population density, nutrient 311 

availability, wave exposure, and the density of habitat-transforming fauna such as 312 
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herbivorous sea urchins or corallivorous crown-of-thorns sea stars [101-103]. Turf and 313 

sometimes macroalgae are succeeding corals lost to bleaching and other local stressors [98, 314 

104, 105]. Macroalgae beds on rocky reefs are declining in many regions [106], often to be 315 

replaced by turf as oceans warm and voracious herbivores undergo range extensions and 316 

population outbreaks [100, 107, 108].  317 

Mediated by shifts in available reef habitat groups, these drivers can potentially affect 318 

epifaunal invertebrate communities and food web processes. Our results imply changes to 319 

epifaunal secondary productivity should be predictable if habitat group transformation is well 320 

documented or accurately predicted. Replacement of live coral by turfing algae or 321 

macroalgae will likely increase epifaunal secondary productivity on tropical and subtropical 322 

reefs (Fig. 4) [94]. If turf replaces macroalgae on temperate reefs, a significant increase in 323 

epifaunal productivity may be expected, whereas the succession of subtropical macroalgae by 324 

turf is likely to result in minimal change (Fig. 4). Rather, relatively high epifaunal 325 

productivity may be maintained on subtropical reefs, as turfing and macroalgae both support 326 

similarly highly productive assemblages of epifaunal invertebrates. 327 
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Tables 632 

Table 1 The hypotheses (epifaunal community P20 is predominantly driven by: H1 – H6) and 633 

linear models tested to explain variation in epifaunal P20, with predictions (P) included within 634 

models. Partial R2 indicates the proportion of variance explained by each predictor within 635 

models; multiple R2 indicates the raw unadjusted R2 for each model. Model selection was 636 

based on the Akaike weight, which describes the relative likelihood of each model given the 637 

set of candidate models. 638 

Hypothesis (H) Model and Predictions (P) Partial 

R2  

Multiple 

R2 

Akaike 

weight 

H1 –Predation 

pressure 

PREDATION MODEL 

0.032 <0.01 

P1 – P20 declines with increased total 

fish biomass 

0.004 

P2 – P20 declines with increased 

cryptic fish abundance 

0.029 

H2 – Resource 

availability 

 

RESOURCE MODEL 

0.122 <0.01 

P3 – P20 declines as depth increases 

(reducing light) 

0.031 

P4 – P20 increases with epiphyte load 0.048 

P5 – P20 increases with chlorophyll-a 0.005 

P6 – P20 increases with mean SST 0.038 

H3a – 

Characteristics of 

immediate habitat, 

fine microhabitat 

scale 

 

MICROHABITAT MODEL 

0.594 0.04 

P7 – P20 varies significantly among 

microhabitats 

0.548 

P8 – P20 increases with habitat 

branching/complexity 

0.025 

P9 – P20 increases with the maximum 

length of habitat 

0.021 

H3b – 

Characteristics of 

immediate habitat, 

coarse habitat 

group scale 

HABITAT GROUP MODEL 

0.450 0.96 

P10 – P20 varies significantly among 

habitat groups 

0.344 

P11 – P20 increases with habitat 

branching/complexity 

0.030  

P12 – the effect of branching on P20 

varies among habitat groups 

0.069 
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P13 – P20 increases with the maximum 

length of habitat 

0.007 

H4 – Local 

environmental 

factors 

 

 

 

ENVIRONMENT MODEL 

0.114 <0.01 

P6 – P20 increases with mean SST 0.049 

P14 – P20 declines with increased wave 

exposure 

0.036 

P15 – P20 declines with increased relief 0.009 

P16 – P20 declines with increased slope 0.014 

P17 – P20 declines with increased 

current strength 

0.006 

H5 – Geographic 

location 

 

SPATIAL MODEL 

0.091 <0.01 

P18 – P20 declines towards higher 

latitudes 

0.054 

P19 – P20 varies significantly with 

longitude 

0.037 

H6 – Human 

population 

impacts 

HUMAN IMPACTS MODEL                                 

0.077 <0.01 P20 – P20 increases with human 

population density 

0.077 
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Figure legends 640 

Fig. 1 Map of eastern Australia showing sampling locations, sampling dates and number of 641 

sites. 642 

 643 

Fig. 2 Linear regression (a) of mean log10 total epifaunal community daily productivity (P20) 644 

against latitude. The large black points represent mean P20 within each of the 11 sampling 645 

locations, estimated by multiplying the fraction of benthic cover provided by each 646 

microhabitat within each site by the estimated P20 associated with that microhabitat; the black 647 

line represents the regression of those data against latitude. The small grey points represent 648 

epifaunal P20 for individual samples; the grey line represents the regression of those data 649 

against latitude. Grey shading represents 95% confidence intervals.  650 

Box plots (b) of variation in log10 epifaunal assemblage P20 among habitat groups. Horizontal 651 

lines in each box plot represent third quartile, median and first quartile. The whiskers extend 652 

to 1.5 x interquartile range. Dots represent outliers. Asterisks indicate significant differences 653 

between habitat group pairs (*P<0.05; **P<0.01). 654 

 655 

Fig. 3 Linear regression (a) of mean log10 epifaunal P20 against microhabitat degree of 656 

branching, with colors indicating habitat groups, and black line the overall mean. Higher 657 

branching equates to higher complexity and translates to higher productivity on average. 658 

Points represent individual samples; grey shading represents 95% confidence interval of 659 

overall mean. Horizontal boxplots (b) show variation in the degree of branching within each 660 

habitat group. Vertical lines in each box plot represent third quartile, median and first 661 

quartile. The whiskers extend to 1.5 x interquartile range. 662 

 663 

Fig. 4 Mean log10 epifaunal P20 associated with each habitat group across four climatic zones 664 

within the latitudinal gradient sampled. Mean P20 among habitat groups is represented for 665 

each climatic zone by the bar titled ‘All’. Climatic zones represent the following latitudinal 666 

ranges: cool temperate (-43.3 to -37.7°S), warm temperate (-37.6 to -31.9°S), subtropical (-667 

31.8 to -26.1°S), tropical (-20.4 to -14.6°S). 668 

 669 


