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Abstract. Landfast sea ice (fast ice) is an important component of the Antarctic nearshore marine environment,
where it strongly modulates ice sheet—ocean—atmosphere interactions and biological and biogeochemical pro-
cesses, forms a key habitat, and affects logistical operations. Given the wide-ranging importance of Antarctic
fast ice and its sensitivity to climate change, improved knowledge of its change and variability in its distri-
bution is a high priority. Antarctic fast-ice mapping to date has been limited to regional studies and a time
series covering East Antarctica from 2000 to 2008. Here, we present the first continuous, high-spatio-temporal
resolution (1km, 15d) time series of circum-Antarctic fast-ice extent; this covers the period March 2000 to
March 2018, with future updates planned. This dataset was derived by compositing cloud-free satellite visible
and thermal infrared imagery using an existing methodology, modified to enhance automation and reduce subjec-
tivity in defining the fast-ice edge. This new dataset (Fraser et al., 2020) has wide applicability and is available at
https://doi.org/10.26179/5d267d1ceb60c. The new algorithm presented here will enable continuous large-scale

fast-ice mapping and monitoring into the future.

1 Introduction

Landfast sea ice (fast ice) is a pre-eminent feature of the
Antarctic near-coastal environment, where it forms a rela-
tively narrow (several tens of kilometres to ~ 200 km wide)
zone of consolidated ice attached to grounded icebergs,
coastal margins (including sheltered embayments), floating
glacier tongues, and ice shelf fronts (World Meteorological
Organization, 1970). Depending on location, it can be ei-
ther annual (forming each austral autumn—winter and melting
back each spring—summer) or perennial (Fraser et al., 2012),
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with multi-year fast ice attaining thicknesses up to several
tens of metres (e.g. Massom et al., 2010). By forming a recur-
rent, persistent, and highly consolidated substrate of sea ice
and snow, fast ice strongly modulates important physical and
biological processes occurring at the Antarctic coastal mar-
gin — including stabilisation of ice shelves that moderate ice
sheet mass loss to the ocean and resultant sea level rise (Mas-
som et al., 2018). Given these factors, there is strong moti-
vation for improved knowledge of its circum-Antarctic distri-
bution, change and variability. Indeed, the lack of a long-term
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and continent-wide Antarctic fast-ice dataset from which to
accurately gauge change and variability has been highlighted
as a major gap by the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (Vaughan et al.,
2013) and the Special Report on the Ocean and Cryosphere
(Meredith et al., 2019).

The consistent large-scale and long-term monitoring of
Antarctic fast ice from space necessitates overcoming a num-
ber of inherent challenges relating to detection and resolution
(both spatial and temporal), given the attributes of the satel-
lite data themselves, and the nature of fast ice itself. For one
thing, fast ice is a narrow remote-sensing target compared to
the more extensive moving pack ice zone (that is regularly
monitored by coarse-resolution satellite passive-microwave
sensors), and advection of pack ice against adjacent fast
ice can lead to a relatively indistinct boundary between the
two. Table 1 summarises the current status of Antarctic fast-
ice detection and mapping from space and the advantages
and disadvantages of the techniques used (see also Lubin
and Massom, 2006). Wide-swath moderate-resolution satel-
lite visible and thermal infrared (TIR) imagery offers excel-
lent geographical coverage at kilometre-scale resolution and
on daily timescales, but it is strongly affected by persistent
cloud cover year-round and polar darkness, the latter pre-
cluding use of visible imagery in winter (Fraser et al., 2009).
While this limitation can theoretically be circumvented by
using high-resolution synthetic aperture radar (SAR) im-
agery (Giles et al., 2008; Li et al., 2018; Kim et al., 2020), the
application of SAR to large-scale fast-ice mapping and time-
series analysis has to date been limited in space and time by
its relatively narrow swath coverage and uneven image acqui-
sition around coastal Antarctica. Satellite passive-microwave
data, on the other hand, offer complete circumpolar cover-
age on a daily basis (largely unaffected by clouds and dark-
ness), but a poorer spatial resolution of ~ 6.25 km (Nihashi
and Ohshima, 2015) limits its capability for accurate fine-
scale mapping of fast ice.

As a result of these challenges and factors relating to sci-
entific focus, the mapping of Antarctic fast ice from space
has to date been largely confined to limited geographical re-
gions (e.g. around Antarctic bases and penguin colonies) and
also relatively short time series or snapshots. These are based
on manual interpretation of ad hoc digitisations of satellite
SAR and cloud-free visible and TIR imagery (e.g. Mae et al.,
1987; Ushio, 2006; Giles et al., 2008; Massom et al., 2009;
Aoki, 2017; Kim et al., 2018; Li et al., 2018; Labrousse et al.,
2019; Kim et al., 2020). A significant advance in continuous
coverage was made by Fraser et al. (2012) in their analysis
of fast ice across East Antarctica (10°W to 172° E) based
on compositing of cloud-free imagery from the MODerate-
resolution Imaging Spectro-radiometer (MODIS) sensors on
board NASA’s Aqua and Terra satellites, for the period 2000—
2008. This study also used a more rigorous definition of
fast ice that included a temporal criterion, e.g. that sea ice
must remain stationary for 20d to be classified as fast ice
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(Fraser et al., 2010), but still involved a significant amount of
time-consuming and intensive manual analysis. Considerable
progress has since been made in the automated extraction of
the fast-ice edge in both MODIS (Fraser et al., 2019) and
SAR image products (e.g. Kim et al., 2020; Li et al., 2018),
in parallel with advancements in SAR-based fast-ice detec-
tion in the Arctic, e.g. Mahoney et al. (2007), Meyer et al.
(2011), and Dammann et al. (2019). Improved automation is
particularly important given the volume of data involved and
the considerable effort that is required to manually digitise
the fast-ice edge using non-automated techniques (Fraser et
al., 2012).

To date, large-scale and long time-series mapping of
Antarctic fast ice has been confined to two datasets. These
are (1) the manually classified MODIS-based dataset (Fraser
et al., 2012) and (2) a fully automated time series derived
from Advanced Microwave Scanning Radiometer for EOS
(AMSR-E) for the time period 2003 to 2012 from Nihashi
and Ohshima (2015). While the latter dataset is circumpolar
in its coverage, an analysis by Fraser et al. (2019) shows a
tendency of passive-microwave radiometry to underestimate
fast-ice extent due to an inherent insensitivity to young fast
ice <90d old and its relatively poor spatial resolution.

Here, we introduce and provide details of a new algorithm
and dataset — the first high-spatio-temporal-resolution (1 km;
15 d) long-term time series (currently 2000 to 2018 with reg-
ular updates planned) of complete circum-Antarctic fast-ice
extent. This new technique is based on the compositing of
MODIS cloud-free visible and TIR images using a technique
described by Fraser et al. (2009) but improved and with au-
tomated extraction (as far as possible) of the fast-ice edge
through addition of edge-detection logic. This reduces the
amount of manual interpretation required while increasing
the level of objectivity in retrieving the fast-ice maps.

In the next sections, we present a description of the
datasets and updated methods used to transform MODIS
imagery into consistent fast-ice maps. Following this, we
present the fast-ice dataset and provide a comparison with the
earlier East Antarctic fast-ice time series from Fraser et al.
(2012). Analysis of the time series, anomalies, and trends for
the entire circumpolar record is beyond the scope of this pa-
per and is the subject of a study in preparation. A major aim
here is to make this dataset available to the wider scientific
community, thereby facilitating collaborative fast-ice-related
research across disciplines.

2 Dataset and methods

The fast-ice time series presented here for the entire Antarc-
tic coastline uses imagery from the MODIS sensors on both
the Terra (MOD) and Aqua (MYD) satellites and obtained
from NASA’s Level-1 Atmosphere Archive & Distribution
System Distributed Active Archive Center (https://ladsweb.
modaps.eosdis.nasa.gov, last access: 5 September 2018). The
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first ~ 2 years of this dataset were produced using only Terra
MODIS imagery, prior to the July 2002 commissioning of
Aqua MODIS. Specifically, the algorithm uses data from the
following:

— channel 1 (visible, 620 to 670nm) from the
MOD/MYDO02QKM dataset, with the 250m reso-
lution level 1B product being available during times of
solar illumination;

— channel 31 (thermal infrared, 10.78 to 11.28 um) from
MOD/MYDO021KM, with the 1 km resolution level 1B
product being available regardless of sunlight and pro-
viding information during periods of polar darkness;

— the high-resolution georeferencing arrays from the
MOD/MYDO03 product; and

— the level 2 cloud mask product MOD/MYD35_L2).

A crucial feature of the new algorithm and time series is
accurate masking of the Antarctic continent, ice shelves, and
nearshore islands. For this, we use the MODIS-based Mosaic
of Antarctica (MOA) coastline digitisation — both the 2003—
2004 product (Haran et al., 2005; Scambos et al., 2007) and
the 2008-2009 product (Haran et al., 2014). Change in ice
shelf front location over time due to ice sheet advance or ice-
berg calving necessitates progressive updates to the MOA
coastline product. For this, we make annual modifications
to the location of the ice sheet margin by manually digitis-
ing the change in the position of the ice shelf front once per
year, at the time of annual climatological minimum fast-ice
extent, i.e. days of year 061-075 (Fraser et al., 2012). Tem-
poral compositing is required to create cloud-free images of
the entire Antarctic coastal zone. The MOA-derived annual
coastline rasters are also manually edited to correct an arte-
fact in the coastline in the Vestfold Hills region, near Davis
Station (68.5° S, 78.25° E). Although this process is entirely
manual, it occurs only once per year so it is not particularly
laborious. It is possible that some very persistent multi-year
fast ice is misclassified as ice shelf in limited regions, al-
though particular care was paid to avoid this.

All swath-to-grid projection of the level 1 and 2 im-
agery is performed with the MODIS Swath-To-Grid Toolkit
(MS2GT, version 0.26), available at https://nsidc.org/data/
modis/ms2gt (last access: 28 April 2016). We grid all level
1 and 2 products to a 1km resolution polar stereographic
grid with a latitude of true scale set to 70°S (grid size:
5625 x 4700 pixels, covering the expected maximum circum-
polar fast-ice extent), to maximise compatibility with other
sea ice datasets from the NSIDC. We choose a 1 km spatial
resolution to match the nominal resolution of the MODIS
TIR channels.

We broadly follow the fast-ice mapping methodology de-
veloped by Fraser et al. (2009, 2010), but with significant
improvements to enhance automation and objectivity in de-
lineation of the fast-ice edge. The earlier East Antarctic work
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first constructed cloud-free composite images of the surface
over consecutive 20 d periods, based on MODIS visible and
TIR imagery and the NASA MODIS cloud mask product
(Fraser et al., 2009). These composites (i.e. a TIR compos-
ite at all times of the year, and a visible composite when
solar illumination was present) were then used for manual
delineation of the fast-ice edge (Fraser et al., 2010). The au-
thors noted regions and times of lower composite image qual-
ity when persistent cloud obscured the surface in the major-
ity of component images (cloud is a major issue for opti-
cal remote sensing of the surface in polar regions). In the
Fraser et al. (2009) algorithm, even an optically thin layer
of clouds in which the surface features were still discernible
was excluded from the cloud-free composite image, some-
times resulting in “data holes” in the image time series. Here,
we mitigate this shortcoming by (1) more intelligently rank-
ing cloud content and ensuring a more uniform distribution
around the Antarctic coast, thereby increasing the chance of
a cloud-free view of the surface and (2) implementing auto-
mated determination of the fast-ice edge location in an in-
dependent image processing pathway which does not rely
on the cloud mask product. Here we rank all cloud mask
granules by their cloud content, and we choose the 100 least
cloudy granules in each of six regions (each approximately
60° of longitude wide) around the Antarctic coast for com-
positing and further processing, i.e. 600 MOD/MYDO02 gran-
ules in total per 15 d window. This regional consideration was
implemented in an effort to ensure a more even distribution
of MODO2 granules. We found that without this considera-
tion, the ranking algorithm resulted in a high concentration
of granules in a limited number of cloud-free regions at the
expense of cloudy regions.

In the latter processing pathway described above, we per-
form edge detection on all individual gridded MOD/MYDO02
granules, exploiting the difference in both albedo and in-
frared brightness temperature between ice, cloud, and ocean.
This is based on the fact that both cloud and pack ice edges
are dynamic between images whereas fast-ice edges are
likely to be relatively persistent in location (i.e. stationary).
We use the Canny (1986) edge detection method to ensure
that edges are correctly localised and detected only once. We
then sum all edges within a 15 d window, thereby determin-
ing which edges are most persistent. These persistent edges
are then interpreted to be either the fast-ice edge or the conti-
nental margin. Since the location of the continental margin is
well-known, we exclude these edges from consideration and
are thus left with a representation of the fast-ice edge. This
map of persistent edges over each 15 d window forms the ba-
sis for subsequent automated circum-Antarctic fast-ice edge
detection.

The 15 d time step is chosen by balancing a desire for finer
resolution against the potential for pack ice temporarily ad-
vected against the coast to be misclassified as fast ice de-
spite no mechanical fastening taking place. Around most of
coastal Antarctica, the climatological near-surface wind di-
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rection is generally offshoreward to westward (Turner and
Pendlebury, 2004), thus promoting advection of pack ice
away from the coast. Blocking anticyclonic pressure sys-
tems do occur in southern mid-latitudes and these can result
in persistent onshoreward winds in particular regions of the
Antarctic coast, although the residence time for such systems
is rarely longer than 1 week (Massom et al., 2004). As such,
a time step of 15d is sufficiently long to preclude most of
these cases. Drifting sea ice pinned between grounded ice-
bergs may also be misclassified as fast ice, though our earlier
work showed that the persistent advection of pack ice into
pre-existing coastal features is likely to be a larger problem
and that pack ice held fast between grounded icebergs may
quickly become fastened (Fraser et al., 2010). Cloud cov-
erage, which can be persistent in some regions, is a further
barrier to a finer time step when producing visible and TIR
composite images of the surface (Fraser et al., 2009).

Our image processing pipeline is outlined below and is de-
picted by a flow chart in Fig. 1. For each 15d window in the
March 2000 to March 2018 study period, we do the follow-
ing.

1. We download and grid all MOD/MYD35_L2 (cloud
mask) granules covering the Antarctic coastal zone (ap-
proximately 1800 granules per 15d interval), with the
outcome of a complete library of gridded cloud mask
granules.

2. We rank granules by cloud content, with the outcome of
a ranked list of least-cloudy scenes.

3. We select the top 600 cloud-free granules, cognisant
of granule location (to ensure sufficient coverage in all
coastal regions), with the outcome of a list of 600 least-
cloudy scenes with relatively even coverage around the
continent.

4. We download and grid all corresponding
MOD/MYDO02QKM  (reflectance, available during
periods of solar illumination), MOD/MYDO021KM
(TIR brightness temperature, available year-round),
and MOD/MYDO3 (high-resolution geolocation data)
granules, with the outcome of a library of least-cloudy
reflectance and TIR brightness temperature scenes,
gridded.

5. We process gridded MOD/MYDO02 images for manual
and automated edge-detection purposes.

— Produce cloud-free composite images from 600 in-
put granules. Construct thermal infrared and (when
solar illumination available) visible cloud-free
composite images from the gridded MOD/MYDO02
and MOD/MYD35_L2 granules, following Fraser
et al. (2009, 2010), with the outcome cloud-free.

— Produce Canny edge images for each granule.
Canny edge-detect MOD/MYDO02 granules and
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sum within the current 15d period, with the out-
come of a canny edge sum image for automated
edge extraction.

— Produce Sobel edge images for each granule (So-
bel, 2014). Sobel edge-detect MOD/MYDO2 gran-
ules and sum within the current 15d period, with
the outcome of a Sobel edge sum image to guide
manual fast-ice edge interpretation.

— Produce images of the gradient of the median com-
posite. Median-filter (using a 7px x 7px sliding
window) each composite image (i.e. visible and
TIR), and then take the absolute value of the gra-
dient of this image, indicating edges in the com-
posite image, with the outcome being images of the
gradient of the mean composite for automated edge
extraction.

— Produce modified lead-detection images after
Willmes and Heinemann (2015). We use a larger fil-
tering window of 251 pixels (originally 51 pixels)
to enhance contrast in regions of fast ice, with the
outcome of lead-detection images to guide manual
fast-ice edge interpretation.

6. Construct an automated classification base image.

— Compute the per-pixel product of the Canny edge
image and the gradient-median-composite image
described above, which was found to accurately and
correctly locate many fast-ice edges (i.e. this is an
original algorithm). This product represents a con-
tinuous measure of fast-ice edge confidence. This
results in a base image for automated fast-ice edge
extraction.

— Produce a normalised histogram of edge confi-
dence, setting four adaptive thresholds at 0.995
(highest-confidence edge), 0.990, 0.985, and 0.980
(lowest-confidence edge). These thresholds are
used to construct a greyscale representation of the
edge confidence for each pixel on the grid. This re-
sults in a confidence-classified automated fast-ice
edge map.

— Mask the edge confidence map using the rasterised
MOA coastline and write out as the automated clas-
sification base image. Multiple spurious edges exist
at this point. This results in a coast-masked auto-
mated edge image.

7. Carry out necessary manual processing (relatively

labour-intensive; 1 year takes approximately 40h).

— Closely inspect and complete edges in automated
classification base image, guided by (a) the So-
bel edge image, (b) cloud-free composites, and
(c) modified lead-detection images. This is used
to (i) verify automated fast-ice edge extraction and
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(i1) manually complete/add edges where automated
extraction fails to detect the fast-ice edge. Sobel
edge detection is used in this manual step rather
than Canny edge detection, because it produces a
broader (i.e. several pixels wide) edge which is tol-
erant of small changes in ice edge location. This
results in an image of completed fast-ice edges.

— “Bucket-fill” those pixels between the continental
margin and the now-continuous ice edge to rep-
resent fast-ice coverage (extent). This results in a
near-final image of fast-ice edge and “filled” pix-
els.

8. Automatically remove spurious edges (i.e. edges not ad-
jacent to fast ice) remaining from the classified image.
This results in a final classified fast-ice image.

Since the bucket-fill step requires a continuous fast-ice
edge, and because the automatically determined fast-ice edge
is often incomplete, manual intervention is frequently re-
quired both to form a continuous fast-ice edge and to val-
idate the position of the automatically determined fast-ice
edge. An example classification showing both manual and
automated ice edge detection is shown in Fig. 2. This manual
intervention is relatively time-consuming and reduces objec-
tivity to some extent but is considered to be a fundamental
step in visible-TIR fast-ice extent retrieval. It should be re-
iterated here that the inclusion of automatic edge determina-
tion is a considerable advance from the original fully man-
ual final step of edge extraction described by Fraser et al.
(2010). In order to mitigate the possibility of manual edge
definition contributing to false trends in the dataset and fol-
lowing Fraser et al. (2012), all edge verification and manual
edge completion is performed in a random order.

When manual edge delineation is not possible in any given
region for a particular 15 d period (e.g. due to persistent thick
cloud), the method employs a subjective definition of the lo-
cation of the fast-ice edge based on imagery from the im-
mediately previous and/or subsequent 15d periods, follow-
ing Fraser et al. (2010). An extreme example relates to the
fast-ice map from DOYs 166-180 in 2001, during most of
which the Terra MODIS instrument was in “safe mode” and
acquired no data. Here, in the interest of providing a tempo-
rally contiguous dataset, we opt to use the fast-ice map from
the following time step (DOYs 181-195, 2001) but mark all
edges as “manually determined” to indicate higher uncer-
tainty in the fast-ice edge retrieval for DOYs 181-195 (2001).

Determination of uncertainty for this dataset (in both edge
location and resulting fast-ice areal extent) requires careful
consideration. The primary uncertainty arises from digitisa-
tion error, typically given in pixels, in areas of manual ice
edge determination, which then propagates to an areal un-
certainty value. However, neither the digitisation error nor
the propagation to an areal uncertainty is straightforward to
determine and quantify. Prior work made broad estimates of
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the manual digitisation error by carrying out an independent
re-digitisation of a subset of the fast-ice edge and resolving
differences in the resulting fast-ice area (Fraser et al., 2010).
This approach, however, requires both extrapolation of er-
rors from a small subset to the entire dataset and duplica-
tion of time-consuming manual edge extraction. In our mod-
ified approach presented here, we employ a novel alternative
approach for uncertainty estimation which addresses these
shortcomings. This involves analysis of the per-pixel differ-
ence in ice edge location in two consecutive fast-ice maps,
for all pairs of consecutive images in the entire dataset. In
the case of an automatically extracted fast-ice edge pixel,
this difference purely reflects the change in location of the
ice edge (plus or minus a small, sub-pixel-scale digitisation
error, which we also quantify). In the case of a manually
extracted ice edge pixel, it reflects the sum of the ice edge
change plus the digitisation error. Thus, to estimate the digi-
tisation uncertainty, we do the following.

1. Assume that automatically determined edges are accu-
rate in location (an appropriate assumption due to excel-
lent edge localisation of the Canny edge detection filter
underpinning the automation).

2. Quantify the mean fast-ice edge separation between
subsequent images only for automatically determined
edge pixels. We find the nearest edge of similar type.
In this step, we match automatically determined edge
pixels with the nearest automatically determined edge
in the subsequent image. Cross-type edge matches are
ignored (i.e. auto to manual or manual to auto) to
avoid confounding results. A cutoff of +50 px (i.e. an
~ 100 km window) is used as an extremely conservative
upper bound to avoid the rare case of pixels matching
with distant pixels. We thereby produce a mean mea-
sure of ice edge location change between two consecu-
tive 15 d time periods.

3. Carry out the same as above but for manually deter-
mined edge pixels, to produce a mean measure of ice
edge change plus digitisation error.

4. Subtract the former from the latter, resulting in a digiti-
sation error estimate for manually determined ice edge
pixels.

We also estimate the sub-pixel error in digitisation, i.e.
grid-scale effects in the digitisation error. This estimation
is achieved by performing 10000 simulations of a one-
dimensional random edge position and compare it to the cen-
tre location of a sample pixel. The rms of the residual be-
tween the genuine pixel centre and the simulated centre is
taken to be the sub-pixel error. Thus, the automatically deter-
mined edge error is taken to be the sub-pixel error only, and
the manually determined edge error is taken to be the quadra-
ture sum of the sub-pixel and manual digitisation errors. Fol-
lowing estimation of both the manual and sub-pixel digiti-
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Figure 1. Flow chart depicting the image processing pipeline. Bold letters within the green-coloured elements refer to individual panels in

Fig. 2.

sation errors, we estimate areal uncertainty for each fast-ice

map by

1. ensuring that all fast-ice edges are 1 pixel wide by per-

forming a morphological skeleton operation,
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2.

weighting all skeletonised edge pixels by their respec-

tive area, and then

multiplying by the appropriate error, as estimated

above.
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Figure 2. Figure depicting an example of the automated fast-ice edge detection along the Mawson Coast, East Antarctica, for DOY range
316-330, 2005. See the red rectangle in Fig. 3 for spatial context. (a, b) The 15d channel 1 (visible) and channel 31 (thermal infrared)
cloud-free composite images, respectively. (¢, d) Sum of Canny algorithm-detected edges in individual channel 1 and channel 31 images,
respectively, for the 15 d period. (e, f) Modified lead detection for channel 1 and channel 31 images, respectively (after Willmes and Heine-
mann, 2015, but with an enlarged filtering window to enhance fast-ice detection). (g) Results of the combined edge detection algorithm
(black line). Light and dark grey areas represent grounded and floating glacial ice, respectively, and are masked out. (h) Fast-ice classified
map after manual edge inspection/correction and filling. Cyan and red represent automatically and manually completed edges, respectively,
and the width of these lines has been expanded in this example to enhance visibility. Yellow represents infilled fast-ice area.
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This approach to areal uncertainty calculation is highly
conservative (i.e. likely an overestimate) since it assumes that
all errors occur in the same direction; in reality, digitisation
errors are likely to produce both underestimates and overes-
timates of fast-ice extent in equal measure. Furthermore, cy-
clonic systems which may cause windblown regional fast-ice
breakout (Massom et al., 2009) also typically bring extensive
cloud cover. In this way, image subsets requiring manual fast-
ice edge delineation are more likely to be produced during
times of wholesale ice edge change, thereby falsely inflating
the uncertainty estimates.

Regarding the fast-ice dataset product, we provide the
method of edge determination (“automatic” or “manual”) in
the output dataset, for each pixel of fast-ice edge. We also
compute the mean percentage of automatically determined
ice edge pixels in each 1° longitude bin. As a further indi-
cation of dataset integrity, we quantify differences between
the new fast-ice dataset and the Fraser et al. (2012) East
Antarctic-only dataset for the period and region of overlap
(north of 72° S, 10°W to 172°E, March 2000 to Decem-
ber 2008). Large tabular icebergs are removed from the fast-
ice classification where independent iceberg information is
available and/or the icebergs are clearly visible, but manual
discrimination between fast ice and large tabular icebergs is
difficult at times due to a lack of contrast in the satellite im-
agery (Fraser et al., 2010). Similarly, myriads of small ice-
bergs embedded/grounded in places in the fast ice (Massom
et al., 2009) are difficult to distinguish and remove, but they
form an integral part of the fast-ice matrix. Following Fraser
et al. (2010), we classify such regions of fast ice contain-
ing many small grounded icebergs as fast ice. Regions of ice
mélange at the front of ice shelves are another source of un-
certainty here, but they remain unquantified due to their neg-
ligible areal extent on a continental scale.

3 Results and brief discussion

We restrict our presentation of results to illustration of the
key attributes of this new pan-Antarctic fast-ice dataset, and
we evaluate its improvements over earlier datasets created for
East Antarctica (Fraser et al., 2012). We also present quan-
tification of uncertainties. More in-depth analysis of spatio-
temporal patterns and drivers of fast-ice distribution is out-
side the scope of this paper but is underway for future stud-
ies.

3.1 Circumpolar distribution of fast ice at maximum and
minimum extent and cross-comparison with earlier
work

We illustrate the envelope of circum-Antarctic fast-ice ex-
tent throughout the 18-year dataset time series by showing
its spatial distribution at maximum (occurring in 2006, at
DOYs 271-285) and minimum (2009, DOYs 061-075) ex-
tent in Fig. 3. Figure 4 then shows a cross-comparison of this
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Y

150° 8

Figure 3. Fast-ice distribution at times of maximum (occurring
in 2006, DOYs 271-285; shown in yellow) and minimum (2009,
DOYs 061-075; shown in orange) extent over the 18-year dataset
period. The grounded Antarctic Ice Sheet and floating ice shelves
are shaded light and dark blue, respectively. The red rectangle
shows the region used to illustrate the automation in Fig. 2.

dataset with that of Fraser et al. (2012), covering the area and
period of overlap. The total East Antarctic fast-ice extent in
the new dataset is 8.3 % greater than that reported in Fraser
et al. (2012), on average. This difference is attributed to two
factors: (1) a “relaxation” of the temporal fast-ice condition
in the new algorithm from the 20d criterion used in Fraser
et al. (2012) (i.e. more ice remains “fast” for 15d than for
20d) and (2) the enhanced ability of the new “persistence
of edges” algorithm to retrieve fast-ice extent under cloud
cover. The largest differences between the two datasets are
encountered at ~ 118 and 152° E. These two longitudes cor-
respond to areas of dynamically formed “semi-fast ice”, i.e.
regions where pack ice is blocked from westward advection
and intercepted by upstream obstacles, e.g. large grounded
iceberg BIB prior to its ungrounding in 2010 (Massom et al.,
2010). In such regions, fast ice tends to be more exposed and
ephemeral; i.e. it can intermittently break out to become pack
ice but then reform, on a synoptic scale. As such, reducing
the temporal “fastness” condition to 15 d produces relatively
large differences in these regions.

This sensitivity of fast-ice extent to observation time step
has implications not only for the current work, but also for
the next generation of SAR-based observations of fast ice,
which, depending on the algorithm, can rely on two obser-
vations obtained in subsequent repeat passes. In the case of
the ESA’s Sentinel-1, this involves a 12d repeat cycle. The
temporal baseline of DLR’s TerraSAR-X is shorter still at
11d, although it has yet to be exploited for fast-ice retrieval.
Other SAR-based fast-ice retrieval algorithms which do not
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Figure 4. Mean fast-ice extent per degree of longitude for this new improved dataset (black solid line) and Fraser et al. (2012) (dashed red
line), for the period and region of time series overlap (March 2000 to December 2008, 10° W to 172° E).

rely on exact repeat orbits are able to retrieve fast-ice extent
over even shorter baselines (e.g. feature-tracking algorithms
can deal with any baseline, as long as features are present).
Such methods are all likely to retrieve higher fast ice ex-
tents than the product here, simply due to the shorter obser-
vational baseline. As indicated here, differences are particu-
larly strong in regions containing volatile fast ice. As such,
end-users of fast-ice products in such regions should be cog-
nisant of this phenomenon.

3.2 Quantification of dataset objectivity and error
estimation

Both the cloud-free composite images and the automated
classification base images are susceptible to a number of fac-
tors which can reduce their quality/utility as fast-ice edge dis-
criminators. These include (1) persistent/heavy cloud obscu-
ration of the surface — particularly during times of no solar
illumination when the cloud mask product is less accurate
(Ackerman et al., 2006) and (2) instances where moving pack
ice is advected toward the fast-ice edge, thereby reducing the
fast-ice—pack ice contrast in both visible and TIR images, as
noted in Fraser et al. (2009).

Manual delineation ranges from being relatively straight-
forward (in the case of high-quality composite imagery,
where few judgement calls need to be made) to quite labour
intensive (in the case of heavy cloud obscuring the surface,
resulting in ambiguous fast-ice edge delineation and requir-
ing the use of the previous and next 15d period’s composite
imagery for guidance). On occasion, such judgement calls
have the potential to significantly impact a single period’s
fast-ice extent retrieval, albeit in a limited region.

A broad measure of objectivity in fast-ice extent retrieval
is the percentage of edges that could be retrieved automati-
cally. This is plotted in Fig. 5. The circum-Antarctic mean
automation percentage is 58 %. East Antarctica is charac-
terised by generally high automation percentages (~ 50 %
to 90 %) — with the exception of localised pockets (down to
37 %) located in Wilkes (98 to 108°E and 126 to 138°E)
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and George V lands (150 to 153° E). In West Antarctica, au-
tomation percentage is high (generally 70 % to 90 %) in the
eastern Weddell Sea and Ross Sea (50 % to 85 %) but low in
the Bellingshausen and Amundsen seas sector (40 % to 60 %)
and along both flanks of the Antarctic Peninsula (as low as
22 %). By showing longitudes with a low automation frac-
tion, this plot also indicates areas which tend to be most af-
fected by inherent issues detailed in the Methods section, i.e.
persistent cloud cover and/or persistent advection of pack ice
toward fast ice that reduces the contrast (in reflectance and
surface temperature) between pack and fast ice.

We have taken steps to mitigate this here compared to
our earlier work (e.g. by now considering edges visible even
under thin cloud, by more intelligently selecting the least-
cloudy MODIS data for each 15d period). Here, our ap-
proach is still limited by relatively poor MOD/MYD35 cloud
mask product accuracy at times. In the future, we are in-
terested in implementing state-of-the-art machine-learning
cloud masking algorithms to mitigate this (e.g. Paul and
Huntemann, 2020). This improvement may lead to an au-
tomation percentage in excess of the 58 % reported here.

As detailed in the Methods section, we estimated the sub-
pixel error, applicable to both automatically and manually
determined edges, as well as the manual-only error in digi-
tisation. By simulation, the sub-pixel error is determined to
be 0.288 pixels. We developed a novel technique to quantify
the error in manual estimation of fast-ice edges. We find that,
on average, manually determined edges change in location
by 5.47 pixels more than that for automatically determined
edges (auto-determined = 10.06 pixels vs. manually deter-
mined = 15.53 pixels) in subsequent 15d windows. Thus,
the automatically determined edge error is 0.288 pixels, and
the manually determined edge error is the quadrature sum
of 0.288 and 5.47 pixels, i.e. 5.48 px. For each 15d epoch,
we obtain a conservative estimate of the fast-ice areal un-
certainty by multiplying each skeletonised edge pixel by the
appropriate error estimate, in kilometres, assuming that the
nominal resolution of 1km per pixel applies everywhere in
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Figure 5. Polar plot showing the percentage of edges determined
automatically, as a function of longitude. The Antarctic continent is
outlined in grey for spatial context. To remove noise in regions with
little fast ice, 1° longitude bins with fewer than 5000 total fast-ice
edge pixels across the 18-year dataset were not plotted.

the domain. This uncertainty in fast-ice area has a mean value
of 7.8 % when averaged across the entire circum-Antarctic
dataset. This is somewhat larger the value of 4.38 % uncer-
tainty obtained in regions requiring > 10 % manual edge de-
lineation, as detailed in Fig. 5 from Fraser et al. (2010) using
traditional re-digitisation-based error estimation, confirming
that the new method is conservative.

4 Data availability

The dataset has been made available at the Australian Antarc-
tic Data Centre at https://doi.org/10.26179/5d267d1ceb60c,
as a series of NetCDF files compliant with Climate and Fore-
cast (CF) (Fraser et al., 2020). This dataset contains the fol-
lowing fields:

— fast-ice time series — presented as classified maps of the
surface type (fast-ice interior pixel, automatically deter-
mined fast-ice edge, manually determined fast-ice edge)
—and

— latitude, longitude, and area of each pixel.

There are plans to regularly update and extend the time se-
ries forwards in time, on a biennial basis, until the demise of
both MODIS platforms but continuing with next-generation
imaging spectroradiometers after this time.

https://doi.org/10.5194/essd-12-2987-2020
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5 Summary

Here we have introduced both (1) a new, improved technique
for mapping and monitoring coastal fast-ice coverage around
Antarctica at high resolution and (2) the most complete time
series of Antarctic fast-ice extent to date. This product repre-
sents a new baseline against which to gauge change and vari-
ability in both the ice and climate and has wide applicability.
Indeed, it is expected to generate and contribute to multi-
ple cross-disciplinary studies of the Antarctic coastal envi-
ronment. Examples include behavioural ecology of charis-
matic megafauna (e.g. emperor penguin colony presence or
absence), the effects of fast ice on the physical oceanogra-
phy of the continental shelf (e.g. influencing coastal polynya
location, and subsequent sea ice production and water mass
modification), and a quantification of the fresh water, nutri-
ents, and biomass within the fast ice itself. Logistical uses
are also envisioned (e.g. informing base resupply schedules).
Moreover, this dataset directly addresses a key gap identified
in major high-level IPCC reports, enabling improved analysis
of trends and variability of this key element of the highly vul-
nerable Antarctic coastal environment (Vaughan et al., 2013;
Meredith et al., 2019).

The new algorithm also provides an important means of
mapping and monitoring fast ice into the future and in a
continuous fashion, given its applicability to the new gen-
eration of medium-resolution spectroradiometers. These in-
clude the Visible Infrared Imaging Radiometer Suite (VI-
IRS) on NASA’s Suomi National Polar-orbiting Partnership
(NPP) platform (launched October 2011), the Sea and Land
Surface Temperature Radiometer (SLSTR) and Ocean and
Land Colour Instrument (OLCI) on ESA’s Sentinel-3 plat-
form (launched February 2016), and the Second-generation
Global Imager (SGLI) on JAXA’s Global Change Obser-
vation Mission (GCOM)-C1 platform (launched December
2017).

Although an element of subjectivity remains in the large-
scale retrieval of fast-ice coverage from satellite visible—
thermal infrared imagery, we have mitigated this to some
extent. This has been achieved by (1) implementing an au-
tomated ice edge retrieval algorithm, resulting in successful
extraction of ~ 58 % of ice edge pixels; (2) performing ran-
dom manual extraction to eliminate false trends; (3) quantify-
ing the uncertainty associated with manual edge delineation
(7.8 % of fast-ice area retrieval, on average); and (4) per-
forming a cross-comparison with a similar (but independent)
spatially and temporally overlapping dataset (Fraser et al.,
2012). Crucially, this new MODIS-based dataset provides
the longest contiguous time series of this key element of
the Antarctic cryosphere while offering complete circum-
Antarctic coverage for the first time at high resolution.

Multi-sensor fusion would help to further mitigate the sub-
jective elements of this dataset to some extent. As an exam-
ple, we used AMSR-E, in our previous work (Fraser et al.,
2010). However, mission overlap generally limits the time
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period able to be considered in multi-sensor fusion algo-
rithms (e.g. AMSR-E was launched 2.5 years after Terra
MODIS and was effectively decommissioned in 2011).
Analysis of spatio-temporal patterns, variability, and
trends in circum-Antarctic fast-ice coverage is underway, us-
ing this dataset (Fraser et al., 2020), as is related work deter-
mining and evaluating the drivers of these observed patterns.
Moreover, we plan to study the spatial distribution of fast-ice
extent in the context of a new dataset describing the multi-
scale complexity and configuration of the coastline (includ-
ing aspect) around Antarctica (Porter-Smith et al., in review,
2019), under the hypothesis that the coastal configuration is
a first-order determinant of fast-ice extent in many regions.
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