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Abstract Flow simulations of ephemeral rivers are often highly uncertain. Therefore, error models that
can reliably quantify predictive uncertainty are particularly important. Existing error models are incapable
of producing predictive distributions that contain >50% zeros, making them unsuitable for use in highly
ephemeral rivers. We propose a new method to produce reliable predictions in highly ephemeral rivers. The
method uses data censoring of observed and simulated flow to estimate model parameters by maximum
likelihood. Predictive uncertainty is conditioned on the simulation in such a way that it can generate >50%
zeros. Our method allows the setting of a censoring threshold above zero. Many conceptual hydrological
models can only approach, but never equal, zero. For these hydrological models, we show that setting a
censoring threshold slightly above zero is required to produce reliable predictive distributions in highly
ephemeral catchments. Our new method allows reliable predictions to be generated even in highly
ephemeral catchments.

Plain Language Summary Many rivers cease to flow at various times. These rivers are difficult
to model well, meaning that the models have a high level of uncertainty. There are no existing methods to
correctly quantify the uncertainty in models of rivers that cease to flow >50% of the time. We propose
a new method that can quantify the uncertainty of these models, even for rivers that cease to flow
very often.

1. Introduction

Ephemeral and intermittent rivers drain at least half the world's land surface (Datry et al., 2017; Tooth,
2000), providing water vital for human needs—particularly agriculture—and for ecosystems. They are par-
ticularly prevalent in drylands, but they also occur in areas of moderate and high rainfall, notably in head-
water catchments (Snelder et al., 2013). Hydrological modeling of these rivers poses a significant challenge,
as there is considerable uncertainty in flow predictions (Costigan et al., 2017). Reliable quantification of pre-
dictive uncertainty is thus particularly important for ephemeral and intermittent rivers (henceforth simply
ephemeral rivers) (Smith et al., 2015). While there is considerable literature on quantification of uncertainty
in hydrological predictions of perennial rivers (see review by Kavetski, 2019), there are very few published
studies for ephemeral rivers.

An important exception is Smith et al. (2010), who highlight the challenges in quantifying predictive uncer-
tainty for ephemeral rivers. They point out that ignoring the presence of zeros undermines two common
assumptions of hydrological error models, namely, that residuals will be symmetrically and normally distrib-
uted (usually after transformation). To address this problem, they introduced a Bayesian method for para-
meter inference of hydrological and error models. Within their method, they formulated a likelihood
function that is conditioned on whether observed flow was greater than zero or equal to zero. They used this
method to demonstrate a fundamental principle of likelihood‐based error models in ephemeral rivers: opti-
mal hydrological and error model parameters can only be estimated if zero values are accounted for in
the likelihood.

Smith et al.'s (2010) study was aimed at developing a likelihood for ephemeral rivers to optimize hydrological
models, rather than for use in predictions. For generating predictions in ephemeral rivers, their method has
two limitations: (1) their treatment of zeros in the likelihood estimation is conditioned on observations
(Oliveira et al., 2018)—for example, they calculate the “probability of a zero error given a zero observa-
tion”—and (2) their error model is incapable of generating >50% zeros, meaning their model cannot
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produce reliable predictive distributions in highly ephemeral catchments (McInerney et al., 2019), as we
demonstrate in section 3.

Conditioning the treatment of zeros on observations is problematic when the model is to be used for predic-
tion: because a future incidence of a zero observation cannot be known, the predictive distribution cannot be
correctly conditioned. In previous work, we and others have built on Smith et al.'s (2010) findings with error
models that account for zeros in observations, but for which the likelihood is conditioned only on simula-
tions—that is, these models can be used in prediction (Ammann et al., 2019; Bennett, Wang et al., 2016;
Li et al., 2013; Li et al., 2017). However, these errormodels suffer from the second limitation described above:
they cannot generate >50% zeros. This is because the original model simulations are treated as the medians
of the prediction distributions under the commonly assumed error model. Addressing this limitation is the
major aim of this study.

We introduce amaximum likelihoodmethod for parameter estimation of hydrological and error models that
can be applied to all catchments, regardless of the degree of ephemerality. To enable the method to be used
in prediction, we condition the predictive error distribution on simulated flow from the hydrological model.
For intermittent and ephemeral rivers, we assume that both simulated and observed flow may be of zero
value, either at the same time or at different times. Thus, the zero threshold needs to be considered in the
predictive error distribution both as a condition (simulated flow) and as an outcome (to be observed).

The most direct approach is to use a discrete‐continuous predictive error distribution (following Smith et al.,
2010), which can be broken down into four cases. Denote observed flow q(t) and simulated floweq tð Þat time t.
The four cases are the following:

• case = 1 when both q(t) > 0 and eq tð Þ>0;
• case = 2 when q(t) = 0 but eq tð Þ>0;
• case = 3 when q(t) > 0 but eq tð Þ ¼ 0; and
• case = 4 when both q(t) = 0 and eq tð Þ ¼ 0.

While it is theoretically possible to construct component probability density or cumulative distribution func-
tions for the four cases, it can be quite tedious to do so in practice. This is especially apparent when consider-
ing that the distribution functions for the four cases need to satisfy certain relationships. Assuming a
monotonically increasing function between the expected value of q(t) and the simulated value eq tð Þ, a few
of the relationships are as follows:

• For case = 1 and case = 2

∫
∞
0þpdf q tð Þjeq tð Þf gdq tð Þ þ prob q tð Þ ¼ 0jeq tð Þf g ¼ 1 (1)

• For case = 1 and case = 3

∫
þ∞
Q pdf q tð Þjeq tð Þf gdq tð Þ>∫þ∞

Q pdf q tð Þjeq tð Þ ¼ 0f gdq tð Þ (2)

• For case = 2 and case = 4

prob q tð Þ ¼ 0jeq tð Þ>0f g<prob q tð Þ ¼ 0jeq tð Þ ¼ 0f g (3)

• For case = 3 and case = 4

∫
∞
0þpdf q tð Þjeq tð Þ ¼ 0f gdq tð Þ þ prob q tð Þ ¼ 0jeq tð Þ ¼ 0f g ¼ 1 (4)

Equations (1) and (4) simply state that the component probabilities need to add to one. Equations (2) and (3)
result from the monotonically increasing function.

It is a difficult task to discretely specify the distribution functions for the four cases while satisfying the rela-
tionships. The difficulty is exacerbated when some of the cases may have too few data points to be robustly
modeled separately.

To resolve these difficulties, we propose a data censoring approach.We treat the zero values of simulated and
observed flow as censored data, with unknown exact values equal to or below zero. As we will show in
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section 2, such an approach makes it possible to use a simple predictive error model to define all the four
cases in a mathematically coherent manner. The relationships in equations (1)–(4) are automatically satis-
fied. Unlike mixed discrete‐continuous distributions, data censoring obviates the need for additional distri-
bution(s) to describe the incidence of zero flow in observations or simulations. As a result, data for the four
cases can be used jointly, and therefore efficiently, to estimate the parameters of the predictive error model.

We will show that our new method can produce predictive distributions with >50% zeros and is able to han-
dle cases where eq tð Þ ¼ 0. We note, however, that handling cases where eq tð Þ ¼ 0 is of very limited practical
value, because many conceptual hydrological models are not able to produce zero flow. To address this issue,
we generalize our censoring approach to allow us to set a censoring threshold above zero. We demonstrate
that setting a censoring threshold slightly above zero is required to produce consistently reliable predictions
with a hydrological model that cannot produce zero values.

The paper is structured as follows.We describe our newmethod in section 2.We compare the newmethod to
two existing alternatives—one which does not account for zeros at all, and one which accounts only for zeros
in observed data—and these experiments are described in section 3. Catchments and data are described in
section 4, and verification methods are detailed in section 5. We describe a method to select an appropriate
censoring threshold in section 6, before describing the results of our experiments in section 7. We discuss our
findings in section 8 and summarize our study in section 9.

2. Predictive Error Model for Ephemeral Catchments
2.1. Hydrological Model

Hydrological modeling is carried out with the daily GR4Jmodel (Perrin et al., 2003), a simple four‐parameter
conceptual hydrological model that has performed strongly in Australian catchments in model intercompar-
ison studies (Bennett, Robertson et al., 2016; Coron et al., 2012). Many conceptual models use some form of
exponential decay to simulate discharge from stores, with the implication that simulated flow can approach,
but never equal, zero. GR4J is exceptional in this regard, as it can produce zero flow with certain combina-
tions of parameters and states. In practice, however, it is quite rare for GR4J to produce zero flow. More
usually it produces very long flow recessions that approach, but do not equal, zero.

2.2. Treatment of Threshold Data

We treat the zero values of simulated and observed flow as censored data, with unknown exact values equal
to or below zero. Data censoring approaches that deal with threshold data have been successfully used in a
number of forecasting applications (Li et al., 2019; Messner et al., 2014; Scheuerer & Hamill, 2015; Wang &
Robertson, 2011).

For more general application, we allow the censoring threshold to be zero or above zero, and to have differ-
ent values for observed and simulated flow, qC and eqC . As noted above, many hydrological models are for-
mulated in such a way that the simulated flow can never reach exactly zero. Treating the simulated flow
below a small positive threshold as having a censored value removes this limitation, thus permitting more
realistic modeling of ephemeral rivers.

While our method allows us to set different censoring thresholds for simulated and observed flow, for this
study we set qC ¼ eqC as a simple test case. Setting qC≠eqC has some potential pitfalls, as discussed in
section 8.

The choice of censoring threshold influences the performance of GR4J and the predictive error model, so
some care is needed in choosing the censoring threshold. We describe a procedure to choose censoring
thresholds in section 6.

2.3. Data Transformation

The predictive error distribution of the simulated flow is often skewed and heteroscedastic, with varied char-
acteristics depending on catchments. One way to simplify the problem is to apply a transformation to nor-
malize the marginal distributions of the observed and simulated flow. After the transformation, a
relatively simple predictive error distribution form is often reasonable (e.g., Bates & Campbell, 2001;
Thyer et al., 2002; Ye et al., 2014; among many others).
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In this study, we use the log‐sinh transformation (Wang et al., 2012). The log‐sinh transformation was ori-
ginally designed to improve the representation of residuals in cases where predicted variables are positively
skewed, and the spread of errors first increases rapidly, and then more slowly. These properties generally
hold for predictions of streamflow (Del Giudice et al., 2013; Wang et al., 2012). We discuss the potential
use of other transformations with our method in section 8. The observed flow q(t) is transformed to z(t) by

z tð Þ ¼ tf q tð Þ½ � ¼ b−1log sinh aþ bq tð Þð Þf g (5)

where a and b are transformation parameters. The variable z can be back‐transformed to q by

q tð Þ ¼ tf −1 z tð Þ½ � ¼ b−1 argsinh exp bz tð Þf g½ �−að Þ (6)

In the back transformation, any values of z(t) < tf(0) are first forced to z(t) = tf(0) to ensure q(t)≥ 0. The same
relationships are also applied to the simulated floweq tð Þ and its transformed valueez tð Þ. The censoring thresh-
olds of the transformed flow corresponding to qC and eqC are denoted as zC and ezC , respectively.
Values of the transformation parameters are estimated from observed flow data. The method of maximum
likelihood is used to fit a log‐sinh transformed normal distribution to the observed flow data including both
censored and noncensored data. The distribution has four parameters: two transformation parameters a and
b, and mean mz and variance s2z of the normal distribution.

The likelihood function is given by

L a; b;mz; s
2
z

� � ¼ ∏
t:q tð Þ>qC

J z tð Þ→q tð Þf gϕ z tð Þ mz; s
2
z

��� �
∏

t:q tð Þ≤qC
Φ zC mz; s

2
z

��� �
(7)

where data points are denoted by t = 1,…,T; J{z(t) → q(t)} is the transformation Jacobian given by

J z tð Þ→q tð Þf g ¼ coth aþ bq tð Þð Þ (8)

and ϕ(⋅| ⋅ , ⋅) andΦ(⋅| ⋅ , ⋅) are, respectively, the normal probability density and cumulative distribution func-
tions given mean and variance. Time steps of missing observations should be omitted from the likelihood
function. The four parameters are estimated by maximizing the log likelihood by a numerical
search method.

To transform the simulated flow, we use the same transformation parameter values as estimated from the
observed flow data. In sections 2.4 and 2.5, we will need the marginal distribution of the transformed simu-

lated flow. We assume the distribution is normal, with meanmez and variance s2ez. We estimate these two para-

meters by maximizing the likelihood function

L mez; s2ez� �
¼ ∏

t:ez tð Þ>ezCϕ ez tð Þjmez; s2ezn o
∏

t:ez tð Þ≤ezCΦ ezCjmez; s2ezn o
(9)

Note that mez and s2ez must be estimated for each set of hydrological model parameters trialed as part of the

parameter estimation procedure described in section 2.5.

2.4. Predictive Error Model

We assume a simple predictive error model

z tð Þ∼N ez tð Þ; σ2� �
(10)

that states that the transformed observed flow follows a normal distribution with mean equal to the trans-
formed simulated flow and variance σ2 being constant.

Under the condition that ez tð Þ is above ezC and its value is known, the probability density function of z(t) is
simply
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pdf z tð Þjez tð Þf g ¼ ϕ z tð Þjez tð Þ; σ2� �
(11)

Under this condition, the probability of z(t) ≤ zC is

cdf zCjez tð Þf g ¼ Φ zCjez tð Þ; σ2� �
(12)

Under the condition that ez tð Þ is only known to be equal or below ezC , the marginal distribution of ez tð Þ (as
described in section 2.3) needs to be invoked to derive the probability density function of z(t) as the
following.

pdf z tð Þjez tð Þ≤ezCf g ¼
∫
ezC
−∞pdf z tð Þ ez tð Þjf gϕ ez tð Þjmez; s2ezn o

dez tð Þ

∫
ezC
−∞ϕ ez tð Þjmez; s2ezn o

dez tð Þ
(13)

A closed‐form solution of this equation is derived and given in section A1.

Under this condition (ez tð Þ≤ezC), the probability of z(t) ≤ zC is

cdf zCjez tð Þ≤ezCf g ¼
∫
ezC
−∞cdf zC ez tð Þjf gϕ ez tð Þjmez; s2ezn o

dez tð Þ

∫
ezC
−∞ϕ ez tð Þjmez; s2ezn o

dez tð Þ
(14)

A closed‐form solution of this equation is not available. A Monte Carlo integration algorithm for solving this
equation is given in section A2.

2.5. Parameter Estimation of Hydrological and Predictive Error Models

Denote the parameter set of a hydrological model being employed as θ. We wish to estimate θ together with
the parameter σ2 in the predictive error model (equation (10)). We use themethod of maximum likelihood to
do so.

For a given set of values of θ, the hydrological model is run to produce simulated flow values using relevant
inputs. After transformation (section 2.3), we have observed and simulated flow values z(t) andez tð Þ, t = 1,…,
T. The likelihood function is given by

L θ; σ2
� � ¼ ∏

t: case¼1
pdf z tð Þjez tð Þf g ∏

t: case¼2
cdf zCjez tð Þf g ∏

t: case¼3
pdf z tð Þjez tð Þ≤ezCf g ∏

t: case¼4
cdf zCjez tð Þ≤ezCf g (15)

Time steps of missing observations should be omitted from the likelihood function. The cases in equa-
tion (15) are as follows:

• case = 1 when both z(t) and ez tð Þ have known values. The term pdf z tð Þjez tð Þf g is given by equation (11),
• case = 2 when z(t) ≤ zC but ez tð Þ has a known value. The term cdf zCjez tð Þf g is given by equation (12),
• case = 3 when z(t) has a known value, but ez tð Þ≤ezC. The term pdf z tð Þjez tð Þ≤ezCf gis given by equation (13),

and
• case = 4 when z(t) ≤ zC and ez tð Þ≤ezC . The term cdf zCjez tð Þ≤ezCf g is given by equation (14).

For case = 3 and case = 4, values for mez and s2ez are needed. A method for estimating them is given in

section 2.3. For each new set of values of θ, a model simulation run is performed, and new values of mez
and s2ez are then estimated. For case = 4, the term cdf zCjez tð Þ≤ezCf g needs to be evaluated only once for each

set of values of θ.

A numerical searchmethod (Duan et al., 1993) is used to find the parameters θ and σ2 that maximize the log‐
likelihood function of equation (15).

The four cases here correspond to the four cases introduced in section 1. The equivalent relationships of
equations (1)–(4) for the more general threshold values used here should also hold. Indeed, it can be shown
that the data censoring approach ensures these relationships are satisfied.

10.1029/2019WR026128Water Resources Research

WANG ET AL. 5 of 19



We note that our method relies on parameters in the predictive error distribution (equation (10)) and the
transformation (equation (5)) to characterize predictive uncertainty. It is not a full Bayesian method that
incorporates uncertainty in hydrological and error model parameters. While this is a limitation of our
method, in general, the uncertainty due to model parameters is, based on our experience, only a small pro-
portion of total predictive uncertainty of flow. This is particularly true for the long data series that we employ
(>20 years; see section 4), and we will show that our method can reliably characterize total predictive uncer-
tainty. Our method is also expected to have the advantage of much greater computational efficiency than
Markov Chain Monte Carlo methods required for a full Bayesian analysis.

2.6. Sampling of Predictive Uncertainty

In prediction mode, the predictive error model can be used to generate ensemble members to represent
predictive uncertainty.

Given ez tð Þ, we generate predictive uncertainty as follows:
1. Condition (1): ez tð Þ>ezC . An ensemble member eez tð Þ can be generated by sampling a normal distribution

according to equation (10).
2. Condition (2): ez tð Þ≤ezC . A random value of ez tð Þ is sampled from N mez; s2ez� �

in the range of ez tð Þ≤ezC .
Conditioned on this ez tð Þ value, a random value of eez tð Þ is then sampled from the normal distribution of
equation (10).

This process is repeated to generate as many ensemble members as desired. For this study, we generate 1,000
ensemble members.

Finally, all ensemble members of eez tð Þ are back‐transformed with equation (6) to give the prediction eeq tð Þ.

3. Error Model Experiments

To test the new method described in section 2, we compare it to two additional approaches commonly used
in the literature. We designate the three experiments as follows.

1. n‐censored. This is a “no censoring” experiment, using a naive predictive error model that does not
account for the presence of zeros or censored values. This is equivalent to considering only case = 1 in
our likelihood (section 2.5). Note also that censoring is not used in the estimation of the transformation
parameters (equation (7)). For ephemeral rivers, this approach violates the assumptions of normal and
symmetrical errors as pointed out by Smith et al. (2010). It has nonetheless been used as a simple “prag-
matic” approach in some studies that include ephemeral rivers (McInerney et al., 2017; Woldemeskel
et al., 2018; Ye et al., 2014). Predictive uncertainty is generated only with the method used for
Condition (1) in section 2.6, including when ez tð Þ≤ezC.

2. o‐censored. This experiment treats only observations as censored data, equivalent to using case = 1 and
case = 2 in our likelihood (section 2.5). This is analogous to the approach used by Smith et al. (2010) and
to error models we have proposed previously (Bennett et al., 2017; Li et al., 2013; Li et al., 2015, 2016).
Predictive uncertainty is generated only with the method used for Condition (1) in section 2.6, including
when ez tð Þ≤ezC.

3. os‐censored. This is the new approach introduced in this study, as described in section 2. It treats both
observations and simulations as censored data. Predictive uncertainty is generated with the methods
described for both Condition (1) and Condition (2) in section 2.6.

As we note in the introduction (section 1), a fundamental limitation of the n‐censored and o‐censored
experiments is that they cannot generate >50% zeros. We illustrate this with a schematic in Figure 1, for
the case where the censoring threshold is the log‐sinh transformed value of zero, that is, z0 ¼ zC ¼ ezC ¼ tf
0½ � (equation (5)). In the n‐censored and o‐censored experiments, only Condition (1) in section 2.6 is used to
generate predictive uncertainty (Figure 1a). As the predictive residual distribution is symmetrical, at most
~50% can fall below zero after back‐transformation. In the os‐censored experiment (Figure 1b), the use of

Condition (2) in section 2.6 allows themedian predictionez tð Þ ¼ M eez tð Þ
� �

to fall below z0, allowing this model

to generate >50% of zeros.
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4. Catchments and Data

We choose three catchments to assess the experiments in section 3: Deep River, Fletcher River, and the Ord
River. Catchment information is summarized in Table 1, and seasonal distributions of rainfall and flow are
summarized in Figure 2. The temperate Deep River is moderately ephemeral, ceasing to flow ~25% of the
time, while the tropical Fletcher and Ord Rivers are highly ephemeral, ceasing to flow >50% of the time.
Deep River receives winter‐dominant (June–November) rainfall and regularly ceases to flow in the late sum-
mer and autumn months (January–May). Rainfall in the Fletcher and Ord Rivers is dominated by the mon-
soon (December–April), and they regularly cease to flow from April to December.

All sites have long (>20 years), high quality flow records. Flow data are taken from the Bureau of
Meteorology hydrologic reference stations data set (http://www.bom.gov.au/water/hrs/). This data set pro-
vides quality codes, and we set any flow data of quality worse than A (“best available data”) to missing.
Rainfall and potential evaporation are taken from the gridded AWAP data set (Australian Water
Availability Project; http://www.csiro.au/awap/). AWAP produces daily estimates of rainfall interpolated
from gauges to a ~5‐km grid. AWAP estimates potential evaporation at a monthly time step; we disaggregate
these to daily estimates by simple linear interpolation.

5. Model Checking and Verification

As the predictive error model of equation (10) is a critical assumption, we first check if the assumption is rea-
sonable. As parameter estimates of the full models are influenced by estimation methods, including how
zero values are treated in the error model experiments (section 3), we check how the error model assumption
holds in these experiments. The error model checking should also be useful for explaining predictive perfor-
mance of the full models.

Ultimately, the purpose of the modeling is for predictions. Therefore, we conduct a thorough evaluation of
the performance of the full models in predicting the river flow. Cross‐validation is employed in the evalua-
tion to ensure the results are not due to overfitting.

Figure 1. Schematic showing predictive uncertainty under the n‐censored/o‐censored experiments (a) and the os‐cen-
sored experiment (b), where ez ¼ M eez� �

is the median of the Gaussian predictive distribution and . Each panel shows
the treatment of predictive uncertainty when ez>z0 and when ez≤z0. Only the os‐censored case (Figure 1b) allows >50%
zeros to be generated (see text for explanation).

Table 1
Catchment Attributes

Gauge name Gauge Id Drainage area (km2) Lat. Lon. Zeros (%) Data period Missing (%)

Deep River at Teds Pool 606001 471 −34.77 116.62 24.9 01‐01‐1980 to 31‐12‐2014 6.8
Fletcher River at Dromedary 803003 66 −17.13 124.99 69.0 01‐01‐1980 to 13‐09‐1999 9.8
Ord River at Bedford Downs 809310 546 −17.43 127.60 65.6 01‐01‐1980 to 31‐12‐2014 13.9

Note. Dates are formatted as days/month/year.
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5.1. Error Model Checking

Because of the presence of threshold values in both z(t) and ez tð Þ, it is not straightforward to check whether
the predictive error model of equation (10) is reasonable. Here we check if the predicted residuals are statis-
tically consistent with the observed residuals by allowing for the fact that some of the residuals are affected
by the thresholds. Note that this is a check of the theoretical ability of the model to describe residuals in the
transform domain, so we do not cross‐validate the model in this instance. The following steps are taken:

1. Given the fittedmodel, we have a set of transformed observations, z(t), and simulations,ez tð Þ. We use these
to calculate the residual in the transformed domain:

r tð Þ ¼ ez tð Þ−z tð Þ: (16)

z(t) and ez tð Þ take different values for each of the censoring experiments, as follows.

a For the n‐censored experiment, the values are simply

z tð Þ ¼ z tð Þez tð Þ ¼ ez tð Þ (17)

in all cases, as no censoring is used.

Figure 2. Annual (ANN) andmonthly distribution of rainfall (p) and flow (q), including the incidence of zero flow (right‐hand axis). Statistics are calculated for the
data periods listed for each catchment in Table 1. Catchment locations are given in the bottom right panel.
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b For the o‐censored experiment,ez tð Þ ¼ ez tð Þ following equation (17), while z(t) is treated as censored data:

z tð Þ ¼ z tð Þ z tð Þ>zc
z tð Þ ¼ Φ−1 Φ zc ez; σ2jð Þ×U 0; 1ð Þð Þ z tð Þ≤zc

(18)

where U(0,1) is a uniform random number between 0 and 1.

c For the os‐experiment, z(t) is treated as censored data following equation (18) and ez tð Þ is also treated as
censored data:

ez tð Þ ¼ ez tð Þ ez tð Þ>ezcez tð Þ ¼ Φ−1 Φ zc mez; s2ez���� �
×U 0; 1ð Þ

� � ez tð Þ≤ezc (19)

Note that equation (19) is enacted before equation (18), because equation (18) relies on ez.
In other words, z(t) andez tð Þ take the form that is seen by the respective likelihood functions used to estimate
parameters for each error model experiment.

d Generate histograms of r. This is the frequency distribution of the observed residuals, as seen by the like-
lihood function for each experiment.

e Overlay the theoretical distribution of residuals estimated by maximum likelihood, given by
equation (10).

5.2. Evaluation by Cross Validation

To test the real‐world performance of the error models, we evaluate them under a buffered leave‐1‐year‐out
cross validation, with a buffer of 4 years. The buffered cross‐validation procedure is most easily described
using an example. To evaluate predictions for the target year 1990, parameters are estimated using flow data
from all years except 1990–1994. These parameters are then used to generate predictions for 1990. The pro-
cedure is repeated for each year in the data periods listed for each catchment in Table 1. The 4‐year buffer
avoids the problem of flow in the target year being informed by flow in the buffer years through the “mem-
ory” of GR4J states.

We assess the performance of cross‐validated predictions with a range of measures. Model error is calculated
for probabilistic predictions using a standardized version of the well‐known Continuous Ranked Probability
Score (CRPS). For a set of predictions t = 1,2,…,T,

CRPS ¼
1
T ∑

T

t¼1
∫
∞
−∞ Ft xð Þ−1 q tð Þ−x½ �f g2dx

q
(20)

where Ft is the cumulative distribution function (CDF) of the predictive distribution, and 1 is the Heaviside
step function. We standardize CRPS by dividing by the mean of observations,q, to allow comparison of CRPS
values between catchments.

We also assess the performance of the underlying deterministic GR4Jmodel. To distinguish between the per-
formance before and after an error model is applied, we term the underlying GR4J model “deterministic
simulations” (denoted by eq tð Þ) to distinguish it from the “probabilistic predictions” after the error model

is applied (denoted by eeq tð Þ). The deterministic simulation is the median of the predictive distribution, that

is, eq tð Þ ¼ M eeq tð Þ
� �

. We assess the performance of deterministic simulations with the mean absolute error

(MAE):

MAE ¼
1
T∑

T
t¼1 eq tð Þ−q tð Þj j

q
(21)

As with CRPS, we standardize MAE by dividing by q. CRPS and MAE are negatively oriented: smaller values
indicate better predictions.
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We check predictive reliability with the probability integral transform (PIT). For each prediction, a PIT value
is calculated by

πt ¼
Ft q tð Þð Þ q tð Þ>0

U 0; 1½ �×Ft 0ð Þ q tð Þ ¼ 0

	
(19)

If predictions are reliable, the set of PIT values {π1,π2, .…,πT} will be uniformly distributed. The treatment of
PIT values at q(t) = 0 is necessary to allow reliable predictions to produce uniformly distributed PIT values
when many zero flows occur (Wang & Robertson, 2011). We check the uniformity of PIT values by plotting
them as histograms. In addition, we use a less formal measure of reliability: we assess the ability of the pre-
dictions to replicate the proportion of zero values (%) in observations.

Finally, we assess sharpness by measuring the average width of prediction intervals of the predictive distri-
butions for the 50% and 90% intervals. As with the error scores, we standardize average width of prediction
intervals by dividing by q.

6. Selection of Censoring Threshold

As we will show in section 7, the selection of a censoring threshold greater than zero is necessary to produce
reliable predictions. We initially test six censoring thresholds, qC ¼ eqC ¼ 0; 0:0001; 0:001; 0:01; 0:1; 1:0½ �, all
in units of m3/s. As we have already noted, GR4J often cannot produce zeros, a trait it has in common with
many hydrological models. Instead, when no rainfall is added to the model over an extended period, simu-
lated hydrographs trail off to infinitesimally small (positive) numbers. The point below which the model is
structurally incapable of accurately simulating low flows is readily observable in plots of (empirical) mar-
ginal CDFs. We use these to ascertain a suitable positive censoring threshold as follows.

1. Estimate model parameters under o‐censoring with qC ¼ eqC ¼ 0.
2. Generate simulations using parameters estimated in 1.
3. Plot marginal CDFs for observations and simulations generated in 2. To best illustrate the region of inter-

est, we recommend transforming flows with a log transformation and transforming cumulative frequen-
cies with a standard normal variate. Note that simulations and observations should only be taken from
the period used in 1 to estimate parameters.

4. Visually assess the marginal CDFs for the point at which low flows in the simulations diverge from low
flows in observations. This point (to the nearest order of magnitude) is chosen as the censoring threshold.
Where there is ambiguity, we recommend choosing the lowest plausible divergence point: this is to
ensure as much data as possible are used to inform inference .

Figure 3 shows these plots for an example calibration period during cross validation. In this example, the
divergence points for all three catchments occur at a similar flow:qC ¼ eqC ¼ 0:01 (all cross‐validated calibra-
tions give similar divergence points). For brevity, we will present the remaining results in section 7 for two
thresholds:qC ¼ eqC ¼ 0andqC ¼ eqC ¼ 0:01. We provide results for all six censoring thresholds tested in sup-
porting information and discuss sensitivity of our results to the choice of censoring thresholds in section 8.

7. Results

The theoretical ability of each error model to describe transformed residuals is summarized for the highly
ephemeral Ord River in Figure 4. The n‐censored errormodel produces transformed residuals that are poorly
described by the theoretical Gaussian distribution: the residuals are bimodal and skewed and do not fill the
tails of the theoretical distribution. Transformed residuals from the o‐censored model are much better repre-
sented by the theoretical Gaussian distribution than in the n‐censored model but are still imperfect: they are
clearly skewed to the right.WheneqC ¼ 0:0, the os‐censoredmodel behaves similarly to the o‐censoredmodel:
transformed residuals in bothmodels are skewed to the right.WheneqC ¼ 0:01, the os‐censoredmodel clearly
outperforms the o‐censored model: transformed residuals from the os‐censored model follow the theore-
tical Gaussian distribution almost perfectly, while residuals from the o‐censored case are still skewed
rightward. These findings are reproduced in the highly ephemeral Fletcher River (Figure S2 in the
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supporting information). Conversely, the o‐censored and os‐censored models perform equally well for the
moderately ephemeral Deep River, irrespective of the choice of censoring threshold (Figure S1).

The findings from model checking plots are supported by the PIT histograms of cross‐validated predictions,
illustrated for the Ord River in Figure 5. Only the os‐censored model with eqC ¼ 0:01 produces reliable pre-
dictions in highly ephemeral catchments. Both os‐censored and o‐censored models produce reliable predic-
tions in the moderately ephemeral Deep River, irrespective of censoring threshold. The n‐censored
predictions are never reliable for any catchment (Figures 5 and S4–S6).

For larger nonzero censoring thresholds (eqC> ¼ 0:1), even predictions for the os‐censored threshold become
unreliable (see Figures S4–S6). This is due to the large volumes of data subject to censoring, leaving few non-
censored data points to inform parameter estimation. For example, for the Ord when qC= 1.0, ~85% of obser-
vations are censored. This leads to poor performance at lower flows. In addition, the small set of
noncensored datamakes the parameter estimationmore volatile under cross validation, further contributing
to poor performance.

Figure 6 explains why os‐censored predictions in highly ephemeral catchments are reliable when eqC ¼ 0:01
but not when eqC ¼ 0. The GR4J model never produces zero flow for the Ord River (Figure 6a). So when eqC

Figure 3. Marginal CDFs of observations and simulations where parameters are estimated with o‐censoring. Annotations show the points below which observed
and simulated frequency distributions diverge.

Figure 4. Theoretical and observed residual distributions in the transformed domain for the highly ephemeral Ord River (gauge 809310). Top row shows residuals
generated with eqC ¼ 0, and bottom row shows residuals generated with eqC ¼ 0:01. Columns show different censoring experiments. Histograms show frequency
distributions of observed residuals in the transformed domain. Lines show theoretical distribution of residuals in the transformed domain. The os‐censored case
where eqC ¼ 0:01 produces observed residuals that are symmetrically and normally distributed, satisfying the underlying error model assumptions.
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¼ 0, this means that eq tð Þ>eqC for all t. When eq tð Þ>eqC, the o‐censored and os‐censored models use the same
method to generate predictive uncertainty (section 2.6, Figure 1). Thus, the o‐censored and os‐censored
models function very similarly when eqC ¼ 0,and neither produces reliable predictions.

Conversely, when eqC ¼ 0:01, eq tð Þ≤eqC for many values of t (Figure 6b). When eq tð Þ≤eqC , the os‐censored
method treats the simulation as censored data (equation (19)) and generates predictive uncertainty accord-
ingly (section 2.6, Figure 1b). This allows the os‐censored model to generate predictive uncertainty distribu-
tions with >50% of values below eqC , resulting in reliable predictions in highly ephemeral catchments.

Interestingly, a censoring threshold above zero helps to more accurately predict the observed proportion of
zero flow (Figure 7). Predictions from the n‐censored model strongly underestimate the incidence of zeros in
all cases. The o‐censored model performs better, but still underestimates the incidence of zeros in all catch-
ments, irrespective of censoring threshold. As with the more formal measures of reliability, the os‐censored
model is indistinguishable from the o‐censored model when eqC ¼ 0. However, the os‐censored model per-
forms very well when eqC ¼ 0:01, closely approaching the observed proportion of zeros in each catchment.
This includes the moderately ephemeral Deep River catchment. The improvement when eqC ¼ 0:01 can also

Figure 5. Probability integral transform (PIT) histograms for the highly ephemeral Ord River (gauge 809310). Columns show censoring experiments. Top row
shows predictions generated with eqC ¼ 0, and bottom row shows simulations generated with eqC ¼ 0:01. When PIT values are uniformly distributed (histograms
lie along the dashed line), predictions are reliable. Predictions are reliable for the os‐censored experiment with eqC ¼ 0:01 (bottom right panel).

Figure 6. Marginal CDFs of flow for the highly ephemeral Ord River (gauge 809310). Observations (blue line) and deterministic simulations (green line) for the os‐
censored experiment are shown. Horizontal axes are truncated to focus on very low flow. More than 60% of observations are zero, but when eqC ¼ 0 (left panel),
simulations never fall to eqC . The right‐hand panel shows that simulations often fall to/below eqC when eqC ¼ 0:01.
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be explained by the tendency of GR4J not to produce zero flow, and hence not allowing the os‐censored
model to take full advantage of the censoring of simulations.

The performance of deterministic simulations from the underlying GR4J model is summarized in Figure 8.
In the moderately ephemeral Deep River (gauge 606001), performance of the underlying hydrological model
is similar for all error model experiments. In the highly ephemeral Ord (809310) and Fletcher (803003)
Rivers, however, the o‐censored and os‐censored models clearly outperform the n‐censored model.

Errors in probabilistic predictions are consistently lower when censored likelihoods are used (o‐censored/os‐
censored) than when no censoring is used (n‐censored) (Figure 8, right panels). O‐censored predictions have
very similar CRPS values to os‐censored predictions in all cases, irrespective of censoring threshold.

The accuracy of the underlying GR4J model and the probabilistic predictions are insensitive to the different
censoring thresholds we tested, except when qC ¼ eqC ¼ 0:0001 (Figure S7). In all cases whereeqC>0, the like-
lihood attempts to match the probability of qC in observations to the probability ofeqC in simulations (Figure
S8). (This “probability matching” does not happen for qC ¼ eqC ¼ 0, because in most cases GR4J cannot

Figure 7. Proportion of zero flow for all gauges (columns). Top row shows predictions generated with eqc ¼ 0, bottom row shows predictions generated with eqc ¼
0:01. Colors show different censoring experiments, and dashed line shows the proportion of zeros in the observed record. The os‐censored case witheqc ¼ 0:01most
closely reproduces the proportion of zeros in all catchments.

Figure 8. Error scores for all gauges. Left panels show mean absolute error (MAE) of deterministic GR4J simulations, right panels show the continuous ranked
probability score (CRPS) of probabilistic simulations. Top row shows predictions generated with eqc ¼ 0, bottom row shows predictions generated with eqc ¼ 0:01
. Colors show different censoring experiments. The n‐censored experiment produces larger errors than either the o‐censored or os‐censored experiments.
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produce zeros.) This becomes problematic at qC ¼ eqC ¼ 0:0001 for highly ephemeral catchments. The like-
lihood attempts to force the marginal CDFs shown in Figure 3 to cross at qC ¼ eqC ¼ 0:0001. This causes the
simulated marginal CDF to be forced downward, in turn causing the simulated marginal CDF to poorly
match the observed marginal CDF.

As with errors, sharpness of o‐censored predictions is very similar to that of os‐censored predictions
(Figure 9). Both o‐censored and os‐censored predictions tend to be sharper than n‐censored predictions,
as we expect given their better representation of predictive uncertainty. The os‐censored predictions tend
to be slightly less sharp than o‐censored predictions wheneqc ¼ 0:01. The differences between censored error
models and the n‐censored model tend to be starkest for the 90% interval. All models show similar sharpness
for the 50% interval. Interestingly, the n‐censored model tends to produce sharper 50% intervals than the os‐
censored and o‐censored models in the Ord River (gauge 809310). This highlights the importance of consid-
ering a range of prediction intervals when assessing sharpness.

The similarity of errors between the o‐censored and os‐censored predictions illustrates that the major
benefit of our method is in the reliability of the predictions. MAE is calculated on the median of the pre-
diction, so does not account for changes in the reliability of the predictive distribution. CRPS does
account for reliability but is not strongly sensitive to it. The main reason for this insensitivity is that
many of the benefits of the method occur at very low flow. Average measures of error (like MAE and
CRPS) tend to emphasize errors at higher flows, as this is when the largest errors occur. Even though
residuals at low flows are better represented with os‐censoring, the change in the average magnitude
of errors is small.

Finally, we illustrate the relative performance of the error model experiments with a time series of the
highly ephemeral Ord River (Figure 10). The theoretical failings of the n‐censored model manifest in very
poor predictive performance, shown by a very poor match between the predicted time series and the
observed flow. The o‐censored model improves both the underlying hydrological model and the reliability
of the predictive distribution, resulting in a much better match between the predicted time series and
observations. The further improvements of the os‐censored predictions over the o‐censored predictions
are more difficult to see in Figure 10 but are still evident: slightly wider 90% intervals better encompass
observed flow.

8. Discussion

The use of censoring allows us to construct a parsimonious error model that can produce reliable predictions
in any catchment, regardless of the degree of ephemerality. This requires the ability to produce >50% zero

Figure 9. Average width of prediction intervals (AWPI) for 50% (closed circle) and 90% (open circle) intervals, for all gauges (columns). Top row shows predictions
generated with eqc ¼ 0, bottom row shows predictions generated with eqc ¼ 0:01. The n‐experiment produces wider 90% intervals than either the o‐censored or os‐
censored experiments.
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flow to enable reliable predictive distributions in highly ephemeral catchments. We show that this is not
possible with previously published error models, as embodied by the n‐censored and o‐censored models.
The benefits in reliability that are a feature of our new method do not come at a cost in other
performance measures: the os‐censored model performs at least as well as the o‐censored model in all the
measures presented here. In addition, the predictive distribution is conditioned only on simulations,
allowing the method to be applied in prediction. Our model could be applied equally well to perennial
catchments: in this case censoring will not be invoked, and our model reduces to a simple Gaussian error
model after transformation.

For GR4J, the use of a censoring threshold above zero was crucial to ensure reliable predictions in highly
ephemeral catchments with the os‐censored model. This will be generally true for models that cannot gen-
erate zero flow. There are several alternatives to this approach within our method. The first is to use a hydro-
logical model that can generate many zeros (e.g., Ivkovic et al., 2013), allowing the os‐censored approach to
function when qC ¼ eqC ¼ 0:0. Such hydrological models are not in common use, and even hydrological
models designed to perform well in low flow periods or in ephemeral rivers may not be able to produce zero
flow sufficiently frequently or at all (Costelloe et al., 2003; Pushpalatha et al., 2011). Second, accounting for
autocorrelation in residuals with an autoregressive (AR) component (e.g., Smith et al., 2015) could push
many AR‐corrected simulations to zero, possibly allowing the os‐censored model to function correctly when
qC ¼ eqC ¼ 0:0. We will explore the use of an AR error model with the likelihood presented in this study in
future work.

For our chosen censoring threshold atqC ¼ eqC ¼ 0:01, most aspects of performance are insensitive within an
order of magnitude of this value. That is, we achieved similar performance for qC ¼ eqC ¼ 0:001 and qC ¼ eqC
¼ 0:1. However, we find thatqC ¼ eqC ¼ 0:0001andqC ¼ eqC ¼ 1:0can result in poor hydrological model per-
formance and poor reliability, respectively. Accordingly, some care should be taken in choosing censoring
threshold by following the method described in section 6. While a value of qC ¼ eqC ¼ 0:01 was suitable
for the three catchments tested here, it is quite possible that appropriate threshold values will vary consider-
ably between catchments and with different hydrological models. In these circumstances, we recommend
the threshold be selected for each catchment/model independently.

Our method allows the setting of qC≠eqC, for example, qC = 0 andeqC ¼ 0:01. In theory, setting qC≠eqC should
produce reliable predictions when qC≤eqC and allows the freedom to adjust censoring thresholds to best suit
observations and simulations, respectively. But setting qC≠eqC becomes problematic when qC>eqC. We fit our

Figure 10. Example simulations for the highly ephemeral Ord River gauge (809310), generated with censoring thresholdeqc ¼ 0:01. Top panel shows n‐censored model, middle panel shows o‐censored model, bottom panel shows os‐censored
model. The os‐censored model produces the most reliable predictions.
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transformation to observations (section 2.3), so censoring at qCmeans the shape of the transformation is not
informed by values below qC. Thus, wheneqC is set to a value lower than qC, it is falling in a range of the trans-
formation that may not fit well to observations. We will explore setting qC≠eqC in future work; for now, we
recommend setting qC ¼ eqC .
The ability to choose a censoring threshold above zero may be beneficial for reasons other than achieving
reliable predictions. Flow may be difficult to measure accurately at very low values, and stage‐discharge rat-
ing tables may be subject to considerable uncertainty at very low flow. Rating tables are constructed by fit-
ting curves to gauged stage‐discharge data. Some of the mathematical relationships used to describe these
curves cannot extrapolate to zero discharge (e.g., linear regressions applied to log‐transformed data). For
ephemeral rivers, this can mean that the point at which observed flow reaches zero is arbitrarily defined
in the rating table: in other words, the probability of zero flow indicated by “observed” flowmay not be accu-
rate. In such cases, a censoring threshold above zero, as we have used in this study, could avoid the use of a
misleading probability of zero flow. Note that similar reasoning could be applied to uncertain measurements
at high flow, and a similar conception of censoring could be applied to an upper bound, although this is out-
side the scope of the present study.

Our method is somewhat unusual in that it uses a staged parameter estimation procedure: the first stage is to
estimate transformation parameters from observations, which are then fixed; the second stage is to estimate
the hydrological and error model parameters. Many studies choose instead to fit all parameters jointly (e.g.,
McInerney et al., 2017; Thyer et al., 2002). The staged approach has the benefit of greater computational effi-
ciency: fewer parameters are estimated at each stage, making the estimation procedure much faster overall.
We also prefer the staged approach for conceptual reasons. Hydrological models are structured to replicate
heteroscedasticity in flow observations. In this sense, jointly fitting the transformation and hydrological
model parameters is likely to result in some interference between transformation and hydrological model
parameters. In other words, using the staged approach requires the hydrological model to work harder to
match the marginal distribution of observed flow. In principle, however, the likelihood we describe in
section 2.5 could be used to jointly estimate all parameters.

Our study confirms that naïve error models that do not account for the presence of zero flow are fundamen-
tally unsuitable for generating predictions in ephemeral rivers. The theoretical failings of these models are
well established (Smith et al., 2015; Smith et al., 2010): they violate the assumption of symmetrical,
Gaussian residuals when zero flows are present. These theoretical failings have serious practical implica-
tions, as we show with the n‐censored error model. First, the underlying hydrological models are often
not optimal. Second, a naïve error model cannot produce reliable probabilistic predictions, even in moder-
ately ephemeral cases. Following Smith et al. (2010; 2015), we recommend against the use of such naïve error
models for ephemeral rivers.

As the log‐sinh transformation is applied in our study, there is the question whether the conclusions would
be valid had other transformations been applied. Here we draw on the results from the study by McInerney
et al. (2019). They compared the use of the log‐sinh transformation, the log transformation, and the Box‐Cox
transformation with a fixed parameter value of 0.2 (BC0.2). When the equivalent of o‐censoring was applied,
they showed that the different transformations resulted in similar predictive performance in terms of relia-
bility, bias, proportion of zeros, and errors, although BC0.2 led to somewhat sharper distributions. Whether
this is also the case for os‐censoring needs further investigation.

9. Summary

We present a new method capable of producing reliable predictive distributions even in highly ephemeral
catchments with >50% zero flow. Data censoring of both observed and simulated flow is applied when
estimating error model parameters by maximum likelihood. A key advantage of our method is the ability
to set censoring thresholds above zero. This can compensate for the inability of many conceptual hydro-
logical models to produce zero flows. For highly ephemeral catchments, we show that a censoring thresh-
old set slightly above zero is required to produce reliable predictive distributions with the GR4J
hydrological model. We also show that naïve error models that do not account for the presence of zero
values in observations of ephemeral rivers are fundamentally unsuitable for producing reliable
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predictions. We acknowledge that further evaluations of the method in more settings are needed to con-
firm the generality of our conclusions.

Appendix A

A1. Closed‐Form Solution for Equation (13)

Equation (13) reads

pdf z tð Þjez tð Þ≤ezCf g ¼
∫
ezC
−∞pdf z tð Þ ez tð Þjf gϕ ez tð Þjmez; s2ezn o

dez tð Þ

∫
ezC
−∞ϕ ez tð Þjmez; s2ezn o

dez tð Þ
(A1)

A closed‐form solution for the numerator is derived as follows.

∫
ezC
−∞pdf z tð Þ ez tð Þjf gϕ ez tð Þjmez; s2ezn o

dez tð Þ

¼ ∫
ezC
−∞ϕ z tð Þjez tð Þ; σ2f gϕ ez tð Þjmez; s2ezn o

dez tð Þ
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(A2)

The denominator is simply Φ ezC mez; s2ez���� �
, giving the final solution as

pdf z tð Þjez tð Þ≤ezCf g ¼
ϕ z tð Þ mez; s2ez þ σ2

���n o
Φ ezC s2ez z tð Þþσ2mez

s2ezþσ2 ;
s2ezσ2
s2ezþσ2

�����
( )

Φ ezC mez; s2ez��� �� (A3)

A2 Monte Carlo Integration of Equation (14)

Equation (14) reads

cdf zCjez tð Þ≤ezCf g ¼
∫
ezC
−∞cdf zC ez tð Þjf gϕ ez tð Þjmez; s2ezn o

dez tð Þ

∫
ezC
−∞ϕ ez tð Þjmez; s2ezn o

dez tð Þ
(A4)

Following equation (12), the above equation becomes
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cdf zCjez tð Þ≤ezCf g ¼
∫
ezC
−∞Φ zCjez tð Þ; σ2f gϕ ez tð Þjmez; s2ezn o

dez tð Þ

∫
ezC
−∞ϕ ez tð Þjmez; s2ezn o

dez tð Þ
(A5)

For given values ofmez and s2ez, randomly sample a large number (say 1,000) ofez tð Þ fromN mez; s2ez� �
in the range

ofez tð Þ≤ezC. CalculateΦ zCjez tð Þ; σ2� �
for each of the sampledez tð Þ values. The average of all theΦ zCjez tð Þ; σ2� �

values gives an approximate evaluation of cdf zCjez tð Þ≤ezCf g.
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