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ABSTRACT

Calibrated high-temporal-resolution precipitation forecasts are desirable for a range of applications, for example,

floodprediction in fast-rising rivers.However, high-temporal-resolutionprecipitationobservationsmaynotbeavailable

to support the establishment of calibrationmethods, particularly in regionswith lowpopulationdensity or in developing

countries. We present a new method to produce calibrated hourly precipitation ensemble forecasts from daily ob-

servations. Precipitation forecasts are taken from a high-resolution convective-scale numerical weather prediction

(NWP) model run at the hourly time step. We conduct three experiments to develop the new calibration method:

(i) calibrate daily precipitation totals anddisaggregate daily forecasts to hourly; (ii) generate pseudohourly observations

fromdaily precipitation observations, anduse these to calibrate hourly precipitation forecasts; and (iii) combine aspects

of (i) and (ii). In all experiments, we use the existing Bayesian joint probabilitymodel to calibrate the forecasts and the

well-known Schaake shuffle technique to instill realistic spatial and temporal correlations in the ensembles. As hourly

observations are not available, we use hourly patterns from theNWPas the template for the Schaake shuffle. The daily

membermatchingmethod (DMM),method (iii), produces thebest-performing ensemble precipitation forecasts over a

range ofmetrics for forecast accuracy, bias, and reliability. TheDMMmethod performs very similarly to the ideal case

where hourly observations are available to calibrate forecasts. Overall, valuable spatial and temporal information from

the forecast can be extracted for calibration with daily data, with a slight trade-off between forecast bias and reliability.

1. Introduction

Two trends have emerged in the development

of new streamflow forecasting systems: (i) a shift

from deterministic to ensemble streamflow predictions

(Alfieri et al. 2013; Cloke and Pappenberger 2009;

Demargne et al. 2014; Thielen et al. 2009), and (ii) a

move toward national/continental scale systems that at-

tempt to describe hydrological fluxes for all reaches over a

given domain (Adams and Pagano 2016; Bell et al. 2017;

Emerton et al. 2016;Maxey et al. 2012).Meeting these twin
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aims offers clear benefits to forecast users: ensemble

forecasts are usually more accurate than deterministic pre-

dictions and give an explicit estimate of forecast uncertainty

(Gneiting and Katzfuss 2014; Gneiting et al. 2007), while

extensive spatial coverage gives forecast information in

reaches/basins where it was previously unavailable.

New Zealand’s National Institute of Water and

Atmospheric Research (NIWA) is developing a national

scale ensemble streamflow forecasting system for New

Zealand, with the aim of informingwatermanagement and

emergency agencies. New Zealand’s mountainous topog-

raphy leads to precipitation that varies sharply in space

and time, and in turn to rivers that can rise very quickly

(Cattoën et al. 2016; Woods et al. 2006). These catchment

characteristics provide similar challenges present in many

mountainous regions (Rossa et al. 2011). To produce useful

streamflow forecasts in New Zealand—particularly flood

forecasts—requires (i) high-resolution precipitation fore-

casts to account for orographic effects due to steep moun-

tains and (ii) hydrologicalmodels runat anhourly time step.

Rainfall forecasts are produced byNIWA at very high

spatial resolution (1.5 km); however, the computational

cost of this numerical weather prediction (NWP) model

means that it can only produce deterministic forecasts.

Fortunately, methods are available to produce ensemble

precipitation forecasts through statistical calibration of

deterministic NWP outputs (see review by Li et al. 2017).

Statistical calibration offers the additional benefits of cor-

recting biases and ensuring ‘‘coherence’’—i.e., ensur-

ing forecasts are at least as accurate as climatology forecasts

(Zhao et al. 2017). These properties are essential prereq-

uisites for using forecasts to force hydrological models.

A key requirement of statistical calibration is the

availability of observations at the time step of interest—

in our case, hourly precipitation. New Zealand has a

sparse rainfall gauge network in relation to the very

high spatial variability of rainfall in mountainous re-

gions, meaning that hourly rainfall observations are

not available at the national scale. There is a rain radar

network covering much of New Zealand, but it is only

available on a commercial basis so was not used in this

study. Additionally, due to the complex terrain of many

New Zealand catchments, radar accuracy can be de-

graded, and coverage significantly limited. However,

daily precipitation data are available across New Zealand

in the form of the interpolated and mass-corrected Virtual

Climate Station Network (VCSN) dataset (Tait et al.

2006). The VCSN interpolates observed meteorological

values onto a grid covering NewZealand at a 5-km spatial

resolution at a daily time step. The mass correction is

necessary to overcome underestimation of precipitation in

mountainous regions (Andréassian et al. 2010; Bartolini

et al. 2011; Beck et al. 2019; Hamon 1973; Valéry et al.

2010). The mass correction is performed by comparing

rainfall and long-term streamflow records and correcting

rainfall to ensure mass balance (Woods et al. 2006).

Lack of subdaily rainfall observations is a problem facing

many regions where calibrated rainfall forecasts could be

useful.Hourly precipitation datasets with extensive national

or continental coverage are unusual—particularly in devel-

oping nations (Gruber and Levizzani 2008)—whereas daily

precipitation datasets are more common and available over

large domains [e.g., for the United States (Peterson et al.

1997), Canada (Vincent and Mekis 2006), and Australia

(Joneset al. 2009)aswell as globaldatasets (Becketal. 2019)].

In this study, we aim to establish a new method to cal-

ibrate hourly precipitation forecasts from daily observa-

tions. At the time of writing, we are unaware of existing

work addressing this issue. We base this on an existing

calibration method (Robertson et al. 2013; Shrestha et al.

2015), which combines a Bayesian joint probability (BJP)

model to calibrate forecasts with the Schaake shuffle

(Clark et al. 2004) to order calibrated forecast ensemble

members in space and time.Wenote that other reordering

methods are available, notably ensemble copula coupling

(ECC) (Schefzik et al. 2013). ECC is attractive in cases of

data paucity because it differs from the Schaake shuffle

in its choice of dependency template. For the Schaake

shuffle, the template is chosen from past observations,

whereas for ECC, the template is the uncalibrated en-

semble forecast. For this paper, the uncalibrated forecast

is deterministic and thus ECC could not be used.

We conduct three experiments: (i) calibrating to daily

observations, and then disaggregating calibrated daily

forecasts to hourly; (ii) synthesizing hourly observations

from daily data using temporal and spatial patterns from

the NWP, and then calibrating directly to these ‘‘pseu-

dohourly’’ observations; and (iii) calibrating to both daily

observations and to pseudohourly observations, and using

calibrated daily rainfall forecasts to correct daily totals of

pseudohourly calibrated forecasts. We compare these to

the ideal case where hourly observations are available and

demonstrate that the third experiment produces the best

performing ensemble forecasts.

The paper is structured as follows: section 2 describes

the catchment, observations, and NWP predictions used

in this study. Section 3 describes the implementation of

the BJP modeling approach for postprocessing subdaily

rainfall predictions (control), three experiments to post-

process hourly forecasts with daily data, and the methods

used to verify forecasts. Section 4 presents the results of

forecast verification and compares the three experiments

to the control obtained with hourly data. Section 5 dis-

cusses the potential limitations of the methods presented

and identifies possible extensions. Section 6 summarizes

and concludes the paper.
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2. Catchment, data, and NWP model

a. Catchment and data

We use the Hutt catchment in the Wellington region

of NewZealand to test our method (Fig. 1). The elevation

range of the catchment is large, with mountainous areas

(the Tararua and Rimutaka ranges) in the northwest, and

an extensive floodplain in the lower reaches. The catch-

ment features a very steep precipitation gradient, with

annual rainfall ranging from ,900 to .5000mm over its

area of 558km2 (Ballinger et al. 2011;WellingtonRegional

Council 1995) (Table 1).

While our method will eventually be deployed with

the VCSN dataset, to test it thoroughly we require

hourly observations as a benchmark. We therefore use

gauged hourly precipitation for this study. The catch-

ment is densely gauged: hourly observed precipitation

data are available from 10 automatic meteorological

stations with tipping-bucket rain gauges (Table 1).

The tipping buckets are 0.5mm in volume. For most of

the stations an historical archive of hourly precipita-

tion is available since 1972; however, we restrict the

records to a 3-yr period, 2014–17, to match the precipita-

tion forecast archive (section 2b). These three years in-

clude a moderately dry year (2014/15), a near-normal year

(2016/17), and one with rainfall in the top 5% (2015/16),

based on the past 40 years of records. Two out of the

10 rainfall stations have missing data ranging from

0.6% to 10.7% (Table 1).

As already noted, we wish to test ourmethods on daily

observations in order to be compatible with the VCSN

dataset. To produce daily observations from the pre-

cipitation gauging stations, we sum hourly data for each

24-h period beginning at 2100 UTC, the same 24-h ag-

gregation period for which the VCSN observations are

calculated.

b. NWP model

Rainfall forecasts are generated by the New Zealand

Convective Scale Model (NZCSM), a local implementa-

tion of theU.K.Met Office UnifiedModel System (UM),

which has been run operationally since 2014. NZCSM

is run as a deterministic model, with a grid resolution

of 1.5 km and outputs archived at a 30-min time step.

Forecasts are run to a lead time of 36 h. NZCSM takes

its forcing from the New Zealand Limited Area Model

(NZLAM), a regional NWP model run at a 12-km

resolution that uses lateral boundary conditions from

the global version of the UM run by the Met Office.

NZCSM’s initial conditions are generated via a pseudo

data assimilation scheme that optimally combines the

large-scale features of the NZLAM forecast. The 1.5-km

FIG. 1. Map of the Hutt catchment in the Wellington region in New Zealand, with location of rainfall stations and

topography.
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grid resolution of the NZCSM allows an accurate rep-

resentation of the New Zealand topography, which is

especially beneficial in mountainous regions. NZCSM

forecasts are issued four times a day, at 0300, 0900,

1500, and 2100 UTC. To avoid ambiguity, we refer to

each forecast issue time as a cycle, and define the cycles

as 0300 cycle, 0900 cycle, 1500 cycle, and 2100 cycle.

An archive of real-time predictions for the ;3-yr pe-

riod from 1May 2014 to 31May 2017 is available for this

study (approximately 4500 forecasts, or;1157 forecasts

for each cycle). While a longer record is desirable, it is un-

available due to significant model upgrades to the NZCSM

model in 2017, which substantially improved the outputs of

the model.

To minimize potentially undesirable model spinup ef-

fects, we avoid the use of the first 6h of the forecast in the

calibration process, which include the forecast incremental

analysis and pseudodata assimilation time period (Cattoën
et al. 2016). Analysis of rainfall properties as a function of

lead time shows that while most of the spinup effects are

resolved within the first 3h, there can still be some impact

after 5 to 6h (Cattoënet al. 2019). The 6-hoffsetwas chosen
also to better match the available daily observation period

(0900–0900 local time).

A known problem with NZCSM predictions (and

some other UM implementations; e.g., Stratton et al.

2018) is occasional predictions of unrealistically large

rainfalls. The excess rain is caused by the model failing

to conserve mass in certain circumstances. To remove

unrealistic values, we fit a log-sinh (Wang et al. 2012)

transformed normal distribution to the hourly fore-

casts for each combination of station, lead time, and

issue cycle. We then compute the hourly forecast

value with an exceedance probability of 1 in 100 years

according to the fitted distribution. We refer to this

value as pextreme. Any forecast values greater than

pextreme are set to pextreme. These adjustments are

made to at most five forecast values (of ;1157) for

each lead time. This method for dealing with un-

realistically large rainfalls was used in Wang et al.

(2019a,b).

3. Methods

a. Forecast calibration

Our forecast calibration uses a censored bivariate

normal distribution to relate transformed NWP rain-

fall forecasts to transformed observations (Robertson

et al. 2013). The transformation, censored bivariate

normal distribution, and the parameter estimation

procedure are described in section 3a(1), section 3a(2),

and appendix A, respectively. The calibrated forecasts

are reordered with the Schaake shuffle [section 3a(4)],

to ensure realistic temporal and spatial rank struc-

tures in the ensemble. This postprocessing method

has been applied extensively in Australia (Shrestha

et al. 2015), where it forms the basis of a preopera-

tional ensemble streamflow forecasting system (Bennett

et al. 2014).

1) DATA CENSORING AND TRANSFORMATION

Deterministic rainfall forecasts x are rounded to the

nearest 0.01mm and a censor threshold of 0mm is used

for the parameter estimation procedure. For observa-

tions y, a censor threshold of 0.5mm is applied, to be

consistent with the tipping buckets used in this study of

0.5mm in volume.

We first scale rainfall forecasts x and observations y:

x0 5
5x

x
max

,

y0 5
5y

y
max

, (1)

where xmax and ymax are the maximum values of x and y

over the full data period used.

TABLE 1. Rainfall station information for the case study catchment during the 3-yr period May 2014–17.

Gauge name

Gauge

No.

Elevation

(m)

Mean precipitation

(mmyr21)

Missing data

(%)

Latitude

(8S)
Longitude

(8E)

Tauherenikau at Racecourse 15132710 40 837 0 41.12 175.38

Akatarawa at Cemetery

rainfall

150108 100 1858 0 41.09 175.09

Waiohine at Gorge 1503191 140 2186 10.7 41.01 175.376

Hutt at Kaitoke Headworks 150201 190 2254 0 41.06 175.19

Whakatiki at BlueGum Spur 150010 335 2313 0 41.05 175.02

Akatarawa at Warwicks 59007 345 2775 0.6 40.96 175.08

Pakuratahi at Centre Ridge 151202 510 2017 0 41.13 175.20

Tauherenikau at BullMound 59310 1030 4452 0 40.98 175.32

Waiotauru at Kapakapanui 59104 1102 3115 0.6 40.92 175.17

Penn Ck at McIntosh 59201 1286 5973 0 40.91 175.31
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The scaling forces the transformed forecasts and ob-

servations, ~x and ~y, to take a common range of values. This

simplifies the application of a prior in parameter estima-

tion, as described in appendix A. The scaling is also of

practical value when applying the calibration over a wide

range of catchments, as it means each model parameter

will take a common range of values for all catchments.

After scaling, the data are transformed with the log-

sinh transformation (Wang et al. 2012) to normalize x0

and y0, and homogenize their variances:

~x5
1

b
x

log[sinh(a
x
1 b

x
x0)] ,

~y5
1

b
y

log[sinh(a
y
1 b

y
y0)] , (2)

where ax and bx are transformation parameters for x0,
and ay and by for y

0.

2) BIVARIATE NORMAL DISTRIBUTION

We assume ~x and ~y follow a bivariate normal

distribution

p(~x, ~y);N(m,S), (3)

where

m5

"
m

~x

m~y

#
, (4)

and m~x is the mean of ~x and m~y is the mean of ~y;

S5

"
s2

~x r
~x~y
s

~x
s

~y

r
~x~y
s

~x
s

~y
s2

~y

#
, (5)

where s~x and s~y are the standard deviations of ~x and ~y,

respectively, and r~x~y is a correlation coefficient.

A set of parameters u5
�
ax bx m~x s~x ay by

m~y s~y r~x~y

�
is inferred for each rain gauge and for each

lead time. Parameters are inferred with maximum a

posteriori (MAP) estimation with zeros treated as

censored data as detailed in appendix A.

3) GENERATING A CALIBRATED FORECAST

Given a parameter set u, we can define a univariate

normal distribution:

f (~yj~x, u);N(m
~yj~x,u,s

2
~yj~x,u) (6)

with mean

m~yj~x,u 5m~y
1 r~x~y

s~y

(~x2m
~x
)

s
~x

, (7)

and standard deviation

s
ŷjx̂,u 5s2

~y(12 r~x~y
) , (8)

where r~x~y is a correlation coefficient.

We draw N 5 1000 random samples from (6) to

produce an ensemble forecast ~x*. This forecast is then

back-transformed to produce the calibrated ensemble

forecast x*. (Note that we use * more generally to de-

note calibrated ensemble forecasts in the equations

that follow.)

4) REORDERING CALIBRATED FORECASTS

The calibration produces an ensemble forecast at

each location and lead time but does not link these

forecasts in space or time. We instill spatial and tem-

poral properties in each forecast using the Schaake

shuffle (Clark et al. 2004).

The procedure is as follows. We begin with an empty

matrix z with elements zi,t,t, where i is an index of lo-

cations, th is an index of forecast lead time with di-

mension length L 5 36 h, and t is an index of observed

dates. The t dimension has length T 5 N 5 1000, cor-

responding to the number of ensemble members. We

then fill this matrix with rainfall sequences from the

historical record. For example, we put a sequence of

observations at a given location i and starting at time

t in the matrix: zi,d,t 5 (zi,t11,t zi,t12,t . . . zi,t1L,t) where the

notation d denotes the ith row. We then add the se-

quence for this same time period at each location and

repeat the whole process for T different starting dates.

If the available T date sequences are less than the

number of members N, then we repeat the shuffling

process K times, sampling L sequences of observations

from the T available sequences, such that L , T and

L 3 K 5 N.

Once we have filled z, we sort along the t dimension

for each location i and lead time t:

ẑ
i,t,d

5 [z
i,t,(1)

z
i,t,(2)

� � � z
i,t,(T)

]

z
i,t,(1)

# z
i,t,(2)

# � � �#z
i,t,(T)

, (9)

with tied values (e.g., caused by the presence of

zeros in the data) in z assigned randomized ranks in

ẑ in the t dimension. As with all applications of the

Schaake Shuffle, the reordering process can be sen-

sitive to the number of zeros present in the depen-

dence template data (Bellier et al. 2017). We define

an index matrix r of elements ri,t,t, at each location i

and lead time t by

z
[r]
5 ẑ: (10)
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The index matrix r describes rank correlations in space

and time in z. This is the template from which we re-

order our forecast.

After calibration we have an ensemble forecast at

each location i and each lead time t:

x
i,t,d
* 5 (x

i,t,1
* x

i,t,2
* . . . x

i,t,N
* ), (11)

whereN5 1000 is the size of the ensemble. Note that x*

and z are of identical size. As with Eq. (9), we sort each

x* along the n dimension for each location i and lead

time t:

x̂
i,t,d
* 5 [x

i,t,(1)
* , x

i,t,(2)
* , . . . , x

i,t,(N)
* ]

x
i,t,(1)
* # x

i,t,(2)
* # � � �#x

i,t,(N)
* . (12)

Tied values in x* (e.g., zeros) are assigned random-

ized ranks in x̂*. The index matrix r [Eq. (B2)] is then

used to reorder x̂* to produce a shuffled, calibrated

forecast:

x*SS 5 x̂
[r]
* . (13)

b. Experimental design

To establish a new method to calibrate hourly pre-

cipitation forecasts from daily observations, we conduct

three experiments as summarized in Fig. 2. We compare

these to a control experiment, which represents the ideal

case. The details are as follows.

1) CONTROL CALIBRATION

The control calibration represents the ideal case

where high-quality hourly observations are available.

Accordingly, forecasts are calibrated and shuffled with

FIG. 2. Key methodological steps to generate calibrated ensemble forecasts with the control case and experiments

1, 2, and 3.
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the method described in section 3a (with details in

appendix A) using hourly precipitation observations.

2) EXPERIMENT 1: DAILY CALIBRATION

Assuming that observed hourly data are unavailable,

we cannot rely on hourly data to inform our calibra-

tion. This experiment thus differs from the control in

three ways. First, forecasts are calibrated at a daily

time step instead of the hourly time step. Second, the

Schaake shuffle uses the raw NZCSM hourly deter-

ministic forecasts as template data for reordering the

ensemble forecast. Third, calibrated daily forecasts are

disaggregated to hourly as part of the shuffling process.

The process is as follows.

(i) Daily parameter estimation and calibrated forecasts

In this study, we have 36-h forecast length and daily

observations aggregated over the hours 2100–2100 UTC.

This creates an obvious problem: how do you calibrate

a 36-h forecast using 24-h aggregations? A solution is to

match the aggregation period of observations with sepa-

rate forecast issue cycles. This allows us to calibrate two

periods: the first 24h of the forecast (lead 1–24) and the

last 24h (lead 13–36) of the forecast.We thenmust decide

which calibration period to use on the overlapping interval

(lead 13–24): we use the calibration of the first 24h for this

period. The procedure is as follows.

We infer calibration parameters from the 2100 cycle

and 0900 cycle forecasts, which correspond to the first and

last 24-h period of each forecast. For a given cycle and

location, denote the archive of NZCSM hourly forecasts

by the matrix,

x5

0
BB@

x
1,1

. . . x
1,L

..

.
x
t,th

..

.

x
T ,1

. . . x
T,L

1
CCA, (14)

with dimensions T 3 L where T 5 1157 forecasts and

L 5 36, as described in section 2b.

To calibrate the 2100 cycle forecasts, we sum forecasts in

x along the lead time (th) dimension to create the vector

D2100 5

0
BBBBBBB@

�
24

th51

x
1,th

..

.

�
24

th51

x
T,th

1
CCCCCCCA
. (15)

We then calibrate D2100 forecasts to daily observations

to generate the parameter set uD1, following the cali-

bration method in section 3a. To calibrate 0900 cycle

forecasts, we sum forecasts in x along the lead time (th)

dimension to create the vector

D0900 5

0
BBBBBBB@

�
36

th513

x
1,th

..

.

�
36

th513

x
T,th

1
CCCCCCCA
. (16)

As with D2100, we calibrate D0900 forecasts to daily ob-

servations to generate the parameter set uD2, following

section 3a.

Even though the two parameter sets are generated

from the 2100 and 0900 cycles, we apply the param-

eters to all cycles. The method presumes forecasts

from different cycles will have similar properties at

similar lead times (first 24 h and last 24 h). To do this,

we must first sum our deterministic hourly forecasts into

daily totals. For each cycle we produce the matrix D,

as follows:

D5

0
BBBBBBB@

�
24

th51

x
1,th

�
36

th513

x
1,th

..

. ..
.

�
24

th51

x
T,th

�
36

th513

x
T,th

1
CCCCCCCA
. (17)

Matrix D has dimensions T 3 LD where LD 5 2 lead

time. The calibrated forecasts are unusual in that the

summation periods for the two lead times overlap (for

lead times of 13–24 h in x). As noted above, this is nec-

essary to enable the full 36-h of forecasts in x to be

calibrated. We generate calibrated ensembles fromD by

applying uD1 to tD 5 1 and uD2 to tD 5 2. For each issue

cycle t, this results in a matrix of calibrated ensemble

forecasts D* of elementsDn,tD
* , where the n dimension is

the ensemble size and is of length N 5 1000. Note that

D* is also used in the third experiment, described later in

section 3b(4).

(ii) Ensemble reordering and hourly disaggregation

To produce spatially and temporally structured

hourly ensemble members, we use the Schaake shuf-

fle. However, as we assume hourly observations are

not available for this experiment, we construct our

template data from the hourly raw forecasts x. Both

ranking and forecast hourly disaggregation are as-

sembled at the same time to produce a matrix x*D of

calibrated forecasts with dimensions of lead time (36h)

and ensemble size N5 1000. The procedure is detailed in

appendix B.
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We repeat the entire procedure of Eqs. (B1)–(B9) in

appendix B for each forecast in D, to produce a set of

calibrated, shuffled, and disaggregated forecasts at each

gauge and for each cycle.

Note that we carry out this procedure in such a

way that spatial and temporal patterns from the

NZCSM forecasts are implicitly retained in the calibrated

forecasts.

3) EXPERIMENT 2: PSEUDOHOURLY

CALIBRATION

As with the experiment 1, for experiment 2 we assume

only daily observations are available for calibration. But

instead of calibrating forecasts to daily observations and

then applying a disaggregation, we first synthesize hourly

‘‘observations’’ (termed pseudohourly observations) and

then calibrate the forecasts to the pseudohourly obser-

vations. To generate pseudohourly observations, we dis-

aggregate daily observations with temporal and spatial

patterns from the NWP (Fig. 3). The disaggregation

follows these steps:

1) Each daily observation, yi,t at location i and time t,

is matched to a corresponding raw forecast xi,t that

covers the same 24-h period:

x
i,t
5 (x

i,t224
x
i,t223

. . . x
i,t21

). (18)

2) A set of weights is calculated for all forecast lead

times. Weights are based on forecast patterns if daily

rainfall totals are strictly positive, or based on even

weights otherwise:

w
i,t
5

8>>>>>>>>>><
>>>>>>>>>>:

0
BBBB@
x
i,t224

x
i,t223

. . . x
i,t21

�
24

th51

x
i,t2th

1
CCCCA, �

24

t51

x
i,t2th

. 0

1
24

24
, �

24

t51

x
i,t2th

5 0

,

(19)

where 124 is the vector of all ones with 24 elements.

3) Twenty-four pseudohourly observations are calcu-

lated by multiplying the daily observation by the

matrix of weights:

yPi,t 5 y
i,t
w

i,t
. (20)

We then use our pseudohourly observations yp to cali-

brate and shuffle our forecasts, as described in section 3a.

Matching a forecast to each daily observation (step 1)

is complicated by the availability of forecasts frommultiple

cycles. In choosing which forecast cycle to use for the

disaggregation, we do not wish to produce pseudo-

hourly observations that match the timing of rainfalls

in the raw forecasts too closely. If correlations be-

tween forecasts and pseudohourly observations are

unrealistically high, this will cause the BJP to under-

estimate the true uncertainty in the forecast. For ex-

ample, if we calibrate forecasts issued for the 1500

cycle against pseudo observations disaggregated from

forecasts from the 1500 cycle (i.e., the same forecasts)

this will result in much higher correlations between

forecasts and the pseudo observations (and hence

our calibrated ensemble would be too narrow) than

would be expected if we calibrated forecasts against

gauged observations. Thus, we must calibrate fore-

casts from a given cycle against pseudo observations

disaggregated with forecasts from a different cycle.

Given these constraints, we first choose NWP fore-

casts issued at the 0900 cycle to produce pseudohourly

observations. We use these pseudohourly observa-

tions to calibrate forecast cycles 0300, 1500, and 2100.

To calibrate the 0900 cycle forecasts, however, we

use pseudohourly observations disaggregated with

the 1500 cycle.

4) EXPERIMENT 3: DAILY MEMBER MATCHING

CALIBRATION (DMM)

Aswe will show, experiment 2 generally producedmore

reliable hourly forecasts than experiment 1. Conversely,

experiment 1 produced more reliable forecasts of 24-h

rainfall totals. In this experiment, we wish to combine the

best aspects of experiments 1 and 2. To do this, daily ac-

cumulated rainfall forecasts from the pseudohourly and

daily methods are ranked, matched, and then scaled. The

procedure is as follows.

For a given forecast cycle, location, and issue cycle,

x*P denotes a forecast calibrated with the pseudohourly

FIG. 3. Hourly disaggregation process of daily observations to

generate pseudohourly observations; hourly temporal patterns

from the raw forecasts 0900 cycle are used here.
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method, of dimensions N 3 L. We construct accumu-

lated forecasts for x*P:

D*
P
5

�
24

th51

x*
p

1,th
�
36

th513

x*
p

1,th

..

. ..
.

�
24

th51

x*
p
N,th

�
36

th513

x*
p
N,th

0
BBBBBBBB@

1
CCCCCCCCA
, (21)

whereD*
P
is of dimensionsN3LD .We also retrieveD*

from the daily method [see section 3b(2)], for the same

cycle, location, and issue time. The matrix D* contains

forecasts of 24-h accumulations that have been cali-

brated to daily observations.

Next, we sort D*
P
and D* along the n dimension, to

produce sorted matrices D̂*
P
and D̂*, respectively, fol-

lowing Eq. (9). We define an index matrix r to enable us

to reverse the sorting process in the pseudohourly fore-

casts by D̂*
P

[r] 5D*
P
.

We then compute scale factors to scale the pseu-

dohourly forecast accumulations to match the daily

accumulations in D*. For each ensemble member, n5
1, 2, . . . , 1000 and each lead time tD 5 1, 2, the scale

factor is calculated by

Â
n,tD

5

8>>>><
>>>>:

D̂*n,tD

D̂*Pn,tD

, D̂*Pn,tD
$ «

1, D̂*Pn,tD
, «

, (22)

where « is a small positive number to avoid division by

near-zero rainfalls. We tested different thresholds for

« 5 0.05, 0.1, and 0.5mm. We found that « 5 0.05mm

was the smallest threshold that maximized the number

of forecasts to be scaled by the daily forecasts, while

avoiding divisions by 0. We unsort the scaling factors

with the index matrix r by A5 Â[r]. Scaled pseudo-

hourly forecasts are then calculated for each ensemble

member by

x*DMM
n,d 5

�
A

n,1
x*P
n,1

x*P
n,2

. . . x*P
n,24

� �
A

n,2
x*P
n,25

x*P
n,26

. . . x*P
n,36

� � �
. (23)

Hourly forecasts x*DMM
n,d denote the thth row of x*DMM.

The result is pseudohourly calibrated forecasts that have

rainfall accumulations consistent with forecasts from the

daily method. This process [Eqs. (21)–(23)] is repeated

for each cycle and location.

c. Forecast verification by cross validation

We assess three key performance aspects of the en-

semble rainfall forecasts: errors, bias, and reliability.

Errors show the accuracy of the forecast, while bias

indicates a general tendency to over or underpredict

observations. Reliability indicates the appropriateness

of the ensemble spread—i.e., ensemble spread is correctly

distributed, and not too wide or too narrow. Bias is often

considered a component of reliability—usually biased

forecasts are not reliable. However, in the case of a highly

skewed variables such as rainfall, a few outlying values can

cause strong bias while forecasts can be reliable overall.

For each method and each station, the perfor-

mance of rainfall forecasts is assessed against ob-

served station data (available hourly). Performance

is assessed at individual lead times, and for cumula-

tive totals with 12-h accumulations (lead time 1–12,

13–24, and 25–36), with 24-h accumulations (lead

time 1–24), and with 36-h accumulations (lead time

1–36). This enables us to independently assess the uni-

variate calibration method and the reordering ensemble

generation method.

We use a leave-one-month-out cross-validation proce-

dure to ensure that the forecasts are verified independently

ofmodel fitting. For all methods, Bayesian joint probability

parameters are inferred using all available data except one

month. All the forecasts in that left-out month are then

verified to the corresponding hourly station observations.

1) FORECAST RELIABILITY

We check forecast reliability with the probability

integral transform (PIT). Given the cumulative distri-

bution function of a forecast Ft, the PIT is given by

PIT5

�
F
t
(y) , y(t). 0

U(0, 1)3F
t
(0), y(t)5 0

. (24)

For a reliable set of forecasts, PIT values should be

uniformly distributed. The treatment of PIT values at

y(t) 5 0 is necessary to allow reliable predictions to

produce uniformly distributed PIT values when zero

rainfalls occur (Wang and Robertson 2011).

We check uniformity by plotting PIT values as histo-

grams. We calculate PIT values for individual lead times

JULY 2020 CATTOËN ET AL . 1663

hjauman
Sticky Note
None set by hjauman

hjauman
Sticky Note
MigrationNone set by hjauman

hjauman
Sticky Note
Unmarked set by hjauman



and for accumulated rainfalls. Forecasts of accumulated

rainfalls can only be reliable if the ensemble has realistic

spatial and temporal patterns.

2) FORECAST BIAS

We measure forecast bias with relative bias:

bias5
x2 y

y
3 100%, (25)

where x (or x*, in the case of ensemble forecasts) is the

mean of a set of forecasts and y is the mean of the cor-

responding set of observations.

3) FORECAST ACCURACY

We measure errors in probabilistic forecasts with the

continuous ranked probability score (CRPS). For a set

of forecasts at t 5 1, 2, . . . , T,

CRPS5
1

T
�
T

t51

ð‘
2‘

fF
t
(z)2H[y(t)# z]g2

dz , (26)

where Ft is the cumulative distribution function (CDF)

of the forecast distribution, and H is the Heaviside step

function.

CRPS reduces to the mean absolute error (MAE) for

deterministic predictions, allowing us to compare errors

in uncalibrated deterministic forecasts to errors in cali-

brated probabilistic forecasts. CRPS is negatively ori-

ented: smaller scores indicate better forecasts, with zero

being a perfect forecast. We use bootstrap resampling to

assess the significance of reduction in CRPS error rela-

tive to the raw forecasts.

4. Results

a. Forecast reliability

Figure 4 presents PIT histograms calculated for all

gauge stations at individual lead times. The control

method generates PIT histograms that are close to ideal.

The pseudohourly forecasts produce a slight peak to the

right of the histogram, indicating a faint negative bias.

This negative bias is exacerbated somewhat in the daily

forecasts. The DMM method produces results that com-

bine aspects of the pseudohourly and daily methods:

largely reliable, with slight evidence of negative bias.

Slight overpopulation in the last bin of the hourly his-

tograms (Fig. 4) can be observed for all sites; these are

due to missed rainfall events from inaccurate timing or

underestimation in forecast rainfall. We note that poor

NWP timing can be amplified in our method because

both the pseudohourly observations and forecasts rely

on the timing of NWP forecast rainfall being right.

Figure 5 presents PIT histograms of rainfall accumula-

tions for selected 12-, 24-, and 36-h totals. The dailymethod

produces forecast accumulations that are almost perfectly

reliable, especially for the 24-h periods. Conversely, PIT

histograms for the control and pseudohourly method de-

viate from the horizontal line with lower counts for higher

PIT values. Scaling pseudohourly calibrated forecasts

using daily calibrated forecasts significantly improves

reliability of accumulations; PIT histograms from the

DMMmethod display nearly flat histograms compared

to those of the pseudohourly method.

We believe the imperfect reliability of accumulated

forecasts from the control and pseudohourly methods to

FIG. 4. Hourly PIT histograms for each method and all sites as a function of selected lead times.
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be related to the mismatch in autocorrelation of gauged

rainfall and raw NWP forecasts. NWP forecasts tend to

varymuchmore smoothly in time than gauged rainfalls, i.e.,

NWP forecasts are more autocorrelated than gauged ob-

servations. This appears to cause rainfall accumulations to

be underconfident even though forecasts at individual lead

times are highly reliable. We have identified this issue in

other work and are currently investigating the exact cause.

In previous applications (Bennett et al. 2014; Robertson

et al. 2013; Shrestha et al. 2015), the BJP calibration was

applied to areally averaged rainfalls, which tend to exhibit

similar autocorrelation to NWP rainfall. In these previous

studies, calibrated forecasts of accumulated rainfalls were

highly reliable. As the aim of this present study is to

generate a method that will ultimately be applied to an

areally averaged rainfall product (VCSN) rather than to

gauged rainfalls, this is not a major failing of the method

applied here.We also note that theDMM largely resolves

this issue by matching ensemble daily precipitation totals

to values calibrated to daily observations.

Additionally, the spatial dependence structure of en-

semble forecasts is preserved in the DMM method with

the Schaake shuffle [section 3a(4) and appendix B]. This

is illustrated by the PIT plots of spatial catchment av-

erage for both hourly lead times and accumulations of

12, 24, and 36h, provided in the online supplemental

material (Figs. S1 and S2).

b. Forecast bias

We assess forecast bias for each method by pre-

senting boxplots of the mean forecast bias values over

the different sites.

Figure 6 presents hourly bias in the raw NWP and

calibrated forecasts. Calibrated forecasts have markedly

smaller bias than the raw forecasts. The control method

displays little bias (close to zero) at all lead times. This

is to be expected: by construction the BJP method

optimizes parameters to produce unbiased forecasts.

Pseudohourly forecasts tend to be positively biased,

although the biases are reasonably small, particularly

in contrast to the daily method. The daily method

produces forecasts that exhibit strong bias for all sites,

with up to 40% negative bias at early and late lead

times and up to 40% positive bias around lead time

18–20 h. This is because the calibration minimizes bias

at the daily time step but is given no information to

minimize biases at subdaily lead times. Note that the

strong bias sometimes evident in the daily method

(Fig. 6) does not always manifest strongly in the PIT

histograms (Fig. 4). This is because of the strongly

skewed nature of rainfall: a small number of very large

differences between observations and forecasts are

sufficient to cause large biases (Fig. 6). However, be-

cause these instances are few, they are not strongly

evident in the PIT histograms (Fig. 4). The DMM

method produces smaller biases than either the pseu-

dohourly or daily method, and biases are fairly con-

sistent across all lead times.

Figure 7 presents bias of rainfall accumulations for

the raw and calibrated forecasts. Overall bias of ac-

cumulated forecasts is smaller than bias for individual

lead times. This is because errors at individual lead

times tend to compensate for each other in the accu-

mulated totals. Calibrated forecast bias is significantly

FIG. 5. Accumulated PIT histograms for each method and all sites for 12-, 24-, and 36-h totals.
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smaller than raw forecast bias for 12-, 24-, and 36-h ac-

cumulations. The smallest accumulated biases across all

sites are for forecasts from the control method. These are

centered around zero and have a narrow spread across

sites. Forecasts using the pseudohourly method consis-

tently overforecast accumulated precipitation by 10%.

The daily calibration produces forecasts with bias cen-

tered around zero for the 24-h accumulation. This is ex-

pected, as this method calibrates forecasts directly to daily

data. The DMMmethod fulfils its objective by improving

the performance of the pseudohourly method: mean

forecast bias of precipitation accumulation is small and

centered around zero.

c. Forecast accuracy

We assess forecast accuracy for each method by pre-

senting boxplots of the mean forecast CRPS and MAE

values over the different sites.

Calibrated forecasts have substantially lower aver-

age errors than the raw NWP predictions at all sites

FIG. 6. Hourly relative bias for the deterministic NWP and postprocessed forecasts, for each method and across

all sites at lead times 1, 6, 12, 18, 24, 30, and 36 h. Unbiased forecasts lie along the dashed line. The box is drawn

between the 25th and 75th percentiles, with a line indicating the median. The whiskers extend above and below the

box to the most extreme data points that are within a distance to the box equal to 1.5 times the interquartile range

(Tukey boxplot). Points outside the whisker ranges are plotted.

FIG. 7. Accumulated relative bias for the deterministic NWP and postprocessed forecasts, for each

method and across all sites, as a function of 12-, 24-, and 36-h accumulations. Quantiles in boxplots are as

for Fig. 6.
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and lead times (Fig. 8). As expected, calibrated fore-

casts using the control method have the lowest errors,

followed very closely by forecasts using the pseudo-

hourly and DMMmethods. The daily method produces

the worst accuracy of the calibrated forecasts at indi-

vidual lead times.

Figure 9 presents CRPS and MAE of accumulated

rainfalls summarized for all sites. All calibration

methods outperform raw forecasts for all sites, and

all offer similar performance. Interestingly, fore-

casts based on the DMM method have the highest

accuracy for the 36-h accumulation, though the dif-

ference in accuracy between all calibration methods

is very small.

For both hourly and accumulated forecasts, all the

calibration methods lead to statistically significant re-

ductions in error relative to the raw forecasts. This is

illustrated in Fig. S3 for the DMM method.

5. Discussion

The effectiveness of the daily member matching DMM

method (experiment 3) is due to the combination of the

best aspects of the daily method (experiment 1) and the

pseudohourly method (experiment 2). The DMMmethod

produces reliable and bias free accumulated forecasts

(a property of the daily calibration) without a bias pattern

at hourly lead times (a property of the pseudohourly

calibration).

As with other postprocessing methods, the DMM

calibration requires a reasonable size of template data

and forecast archive, often a challenge due to limited

availability of a homogeneous NWP forecast archive.

From a hydrological perspective, a 3-yr archive is a short

record to establish a climatology of observed rainfall

and space–time patterns for the Schaake shuffle. In

addition, extreme rainfall may be missed, affecting the

calibration for extreme events. Long reforecast archives

are very valuable for detecting and correcting systematic

errors in forecasts, especially forecasts of relatively rare

events (Hamill et al. 2013). Longer reforecast archives

also make it simple to generate longer records of tem-

plate data for ensemble reordering, which better reflect

the full historical range of spatiotemporal precipitation

patterns.

A key assumption in the calibration method is that

theNWP characterizes the spatial and temporal patterns

of rainfall well. NWP spatial and temporal patterns

underpin the pseudohourly observations, used as the

‘‘truth’’ to which forecasts are calibrated, as well as the

basis of the Schaake shuffle. NWP models often differ

from observations in crucial ways: for example, there

may be a mismatch in diurnal patterns (Shrestha et al.

2015; Surcel et al. 2010). In these cases, the BJPmethod

may overestimate true correlations between observa-

tions and forecasts, because the pseudohourly obser-

vations are much more like the forecasts than actual

observations. This can lead the calibration to amplify

overestimation or underestimation in the raw forecasts,

causing the pseudohourly method to produce biases

at individual lead times. Given these difficulties, we do

not recommend the use of the pseudohourly method on

its own. We reiterate, however, that the DMM method

successfully mitigates these problems.

FIG. 8. Hourly MAE for raw deterministic NWP forecasts and CRPS for postprocessed forecasts for each method

and across all sites, as a function of lead time 1, 6, 12, 18, 24, 30, and 36 h. Quantiles in boxplots are as for Fig. 6.
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Future work could include using reordering methods

with preferential selection of past observations having

similar atmospheric states than current forecasts (Schefzik

2016; Scheuerer et al. 2017). This could improve the pre-

dicted hourly temporal structure as the Schaake shuffle

would be informed by a more representative sample of

historic events. These could be stratified using meteo-

rological analogs (Bellier et al. 2017) and citations

therein) and could be particularly valuable when sep-

arating stratiform from convective precipitation as

these have distinct temporal patterns. Although our

calibration method is applied to a raw deterministic

NWP, it could be applied to a raw ensemble NWP with

the application of the ECC to preserve spatial and

temporal dependency structure in calibrated forecasts

(Schefzik et al. 2013).

Joint or individual calibration of other variables

(e.g., temperature) may be required for developing a

national-scale flow forecasting system in New Zealand

(Monhart et al. 2019). For example, snow and gla-

cier melt is an important contributor to runoff in

many rivers. A national-scale calibration approach

may need special handling of distant station or grid

points for the ensemble reordering aspect and may

face computational constraints associated with a larger

domain.

6. Summary

This study establishes a new method (daily member

matching or DMM) to calibrate hourly precipitation

forecasts from daily observations. The DMM method

combines a daily calibration approach with an hourly

calibration approach using hourly forecast patterns, by

matching daily ensemble forecast values. The method

is evaluated for ten stations in a catchment in New

Zealand with steep rainfall gradients. The method

performs similarly well to an ideal case where hourly

data are available: calibrated forecasts have much

lower bias and substantially smaller errors than the raw

forecasts. In addition, the method produces reliable

forecasts at individual lead times and for forecasts of

precipitation accumulations.

Generating a statistically calibrated ensemble forecast

from deterministic NWP predictions and daily data is

likely to be of significant benefit for the expansion of

streamflow forecasting services. Deterministic forecasts

are routinely available (in New Zealand and elsewhere)

at subdaily time steps (sometimes even subhourly) while

daily precipitation observation datasets are much more

common than subdaily datasets, and often available over

large domains (national or continental scales). Scarcity

of hourly observations is a problem in many regions,

and particularly in developing countries.

Reliable, accurate and bias-free forecasts of catchment-

scale precipitation are required to produce useable stream-

flow forecasts. This study is an important step toward

the development of a national scale flow forecasting

system in New Zealand to support a range of emergency

services and water managers.
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APPENDIX A

Parameter Estimation Procedure

Parameter estimation is carried out in stages. In the

first stage, the transformation and marginal distri-

bution parameters a, b, m, s are estimated separately

for observations and forecasts. We will describe the

procedure to estimate these parameters for forecasts.

An identical estimation is carried out for observa-

tions. To ease inference, we reparameterize and infer

ux 5 f log(ax) log(bx) m~x/s~x log(s~x) g. For a vector of

forecasts scaled with Eq. (1), x0 5 fx01, x02, . . . , x0ng,
the posterior distribution of ux is given by

p(u
x
jx0)} p(u

x
)p(x0ju

x
)5 p(u

x
)P

n

t51p(~xtjux) , (A1)

where p(ux) is the prior distribution and p(xjux) is the
likelihood. The likelihood is given by

p(x0ju
x
)5

(
J~x/x0N(~xjm~x

,s2
~x), ~x. ~x

c

F(~x
c
jm~x

,s2
~x), ~x# ~x

c

, (A2)

where ~xt is the log-sinh transform of x0t [Eq. (2)], the
Jacobian is

J
~x/x0 5

1

tanh[a
x
1 b

x
~x]
, (A3)

~xc 5 b21
x0 log[sinh(ax0 1bxx

0
c)] is the log-sinh transformed

value of the scaled censoring threshold [Eq. (A2)] and

F(~xcjm~x, s
2
~x) is the cumulative distribution function of a

univariate normal distribution.

The prior is given by

p(u
x
)5 p(a

x0)p(bx0)p(m~x
)p(s

~x
) , (A4)

where

p(a
x
)} 1 a

x0 # 1 ,

p[log(b
x
)]}N(0, 12),

p(m
~x
)} 1,

p(s
~x
)} 1, (A5)

The priors for ax, m~x, and s~x are uninformative. We

impose the restriction of ax # 1 because for values of

ax. 1 the log-sinh transformation has little effect on the

skewness of data. The prior on log(bx) is informative,

and encourages bx to be close to 1 if the data are not

strongly skewed.

The maximum posterior density of Eq. (A1) is found

with the shuffled complex evolution (SCE) algorithm

(Duan et al. 1992).

As noted above, the process of finding ux [Eqs. (A1)–

(A5)] is repeated for observations. Once transformation

and marginal distribution parameters are estimated for

both observations and forecasts, ux,y 5
�
ax0 bx0 m~x s~x

ay0 by0 m~y s~y

�
[i.e., after reversing the reparameteriza-

tions in Eq. (A1)], parameters in ux,y are fixed.

The second stage is to estimate the correlation

parameter r~x~y. The likelihood is more complex for

the bivariate normal distribution [Eq. (3)], as de-

scribed by (Robertson et al. 2013). To ease inference,

we reparameterize r~x~y to

u5 tanh21(r
~x~y
) (A6)

to give u5 ½ ux,y u �, where ux,y is fixed. The posterior

density of u is given by

p(ujy0, x0)} p(u)p(y0, x0ju)5 p(u)P
n

t51
p(~y, ~xju), (A7)

where x0 5 fx01, x02, . . . , x0Ng is a vector of scaled

forecasts [Eq. (1)] that correspond to observations in

y0. Because of the presence of zeros in both observa-

tions and forecasts, the likelihood in Eq. (A7) must

consider four cases:

p(~y, ~xju)5

8>>>><
>>>>:

J
~y/y0J~x/x0p(~y, ~xju), ~y. ~y

c
, ~x. ~x

c

J
~x/x0p(~y# ~y

c
, ~xju), ~y# ~y

c
, ~x. ~x

c

J
~y/y0p(~y, ~x# ~x

c
ju), ~y. ~y

c
, ~x# ~x

c

p(~y# ~y
c
, ~x# ~x

c
ju), ~y# ~y

c
, ~x# ~x

c

,

(A8)

where the Jacobian for forecast values is given by

J~x/x0 5
1

tanh[a
x
1b

x
~x]
, (A9)

~xc 5 b21
x log[sinh(ax 1 bxx

0
c)] is the log-sinh transformed

value of the scaled censor threshold x0c for forecasts,
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p(~y# ~y
c
, ~xju)5p(~xju)

ð~yc

2‘

p(~yj~x, u) d~y,

p(~y, ~x# ~x
c
ju)5p(~yju)

ð~xc

2‘

p(~xj~y, u) d~x,

p(~y# ~y
c
, ~x# ~x

c
ju)5

ð~yc

2‘

ð~xc

2‘

p(~y, ~xju) d~y d~x, (A10)

and all other terms are as defined earlier. We do not

impose an informative prior on r~x~y (i.e., p(r~x~y)} 1), but

the prior in Eq. (A7) must account for the repar-

ameterization, as follows:

p(u)5 p(u)5 Ju/r~x~y
p(r

~x~y
)5 Ju/r~x~y

5 [cosh(u)]22 .

(A11)

As with the transformation and marginal distribution pa-

rameters, we maximize the posterior density [Eq. (A7)]

using the SCE algorithm.

APPENDIX B

Daily Calibration: Ensemble Reordering
and Hourly Disaggregation

The daily calibration produces a matrix of daily

accumulated and calibrated ensemble forecasts D*

[section 3b(2)]. Here we describe the ensemble re-

ordering and hourly disaggregation process, which are

implemented concurrently. The conventional Schaake

Shuffle uses observations as template data [section 3a(4)]

but we assume hourly observations are not available for

this experiment. To simplify index notation, we omit in-

dices referring to station locations that were explicitly

detailed in the Schaake shuffle in section 3a(4).

We therefore construct our template data from the

hourly forecasts x. Our first step in assembling the

template data is to exclude some forecasts in x. A given

forecast at t is excluded if �22

th53xt,th , 0:4mm or if

�34

th515x1,th , 0:4mm. These exclusions ensure that some

rain occurs in the middle of each 24-h summation period

in D [defined in Eq. (17)]. This is necessary for the dis-

aggregation, otherwise the beginning (and end) of each

24-h period is overrepresented in the template forecasts

because rainfall there often corresponds to the very end

(or beginning) of a rainfall event. Consequently, if rain

falls only at the very beginning or the very end of either

24-h period, the disaggregation can assign unrealisti-

cally large rainfalls in only 1 or 2 h. After the exclusion,

we are left with slightly more than 250 forecasts (e.g.,

253; the exact value depends on each cycle), and we

reduce this to exactly T 5 250 by randomly removing

excess forecasts.

We are now left with a subset of forecasts z, which we

sum to produce daily totals to generate the matrix Z of

dimensions T 3 LD:

Z5

0
BB@

Z
1,1

Z
1,2

..

. ..
.

Z
T,1

Z
T,2

1
CCA5

0
BBBBBBB@

�
24

th51

z
1,th

�
36

th513

z
1,th

..

. ..
.

�
24

th51

z
T ,th

�
36

th513

z
T,th

1
CCCCCCCA
, (B1)

where Z constitutes our template data for the Schaake

shuffle and the hourly disaggregation. The uppercase

notation Z refers to accumulated forecast values and the

lowercase notation z refers to hourly forecast values.

Following section 3a(4), for each lead time tD, we sort Z

along the T dimension to give

Ẑ
d,tD

5

2
66666664

Z
(1),tD

Z
(2),tD

..

.

Z
(T),tD

3
77777775

Z
(1),tD

# Z
(2),tD

# � � �#Z
(T),tD

. (B2)

Accumulated forecasts Zd,tD denote the tDth column of

Z of dimensions (T 5 1157) 3 (LD 5 2). We define two

index matrices rtD, one for each lead time, by

Ẑ
[r]
5 Ẑ

d,1[r1]
Ẑ

d,2[r2]

� �
5 Z

d,1
Z

d,2

� �
5Z , (B3)

where r is composed of the index vectors r1 and r2,

which map the unsorted forecasts in Z to the sorted

values in Ẑ for lead times tD 5 1 and tD 5 2, respec-

tively. Following the Schaake shuffle [see Eq. (13) in

section 3a(4)], r1 and r2 are used to reorder the fore-

cast D*. As the ensemble size N 5 1000 is larger than

the available template data size, we sample a first set

of 250 members from D* to reorder and disaggregate

forecasts. For each tD, we sort D* along the row di-

mension with

D
d,tD
* 5

D
(1),tD
*

D
(2),tD
*

..

.

D
(T),tD
*

2
6666666664

3
7777777775

D
(1),tD
* # D

(2),tD
* # � � �#D

(T),tD
* .

(B4)

We disaggregateD* to the hourly time step using the index

matrix r to match the hourly forecasts accumulated in

1670 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

hjauman
Sticky Note
None set by hjauman

hjauman
Sticky Note
MigrationNone set by hjauman

hjauman
Sticky Note
Unmarked set by hjauman



Z to the sorted 24-h accumulations in Ẑ [Eq. (10)].

That is, the ranked ensemble members in D̂* will be

disaggregated to the hourly forecast patterns from z

covering lead times 1–24 based on the Ẑd,1 ranking,

while z covering lead times 25–36 is based on patterns

from the Ẑd,2 ranking:

z
[r]
5 (z

[r1],1#th#24
z
[r2],25#th#36

)5

2
664
z
(1)1,1

. . . z
(1)1,24

..

.
z
(t)1,1#th#24

..

.

z
(T)1,1

. . . z
(T)1,24

z
(1)2,25

. . . z
(1)2,36

..

.
z
(t)2,25#th#36

..

.

z
(T)2,25

. . . z
(T)2,36

3
775. (B5)

We now have hourly forecasts z (lowercase) to a forecast

horizon of 36-h lead time. For each forecast and hourly

lead time, we can calculate a weight wt,th (hourly rainfall

divided by the daily rainfall) given by

w
t,1#th#24

5
z
[r1];t,1#th#24

�
24

th51

z
[r1];t,th

;

w
t,25#th#36

5
z
[r2];t,25#th#36

�
36

th525

z
[r2];t,th

. (B6)

We then multiply the calibrated daily totals by the

weights to produce ranked calibrated hourly forecasts:

X̂
t,1#th#24
* 5w

t,1#th#24
D̂

t,1
* ;

X̂
t,25#th#36
* 5w

t,25#th#36
D̂

t,2
*

. (B7)

The matrix X̂* is then reordered using the Schaake shuffle

X*SS1 5 X̂
[r]
* 5 X̂

d,1#th#24[r1]
* X̂

d,25#th#36[r2]
*

� �
. (B8)

We now have a matrix X*SS1 of shuffled and hourly dis-

aggregated forecasts containing an ensemble of T 5 250

members.

Equations (B1)–(B8) are carried out four times, each

time with a different 250 forecasts that are randomly

sampled (without replacement) from D*.

Wenowhave four calibrated, shuffled, and disaggregated

forecast matrices, each containing 250 ensemble members

and lead times of 1–36h.We concatenate these along the

ensemble dimension to create a forecast of 1000 en-

semble members:

X*D 5

0
BBB@

X*
SS1

X*
SS2

X*
SS3

X*
SS4

1
CCCA . (B9)

For a given cycle, we repeat the entire procedure of

Eqs. (B1)–(B9) for all 1157 forecasts in D, to produce a

set of calibrated, shuffled, and disaggregated forecasts

concurrently for all gauges. The process is then repeated

for each cycle.
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