
A Cloud-based Framework for Sensitivity Analysis of

Natural Hazard Models

Ujjwal KCa,1, Saurabh Garga, James Hiltonb, Jagannath Aryalc

aDiscipline of ICT, University of Tasmania, Hobart, Australia
bData61, CSIRO, Melbourne, Australia

cMelbourne School of Engineering, University of Melbourne, Parkville, and Discipline of
Geography and Spatial Sciences, University of Tasmania, Australia

Abstract

Computational models for natural hazards usually require a large number of

input parameters that affect the model outcome in a complex manner. The

sensitivity of the input parameters to the output variables can be quantified

using sensitivity analysis, which provides insight into the key factors driving

the model and can guide modeling optimization. However, performing a sen-

sitivity analysis typically requires a large number of simulations, which can

be prohibitively time-consuming on workstations or local servers. To address

this issue, this study proposes a Cloud-based framework that takes advantage

of scalable Cloud resources. The efficacy of the framework is demonstrated by

the scalability achieved while running large-scale wildfire simulations. More-

over, a comprehensive sensitivity analysis of the input parameters used in

these models is presented. The ability to efficiently perform sensitivity anal-

ysis using the framework could allow such analysis to be performed as an

Email addresses: Ujjwal.KC@utas.edu.au (Ujjwal KC),
Saurabh.Garg@utas.edu.au (Saurabh Garg), James.Hilton@data61.csiro.au (James
Hilton), Jagannath.Aryal@unimelb.edu.au (Jagannath Aryal)

1Corresponding author

Preprint submitted to Environment Modeling and Software August 10, 2020

on-demand service for operational disaster management.

Keywords: Sensitivity Analysis, Parameter Uncertainty, Uncertainty

Quantification, Wildfire Modeling, Cloud computing, Spark

Highlights

• Developed and investigated an efficient Cloud-based sensitivity analysis

framework.

• Implemented various sensitivity analysis methods - Morris, Sobol, and

FAST.

• Demonstrated the efficiency of the analysis of large-scale wildfire sim-

ulations.

Software Availability

The python library SALib can be accessed at https://github.com/

SALib/SALib. The fire propagation tool Spark is available at https://

research.csiro.au/spark/. The code for the framework is available upon

request.

1. Introduction

Natural hazard models are required both for risk assessment to identify

vulnerable regions and assets and faster-than-real-time operational applica-

tions during an unfolding disaster. These models are necessarily complex

as many environmental factors must be taken into account. For example,

wildfire models require input parameters such as the fuel condition, local

2

weather, the type of land coverage, and local topography [1, 2]. Each of

these input parameters is subject to uncertainties that affect the outcome of

the model, such as fire area or maximum heat intensity [3]. To take these

uncertainties into account, ensemble predictions can be used, which perform

multiple simulations with input values sampled from these uncertain inputs.

Risk metrics can then be derived by performing statistical analyses on the

ensemble predictions. However, the interrelation between the parameters and

outputs from these models is complex and usually non-linear [4]. As such,

running multiple simulations with different input combinations in an ensem-

ble prediction, for risk assessment requires information on the sensitivity of

the outcome of the model to various inputs.

Sensitivity analysis (SA) is one means to determine the influence of input

parameters on a model outcome and its uncertainties [1, 5, 6]. In local SA,

the impact of the parameters is studied around a specific point while in global

SA, the entire range of the input parameters is considered [? ?] This can

provide crucial information about the range of use of the model [4][7], and

help identify the parameters in the model on which the additional research

must be focused in order to strengthen the knowledge base [8].

Conventionally, SA analyzes the variability of deterministic model out-

puts produced by possible combinations of the input parameters [9]. Compu-

tational natural hazard models are characterized by different, often complex,

mathematical relationships that must be calculated multiple times for each

combination of input parameters to produce a set of outputs. As natural

hazard models often require a large number of input parameters, accurate

sensitivity analyses require a large number of combinations, making such

3

analyses compute-intensive and time-consuming. These analyses can take

several hours to days to complete for complex models. Such analyses also

practically require a high degree of maintenance for data handling, orches-

tration, and management of results for the calculation of the final required

metrics. The ability to automate SA and reduce the time taken for such

analysis could benefit operational disaster management by rapidly determin-

ing the dominant factors affecting a particular local natural hazard to guide

efficient response and planning.

Different methods such as variance-based sensitivity analysis [4][5], Bayesian

analysis [10][11][12], Generalized likelihood uncertainty estimation (GLUE)

framework and Metropolis algorithm [13][14], neural networks [15][16] and

Taylor Series methods [17] have also been used for uncertainty quantification

in an environmental context. Nossent et al. [4] performed Sobol’ SA for flow

simulations given by a SWAT model to calculate the sensitivity indices of

26 different input parameters. Similarly, sensitivity analysis of SWAT model

was carried out in [18][19][20][21]. Yang et al. [22] assessed five different

SA techniques applied to a hydrologic model. Brohus et al. [23] used the

Morris method to analyze the sensitivity of fire dynamics simulation, while

Hilton et al. [24] used polynomial chaos for similar models. Similar works

have been done to perform SA of different fire models in [25][7][1]. These

mentioned works have applied different sensitivity analysis methods to en-

vironmental models without directly considering the computational needs of

such analyses.

Researchers have developed several methods and tools including Matlab-

based [26][27][28] and Python-based libraries [29] to calculate the sensitivity

4

indices of input parameters of any environmental models. Wagener et al. [30]

developed the Monte Carlo Analysis Toolbox (MCAT) enabled by a Matlab

library of different visual and numerical analysis tools for sensitivity analyses

of hydrological and environmental models. Another Matlab-based toolbox

called Eikos [26] was developed by Ekstrom, which is capable of calculating

the sensitivity indices of different models developed in Matlab/Simulink en-

vironments. D’Augustine has developed MATLODE [27] as a tool for SA

of the models described by ordinary differential equations (ODEs) in direct

and adjoint approaches. Pianosi et al. [28] constructed a Matlab/Octave-

based toolbox called SAFE (Sensitivity Analysis For Everybody) (available

now in R and Python as well) to improve the diffusion and quality of global

SA in the environmental modeling community. Herman and Usher devel-

oped a Python framework called SALib [29], that facilitate the sensitivity

analysis of environmental models using different existing SA methods. Roy

et al. [31] developed a python-based Bayesian tool for uncertainty quantifi-

cation. Andrianov et al. [32] developed an open-source software platform

called OpenTURNS (Open source Treatment of Uncertainty, Risk ‘N Statis-

tics) that could treat uncertainty by dedicated to uncertainty treatment by

probabilistic methods. Simlab [33] was developed as a free software package

by the Joint Research Centre (JRC) of the European Commission. It gen-

erates a set of random samples of different parameters and the simulations

can be run to compute the measure of sensitivity based on the method used.

A package called sensitivity in R was developed by Iooss et al. [34] that can

calculate the sensitivity indices using various popular methods. These tools

and libraries can easily estimate the measure of sensitivity for mathematical

5

models and even for computational models but only after the sets of input

and output values are available after model runs.

To deal with the high computational needs of the global SA of com-

putational models, researchers have adapted a wide range of approaches.

Stanfill et al. [35] proposed an easy to set up and inexpensive emulator

based sensitivity indices estimators and applied the estimator to perform the

sensitivity analysis to APSIM [36]. To deal with the curse of dimension-

ality in Global Sensitivity analysis, Sheikholeslami et al. [37] proposed a

grouping strategy using boot-strapping-based clustering to enable GSA to

high-dimensional environmental models. Saltelli et al. [5] highlighted the

importance of using surrogate models with a subset of input factors that

contribute to most of the variability of model output for model simplifica-

tion. Efforts have been made to estimate different measures of sensitivity

using generic sets of model input and output sets. Pianosi and Wagener [38]

improvised their density-based sensitivity measure method (PAWN [39]) with

an approximation measure such that the method was applicable to a generic

sample of inputs and output for a model. Borgonovo et al. [40] proposed

an ensemble of sensitivity measures, based on the different purposes (pa-

rameter prioritization, trend identification, and interaction quantification),

to provide insights into environmental models without increasing the com-

putational burden. The approach in the work used data-driven estimation

of global sensitivity measure along with hybrid local-global method DELSA

[41] such that the ensemble of sensitivity measures could be estimated simul-

taneously. Eldred et al. [42] proposed a multi-level parallel object-oriented

framework called DAKOTA that provided an extensible interface between

6

simulation runs and iterative sensitivity methods. The framework enabled

a problem-solving environment for performance analysis of computational

models, but on high-performance computers. All of these efforts addressed

the high computational needs of global sensitivity analysis with various ap-

proximation methods and approaches to better estimate the effects.

Cloud Computing has come forward as an attractive solution to support

high computational demands with its almost unlimited scalable compute re-

sources, storage, and network capacity. Several studies have verified the capa-

bility of Cloud Computing to accommodate the computational complexities

of different environmental models [22][43][44]. Consequently, global SA of

computational models, previously thought to be very difficult (or infeasible)

[45, 46], can be conducted on the Cloud. However, to authors’ knowledge,

there are no systems or services that offer such analyses in a scalable, time-

efficient, and convenient manner. As such, this study proposes a cloud-based

framework that can efficiently handle the high computational need of a large

number of environmental model simulations. The framework uses scalable

Cloud resources to run the computational models with sampled input set to

obtain the set of output values for further analyses in a time-efficient manner,

which would take several hours to days in a conventional system. The set of

input values to the model can be sampled as required and the set of output

values obtained after numerous model runs, along with input sets, can be

used for various mathematical analyses including sensitivity analyses using

different global SA methods. In our work, to validate and demonstrate the

capability of the framework, we utilize the sets of input and output values of

the model to calculate the sensitivity indices of input parameters to model

7

output using a set of different popular SA methods. These are the Morris

method [47], the Sobol’ method [48] and the Fast Amplitude Sensitivity Test

(FAST) [49]). These methods are chosen as a modular block in the frame-

work based on the standard comparison presented in [50] that highlights

the suitability of SA methods for different purposes (ranking, screening, and

mapping) with the trade-offs between accuracy and cost taken into consid-

eration. The sampling strategy and index calculation are customized based

on the user input and method chosen before a job is launched in the frame-

work. All data management and intermediate calculations are automatically

handled to produce the metrics from the SA method. The framework is

demonstrated specifically here for sensitivity analysis of wildfire models us-

ing the Spark wildfire modeling system, although the method can easily be

extended to other natural hazard models. The model input and output set

obtained after the model runs in the framework can be further analyzed using

any suitable approaches.

In the following section, different SA methods used in the framework are

detailed, and the framework software is described. The framework is then

applied to a wildfire natural hazard model and, finally, the implications of

the analysis in the context of wildfire modeling are discussed.

2. Sensitivity Analysis Methods

Sensitivity Analysis (SA) deals with the study of the variation or uncer-

tainty in the model output due to the variation in one or more input pa-

rameters. The global SA methods overcome the limitations of local SA such

as linearity, normality assumptions, and local variation and are widely used

8

for sensitivity analysis of parameters in different models [51]. We consider

three widely adapted global SA methods (one-at-a-time and variance-based)

[4, 28], detailed in the following sections.

2.1. Morris Method

Morris Method [47] is one of the screening-based SA methods. It is of-

ten called ‘one at a time’ (OAT) analysis as each input parameter is varied

while keeping the other parameters constant during the model runs. This

method classifies the input parameters into three distinct categories - input

parameters with negligible effect, parameters with large linear effects without

interactions, and parameters with large non-linear and/or interaction effects.

The method calculates the sensitivity indices for the parameters j in terms

of mean (µ∗j) and standard deviation (σj) of the absolute value of the ele-

mentary effects. µ∗j is the measure of the effect of jth input parameter on the

output, where greater values indicate a greater influence of jth input param-

eter on the variability of the output. σj is the measure of the non-linear and

interaction effects of the jth input parameter. Smaller values of σj signify

fewer interaction effects, while higher values of σj signify higher interaction

effects with at least one other input parameter and/or non-linearities.

For a sample size argument of N (N samples within the range of input and

k parameters in a model, calculation of sensitivity indices in Morris method

requires (N + 1)× k model runs [47].

2.2. Sobol’ Indices

Sobol’ SA [52] is a variance-based SA method that quantifies the input

and output variability as probability distributions. The analysis breaks the

9

output variability into the individual input variability and the variability

caused by the interaction between the inputs. Consequently, the method

quantifies the variability of the input parameters in terms of first-order in-

dices, second-order indices, and total sensitivity indices. The first order index

S1j defines the variability of the model output caused by the variability of

input parameter j without considering any interaction with other input pa-

rameters. The second-order index S2i,j explains the variability in the model

output caused by the non-linear interaction between parameter i and param-

eter j. The total sensitivity index STj defines the total variability caused by

the variability in the input parameter j and its non-linear interaction with

one or more other input parameters.

For a sample size argument of N and k parameters in a model, calculation

of the sensitivity indices requires 2N(k + 1) model runs if the calculation of

second-order indices is enabled [53]. The number of model runs needed is

N(k + 2) if the calculation of second-order indices is disabled [53]. The

second-order index calculation is enabled throughout this study.

2.3. Fourier Amplitude Sensitivity Test (FAST)

Fourier amplitude sensitivity test (FAST) is a variance-based global sen-

sitivity analysis method. It defines the sensitivity indices based on the con-

ditional variance of the input parameters indicating the individual or joint

effects of the parameters on the model output. FAST first uses coefficients of

multiple Fourier series expansion of the model output function to represent

the conditional variances of the inputs. It then applies the ergodic theorem

to transform the multi-dimensional integral to a one-dimensional integral

for the evaluation of the Fourier coefficients [49]. The continuous integral

10

function can be recovered from a set of finite sampling points if the Nyquist-

Shannon sampling theorem [54] is satisfied. The integral can be evaluated

from the summation of the function values at the generated sampling points.

FAST gives the indices in terms of first-order indices S1 and total effect in-

dices ST . S1 quantifies the standalone impact of an input parameter, while

ST measures the overall impact of the parameter, including the effects of its

non-linear interactions with other parameters.

For a sample size argument of N and k parameters, the calculation of the

sensitivity indices in FAST requires N × k model runs [55].

3. Cloud-based Framework

Our Cloud-based framework enables sensitivity analyses of natural hazard

models using various well-established methods, as explained in the previous

section in a time-efficient and convenient manner to address the prohibitively

time-consuming issue of such analyses. The components of our Cloud-based

SA framework are shown in Figure 1. The framework handles the compu-

tational complexities of multiple model runs among the distributed Cloud

resources and calculates the sensitivity indices for the input parameters to

the model. The user uploads a configuration file for running the models and

enters the required inputs into a web interface. These are - 1) the SA method

to be used, 2) the required sample size and 3) the number of input param-

eters. In the framework, three different SA methods are implemented. The

sample size input allows the user to specify the total number of samples of

the inputs within a predefined range. The user can also specify the num-

ber of input parameters for the model through the interface, which, together

11

with the sample size, defines the total model runs required for the analysis.

It should be noted that the number of total model runs can be different for

different SA methods due to differences between the SA algorithms.

A Master retrieves the user input and generates the required samples

from the possible input parameter combinations for the SA method selected.

The Master then distributes the required model runs to several Workers (or

Cloud instances) to complete all the required model runs in a time-efficient

manner. The Master finally collects the model outputs from all the workers

and calculates the sensitivity indices for the input parameters. The calcu-

lated indices are stored and can be downloaded from the web interface by

the user. In addition to the calculated indices, the user can download the

model input and output set of values to perform further relevant analyses.

The components description and the features offered by the framework are

described further as follows.

3.1. Web Interface

Users initiate a service request for the calculation of sensitivity indices

through a Web Interface. The Web Interface is the only point of interaction

between the users and the framework, encapsulating all operations within

a graphical user interface. Users can initiate a request by uploading the

required configuration and input files into the web interface and launching

a job. The interface reflects the status of the service request at different

instants of time during the operation. Finally, users can download a text file

containing sensitivity indices after the execution of the model runs from the

web-interface. Moreover, the user can also download the input and output

set of values for the model from the master using the interface.

12

Figure 1: Proposed Framework. A master-slave based framework where master assumes

all the control functions and slaves executes multiple model runs and sends the output

variable to the master for the calculation of sensitivity indices.

13

3.2. Master

The Master is the central point of the proposed service framework, con-

trolling how the system serves the service requests in an efficient, scalable,

and timely manner. Based on the user input, the Master generates required

input parameter combinations. It then divides the required model runs

into several sub-jobs, assigns these sub-jobs to multiple Workers, collects

the model outputs from the workers upon the completion of the execution,

and calculates the sensitivity indices using these outputs. The Master makes

use of different mechanisms to distribute the computational complexity of a

large number of model runs over multiple Cloud Workers.

The Input Retriever retrieves key information from the files uploaded and

input fields in the web-interface as per the service request (job) initiated by

the user. Based on the information retrieved by the Input Retriever, the

Sample Generator generates sets of input parameter combinations within

predefined ranges for the SA method. Each combination results in one model

run, producing one model output. It should be noted that for different SA

methods chosen, the total number of samples (combinations) generated is

different even for the same sample size. For example, for a sample size of

1000, the total number of input parameter combinations generated for the

Morris method is 4000, while the number is only 3000 for the FAST method

(for three input parameters in the model).

The Job Handler manages the computational complexity of each job by

creating multiple independent tasks with a fixed number of model runs, re-

ferred to as a subjob. Each subjob contributes a fraction to the job. The

subjobs are independently executed in multiple workers. The Job Handler

14

consists of two sub-components - the Subjob Creator and the Subjob Assigner.

The Subjob Creator creates several independent subjobs (S1, S2, ..SN) with

each subjob possessing their respective sample combinations. The Subjob

Assigner finds suitable workers for each subjob and assigns the subjob to the

worker for the required number of model runs. In the framework, a suitable

worker can be a new Cloud instance or an idle worker within the system.

Upon completion of all the required model runs, the SA Indices Calculator

aggregates the model outputs from the files uploaded by the workers. This

component uses SALib python library to calculate the sensitivity indices for

the input parameters of the model. The calculated indices are stored and

can be downloaded by users through the web-interface.

3.3. Workers

Workers are the Cloud instances created by the Master to execute the

model runs to produce outputs. After the subjobs are assigned, the Workers

find and download the required files. The Workers then execute the models

multiple times (under a subjob), collect the model outputs, and upload the

input combinations along with the respective outputs and time information

to the Master. Each worker operates independently within the framework.

It is noteworthy that the workers should have the computational model tool

pre-installed on them. The workers have sub-components assuming different

functions.

The Resource Finder finds all the necessary relevant files in the Mas-

ter, based on the identifier attached to the subjob assigned for the worker

and downloads them in the respective directories in the worker. The Sub-

job Executor runs the model in the worker for as many input parameter

15

combinations in the file downloaded by Resource Finder. The model runs

can run as an ensemble to save the time required for multiple data fetch,

as one data fetch is enough for all the model runs in such mode. The Out-

put Logger employs a text processor to extract the reduced information on

the input parameters’ combinations, the model output produced by the re-

spective combination, and the time taken for each model run. The reduced

information makes the data exchange between Workers and Master more ef-

ficient. The Result Uploader sends out the requested information extracted

by the Output Logger to Master, where the results are stored in a centralized

fashion.

3.4. System Setup

Algorithm 1 outlines the steps used to perform the sensitivity analysis of

an environmental model in the framework. The symbols used in the algo-

rithm are listed in Table 1. Java is the main programming language used to

enable different mechanisms within the framework. Python scripts are used

to generate the samples of input parameters’ combinations and calculate the

sensitivity indices using SALib. Python is used as a programming tool for

text processing and synthesis. Nectar Cloud [56], an OpenStack-based Cloud

infrastructure, is used to provide the Cloud resources for the model runs to

produce the model outputs. For simplicity, we use only one kind of instance

flavor (m2.small) for the experiments. The setup can be easily extended

to accommodate different types of instance flavors for further optimizing

the resource utilization and operation time and cost within the framework.

The creation of new Cloud instances is handled by JClouds, which provides

Java-based wrapper APIs for OpenStack. The web-interface of the proposed

16

service framework is implemented using VueJS to offer concurrent access to

multiple users. The Spark modeling framework is pre-installed on the Cloud

image, based on which the new instances are created.

Algorithm 1 Calculation of Sensitivity Indices
Input: [u,N, k,Method]

Output: [Si1, Si2, ..Sk] (Sensitivity Indices)

Master:

1: For every service request uk, Retrieve the values of N, k and Method

2: if Method == ‘Sobol’ then

3: Generate 2N(k + 1) input parameters combinations

4: else if Method==‘Morris’ then

5: Generate N(k + 1) input parameters combinations

6: else if Method==‘Fast’ then

7: Generate N × k input parameters combinations

8: end if

9: Calculate NS = min{10, d#Samples
x

e}

10: Divide samples into NS batches and create NS subjobs Si...SNS

11: Find NS workers (Wi) and assign Si to worker Wi,

12: For every file uploaded by worker Wi, check if #files == NS

13: if #files == NS then

14: Calculate sensitivity indices Si1, Si2, ..Sk

15: end if

Worker Wi:

16: Find Configuration file and sample file Fi in the Master

17: Download files in respective directories

18: Execute subjob Si

19: For each model run rc, Extract input combination, model output and time information

20: if Si == completed then

21: Upload reduced result file rfi to Master

22: end if

23: Make worker Wi free and available for other subjobs

17

Table 1: Description of Symbols used

Symbols Description

u User Request

N Sample Size Argument

k Number of model parameters

Method SA Method

Sii Sensitivity Index for parameter ki

NS Number of subjobs for a user request u

#samples Size of combinations generated

#files Number of uploaded result files

x Number of model runs in each subjob

Si ith subjob

Wi ith worker for user request u

Fi Sample File for subjob Si

rc cth model run in any subjob

rfi Reduced result file for subjob Si

4. Framework Application Use Case

In this section, we describe the application of our Cloud-based SA frame-

work to wildfire models and analyze the performance of the framework for

different SA methods and sample size.

4.1. Wildfire model

The Spark [57] wildfire modeling system is used to simulate the example

of natural hazards for the SA Cloud framework. Spark is a flexible plat-

form for simulating wildfires allowing different types of fire behaviour to be

defined using scripts, including rates-of-spread in different fuel types, fire-

brand dynamics, and risk metrics for fire impact and severity. Simulations in

Spark typically require several input data sets for the fire behaviour models,

including maps of the land classification, fuel type, topography, fuel informa-

18

Figure 2: Visualization of the spread of fire in Spark for a location in Tasmania, Australia.

The colour scale indicates the time of arrival of the fire, with blue being the area covered

in the first hour and red the final hour of a nine-hour simulation. The fire is constrained

to the south by river.

tion, and meteorological data. Calculations in Spark are parallelized using

the OpenCL framework to enable the efficient execution of the simulations.

Figure 2 shows an example simulation for the predicted areas burnt over

different periods of time.

For an example of SA analysis, an area in Tasmania, Australia was chosen.

Tasmania is one of the most wildfire-prone regions in Australia during the

fire season. From 2018 to 2019, 841 wildfires were reported, and 310,311

hectares were burnt by wildfires [58]. As a part of their ongoing effective

wildfire management strategy, the Tasmania Fire Service (TFS) and State

19

Emergency Service (SES) have been actively working to create and manage

high-quality land data sets relevant to wildfires which were used for this

study. The simulations used a number of different empirical fire models for

fuels found in Tasmania. Vegetation types from the TasVeg data set [59]

were mapped to a number of Australian empirical fire spread models. These

were the McArthur [60] and Dry Eucalypt model [61] for forest, a model for

buttongrass moorland [62], a model for heathland [63] and grasslands [64].

The parametric sensitivity study was conducted for the meteorological

data inputs common to all the empirical models used: the air temperature,

relative humidity and wind speed. The simulations were run for nine hours

at a specified single start location within Tasmania. The total fire area (in

hectares) burned by the wildfire was considered as the output variable for

each simulation in Spark. The ranges of weather data used were based on

observations by McArthur [65] and reported in [66]; these are listed in Table

2. For simplicity, we assigned a uniform distribution to the parameters while

creating samples for the analysis. These distributions, as well as the ignition

location of the wildfire, can straightforwardly be changed and the values used

here are simply to demonstrate the utility of the framework.

Table 2: Probability Density Function (PDF) of Input Parameters

Parameters pdf Range

Temperature Uniform Distribution [10, 40]

Relative Humidity Uniform Distribution [10, 90]

Wind Speed Uniform Distribution [10,60]

20

Figure 3: User Interface. A user uploads the required configuration file for Spark simula-

tion and enters the sample size argument and desired SA method to run the analysis as a

new job in the framework.

21

4.1.1. Calculation of Sensitivity Indices at Sample Size Argument = 1000

For a SA calculation of sample size N = 1000 the numbers of model runs

required were 8000, 4000, and 3000 respectively for Sobol, Morris, and FAST

method. Here, the sample size argument of 1000 has been chosen to reflect

the high computational demand for sensitivity analyses. Further analysis

on the choice of the sample argument for convergence is included in Section

5.2. The value can be changed to suit the nature of analysis to be carried

out. To perform the SA, a service request was initiated in the framework by

uploading a configuration XML file and input file (with information about the

sample size argument, number of parameters, and SA method) into the web-

interface as shown in Figure 3. For this study, the value of x (total number

of total model runs in a worker) as defined in Algorithm 1, was taken as 100.

The effect of x on the overall time performance of the framework is detailed

in a subsequent section. Based on the value of x and the total numbers of

samples created, the Master creates a corresponding number of subjobs and

assigns them to the Workers. Table 3 lists the values of sample size and the

total number of subjobs/workers created for different SA methods. Upon

completion of the models runs in the workers, Master combines the result

files and calculates the sensitivity indices, which can be downloaded from

the web-interface, as shown in Figure 4. In the framework, we use the cloud

instances of flavor type m2.small with 1 VCPU, 4 GB RAM, and 10 GB

memory Ubuntu 16.04 LTS ‘Xenial’ amd64. The discussion on the analysis

of the sensitivity indices is made in the next section.

Figure 5 represents the total time taken by the Cloud framework using

a sample argument of 1000. The total time includes the time taken for the

22

Figure 4: A Sample Downloadable File. After the completion of the job execution, the

user gets to download a text file with the values of sensitivity indices calculated based on

the chosen SA method.

Table 3: Total model runs (N) and workers for different SA methods

S.N SA Method Model Runs Workers/Subjobs

1 Sobol 8000 80

2 Morris 4000 40

3 FAST 3000 30

creation of new Cloud instances, downloading the files, required model runs,

and calculation of the indices. The infrastructure used for the study, Nectar

Cloud [56], can experience delays when required to create a large number of

instances simultaneously. Such delays appear due to various hardware and

physical limitations, including memory size. As such, the time required for

the creation of new instances varies from 1 minute to 5 minutes. Due to

selective downloads, the time needed for downloading the required files and

resources is minimal (a few seconds).

Since the indices are calculated only once after the completion of all the

subjobs, the time required for indices calculation is also minimal (1 second).

A typical user request for calculation of Sobol indices for a sample argument

23

of 1000 takes around 22 minutes, while the same for Morris method takes

around 36 minutes. The calculation of the indices using the FAST method

takes around 17 minutes. The values of input parameters govern the fire

simulations in Spark, and the overall simulation time is strongly dependent

on the various combinations of these input parameters. This dependency

explains the difference in the time performance of the framework even when

Workers have subjobs with the same number of simulations.

Figure 6 compares the total time taken for the SA using the proposed

Cloud framework and performing the analysis on a single local machine for a

sample argument of 1000 and three different SA methods. For rational com-

parison, we consider a single local machine with the same hardware specifica-

tions as the Cloud instance has (4 GB RAM, 1 VCPU, and 10 GB memory,

Ubuntu 16.04 LTS ‘Xenial’ amd64). For the same set of input parameter

combinations, the Cloud framework takes only 3.0% of the time taken by

a comparable local system for calculating the indices using Sobol Method.

This comparison includes the time taken to create the instances within the

framework. Moreover, the Cloud framework further decreases the waiting

time for SA using Morris and FAST method as the Cloud framework takes

only 4.5% and 6.3% of the time taken by a single machine. In addition to

the improvement in waiting time, the Cloud framework offers the benefits

of flexibility, scalable resources, ease of use, and efficient handling of model

outputs.

4.1.2. Performance Analysis

In this section, we analyze the performance of the framework by varying

the sample size argument (N) and the number of simulations (x) in a subjob.

24

(a) Sobol Method

(b) Morris Method

(c) FAST Method

Figure 5: Time required for calculation for SA indices (x = 100). The time required for the

calculation of the SA indices varies based on the SA method chosen, which is contributed

by different sampling methods. The Cloud instances in Nectar Cloud take more to start

up when subjected to a large number of simultaneous spun-off requests.25

Figure 6: Time Performance Comparison of our framework against a single-machine sys-

tem. Our framework completes the analysis in 3-7% of the total time taken by a local

system with a single machine, which is at least 15 times faster. The framework offers

additional benefits of flexibility and convenience.

In our study, creation time is the time required to create a cloud instance

after the request has been initiated while execution time is the time taken

by a worker to execute all simulations in a subjob. The execution time

includes data fetch time and computative cycle time for all the simulations

as explained in [44]. Additionally, we present the impact of parallelizing the

model runs in a distributed computing environment of the Cloud. The Cloud

instance creation time does not affect the distribution of simulations among

the workers and thus, the time taken for the creation of the instances is

not considered for the analysis of the impact of parallelization of the model

runs. The Cloud instances are assumed to be available and ready to run the

models.

The change in the number of sample size argument ultimately changes

26

the total number of model runs for the analysis. The time taken for the

calculation of the SA indices for the input parameters for the varied number

of samples (simulation runs) is represented in Figure 7. Figure 8 represents

the time taken for the framework to complete the analyses for different values

of x.

In Figure 7, it is evident the change in the total time taken for the sen-

sitivity analysis is not directly proportional to the change in the number of

model runs in a job. The maximum absolute difference in the operation time

for a varied number of sample sizes (model runs) for the Sobol method is

162 seconds (Figure 7a). For Morris, the performance analysis shows that

the total operation time has changed by 252 seconds (see Figure 7b) when

the total model runs changed from 400 to 4000. The same statistics for the

FAST method stands at 222 seconds (Figure 7c). Even when the total model

runs increased by a factor of 10, the total operation time in the framework

did not increase in the same proportion. The Cloud framework distributes

the increase in the computational complexity with increasing model runs over

multiple Cloud instances. As such, the entire analysis is completed in a time-

efficient manner for a large sample size argument. However, there are relative

differences between the operation time for each method, which are the result

of various combinations of parameter samples resulting in longer simulations

in the same worker. Currently, there are no optimizing mechanisms in the

framework that intelligently distribute the parameter combinations. This will

be the subject of future work to improve the performance of the framework.

In Figure 8, it is clear that the number of model runs in a Worker, x, has

a significant impact on the total time taken for a SA request. The total time

27

(a) Sobol Method

(b) Morris Method

(c) FAST Method

Figure 7: Variation of total operation time with the sample size (for x=100). There is a

variation of total operation time with the change in the value of x but, even when the total

model runs (N) increased by a factor of 10, the framework distributes the computational

complexity of the analysis over more number of Cloud instances and finishes the entire

operation in a time-efficient manner.

28

(a) Sobol Method

(b) Morris Method

(c) FAST Method

Figure 8: Variation of total operation time with values of x (for N = 1000). The total

operation time increases with the increase in the number of model runs in a subjob (running

in a worker) but, the total workers allocated for the job decreases with the increase in the

value of x. 29

taken for the completion of a subjob (with multiple model runs) increases

with an increase in the number of the model runs in the subjob. The same

applies to all the methods in the framework, where the total operation time

consistently increases with the increase in the value of x. The number of

workers required to serve the requests decreases with an increase in the value

of x, as shown in Figure 8b. The increase in the operation time is non-linear

and appears to be due to competing data fetching and computing requests

on the Cloud instance from the multiple subjobs. Future work will aim to

investigate this effect to optimize the size of the subjobs and allocation to

the Cloud resources.

4.2. Impact of Parallelization of Model runs

Spark consists of a data fetch and computative cycle [44]. The system

can be configured to run N simulations on a single machine, requiring only

a single data fetch followed by N sequential simulations. On the Cloud, a

job with N simulations can be divided into batches of size n where only one

data fetch cycle is required for all simulations in the batch. Each simulation

batch can be considered to be a parallelizable task and run in individual

workers. The choice of the value of n depends on the availability of the

workers, the desired time of job completion, and resource utilization within

the system. As each batch, rather than the components of each simulation,

can be parallelized on the Cloud the classic Amdahl’s law relation [67] cannot

be applied to calculate a relative speed up factor. Instead, we define a speed

up factor involving the distribution of jobs to M nodes and the possible

execution of n multiple simulations on each node. The speed up factor, s

used here is the ratio of the time taken to complete the job in a single-machine

30

system, Tsingle, to the time taken to complete the job in our framework with

multiple Cloud workers, Tcloud. The speed up factor s represents the factor by

which the time required for the completion of the entire job improves when

compared to execution in a single-machine system.

The time taken for a single simulation consists of the fetch time Tfetch

plus an average time for a simulation, Tsim (for this analysis, we generalize

the time taken for model runs and use an average unit execution time for

Tsim). The fetch time Tfetch can be considered to be a constant term based

on the type of the instance used. For N total simulations on a single-machine

system the total time, Tsingle, is therefore (Tfetch + NTsim). For the Cloud

system, all the workers run in parallel (the time for the completion of the job

would be the maximum of the time taken by each worker) and thus, the time

taken, Tcloud, for N total simulations distributed over M nodes each carrying

out n = N/M simulations is:

Tcloud = Tfetch + nTsim (1)

The speed-up factor is therefore:

s =
Tsingle
Tcloud

=
Tfetch +NTsim
Tfetch + nTsim

(2)

At the greatest possible cloud utilisation, M = N giving n = 1 and an

overall theoretical maximum speed up factor of:

s =
Tfetch +NTsim
Tfetch + Tsim

(3)

In the large simulation limit of N →∞ Eq. (2) gives:

31

lim
N→∞

Tfetch +NTsim
Tfetch + (N/M)Tsim

= M (4)

Showing that the speed-up should be linear with the number of Cloud

nodes, M , for large numbers of simulations.

It should be noted that the simulations can take different times for dif-

ferent input combinations and the fire start location. For example, fires that

burn larger areas (due to a combination of high air temperatures and wind

speeds with low relative humidity) take longer when compared to those with

smaller burned areas (due to low relative values of air temperature and wind

speed with high relative humidity). Fires starting closer to the water bodies

cease quicker even in favorable weather conditions when compared to the fire

starting at a location farther away from water sources. Due to this fact, the

speed up factor calculated for a real system is usually less than the theoret-

ical values of the speed up factor and should be considered as a reference

point (upper limit) to further optimize the real system.

Figure 9 shows the speed up factor and the variation in unit simulation

execution time with the increase in the number of workers for a sample size

argument of 1000. For the Morris method, the number of total model runs

required for the analysis, N , is 4000, taking 48,475 seconds to complete in a

single machine system. Assuming 70 seconds on average for the data fetch

cycle and 12.10 seconds as the average unit simulation execution time, the

maximum possible speed up factor with an arbitrary number of workers (at

least 4000) is 590 (calculated using Equation 4). As can be seen in Figure 9a,

in our framework, the speed up factor linearly increases from 1 to 33 until 50

workers after which the value increases steadily to about 128 for 320 workers

32

(the analysis was limited to this maximum number of workers by our quota

of computing nodes on the Cloud system used). The analysis continued for

worker sizes beyond 320 would produce a similar increase in the speed up

factor. Similar trends are evident with the Sobol and FAST methods, where

the gradient in the speed up factor decreases earlier for the FAST method.

The linear increase in the speed up factor demonstrates the effectiveness of

the framework within the ranges considered.

We also studied the efficiency of using multiple workers in the framework

by further analyzing the unit simulation execution time for different methods

with an increase in worker size as summarized in Figure 9b. The unit simu-

lation execution time represents the time required for the computative cycle

of the simulations in the subjob. The data fetch time for any worker cannot

be further reduced or parallelized and hence/, is not considered as a part of

the unit simulation execution time. The unit simulation execution time is

the least when all the simulations are run in a single machine. Consequently,

running such a high number of model runs costs the least in a single-machine

system, but takes several days to complete. Such delays are not acceptable

in an operational environment. With the facilitation of multiple distributed

workers in the framework, there has to be a data fetch cycle in each worker,

which is then followed by model runs. Adding more workers in the framework

does not necessarily mean an improvement in the unit simulation execution

time. Adding more workers can decrease the total time for the completion of

the job but, such addition cannot always ensure maximum resource utiliza-

tion. Due to this fact, the value of unit simulation execution time saturates

after a particular value of worker size. For example, the average time spent

33

Table 4: Sensitivity Indices for wildfire simulations (Sample Size Argument N = 1000)

Input Morris Method Sobol Analysis FAST

Parameters µ σ % FO Total % FO Total %

Temperature 0.1 0.20 16.6% 0.01 0.09 8.8% 0.01 0.09 6.4%

Rel. Humidity 0.31 0.41 51.8% 0.65 0.91 69.3% 0.59 0.91 67.4%

Wind 0.19 0.31 31.6% 0.07 0.29 21.8% 0.07 0.35 26.2%

to run a simulation for Morris method with 100 workers is almost the same

for a worker size of 200 for the same job, despite the entire job taking less to

complete with worker size of 200. It is also clear from Figure 9b that workers

can be best utilized (maximum resource utilization with a balanced trade-off

between time and resources) at a size of 50, 100 and 30 for Morris, Sobol,

and FAST methods respectively. Beyond these worker sizes, unit simulation

execution time saturates indicating to the fact This can be further studied

to define a suitable trade-off between the worker size and time for various

situations ensuring better resource utilization.

5. Sensitivity Analysis Results

In this section, we explain in detail the results of the sensitivity analyses

of wildfire models using our framework and discuss the implications of the

findings.

5.1. Sensitivity Indices

The first order (FO) and the total effect of the input parameters on the

area burned by the fire are summarized in Table 4. The analysis shows that

relative humidity has the highest effect on the variability of fire size and the

34

(a) Speed Up factor vs Number of workers

(b) Unit Simulation execution time

Figure 9: Analysis of the impact of parallelization of simulations in the framework. Ini-

tially, the framework scales linearly with the addition of more workers, but the gradient

flattens after a certain point. The linear scaling demonstrates the effectiveness of our

framework. The framework can be best utilized at different sizes for different methods.

35

temperature has the least influence. The wind also has a significant effect,

but the effect is less than that of relative humidity.

Similar to the first-order indices, the total sensitivity indices also confirm

relative humidity as the parameter with the highest impact and temperature

with the least impact on the model output variability. The interaction of wind

with other parameters is shown by the Sobol analysis to have the greatest

effect on the output variability when compared with other interactions. All

three methods indicate the interaction of the temperature with other param-

eters has the least influence in the variance of the fire area. Even though

the Morris and FAST methods show that interactions of relative humidity,

with other parameters, have the greatest impact, the interactions of wind,

with other parameters, also have a significant impact on the model output

variability. Relative humidity contributes to 52-67% in the variability of fire

area while temperature contributes to just 6-17% of the fire area variability.

5.2. Convergence Test

For the convergence of sensitivity indices, we follow the three criteria

defined by Sarazzin et al.[68] (consistent sensitivity indices values, parameter

ranking, and partitioning between sensitive and least sensitive parameters).

The ranks (order of the input parameters with the highest to the lowest

impact) of the input parameters for the wildfire model are quite consistent

for every sample size. The difference between the SA indices calculated

using Sobol and FAST for the same input parameter is significant (more

than 0.05) until the base sample size is 1000. Beyond the value of the base

sample size (N) greater or equal to 1000, the indices converge as per the

consistent value criterion. The consistent value criterion is fulfilled for Morris

36

method at smaller sample size (at around 500) as Morris method is a semi-

quantitative measure and can effectively be used as a proxy for variance-based

SA methods with low computation cost and for ranking and screening of the

input parameters [5, 69]. Similarly, the distance between the most significant

and the least significant impact of the parameters is almost constant for all

the methods after N ≥ 500. Thus, for this study, the minimum base size

of the sample for the convergence of SA indices is 1000 for Sobol and FAST

and 500 for the Morris method, which requires 8000, 2000 and 3000 model

runs respectively.

5.3. Repeatability Analysis

Figure 11 represents the scatter plot of the repeatability test for fire sim-

ulations where the fire area is calculated once by considering the variability

of the temperature and then without considering the variability of the tem-

perature. As represented in the figure, the values of correlation coefficients

between the sets of fire areas are 0.92, 0.95, and 0.95 for the input param-

eter combinations obtained through the Morris, Sobol, and FAST methods

respectively. These values (closer to 1) represent the degree of similarity be-

tween the two data sets, which again concludes that the temperature has the

least impact on the variability of the simulated wildfire area. Such findings

could, in practice, help to define a trade-off between the precision of results

and the computational time for operational situations. Moreover, new op-

erational tools could be built by cutting down the parameter space of less

important input parameters.

37

(a) Morris Method

(b) Sobol Analysis

(c) FAST

Figure 10: Convergence of SA indices for Spark input parameters. The minimum model

runs required for the convergence of the indices vary according to the methods. It is fair

to say the indices start converging for the value of sample argument (N ≥ 1000) for all

the methods. 38

(a) Morris Method

(b) Sobol Analysis

(c) FAST Method

Figure 11: Scatter Plot of Repeatability Test for Spark Simulations. The high values

(closer to 1) of correlation coefficients calculated for all methods represent the similarities

between two different data sets considered for repeatability analysis, thereby confirming

the insignificant impact of temperature in fire area.39

6. Conclusions and Future Directions

Natural hazard models are essential for modeling and mitigating risks

from dangerous events. However, these models rely on a complex set of in-

terconnected input variables. Here, we have introduced a Cloud framework

for rapidly performing a large number of simulations and subsequently sensi-

tivity analysis (SA) on such models, allowing the dominant components and

degree of connection between the input parameters to be characterized. This

characterization can be applied to either improve understanding of a natu-

ral hazard in progress by categorizing the current dominant factors driving

the event and guide mitigation efforts, or allowing the parameter space for

inessential input parameters to be reduced for risk modeling. Such practice

can leverage the current state-of-the-art of natural hazard modeling systems.

The data sets obtained after each analysis can be used for further analyses

for better insights into the models.

We have demonstrated the efficiency of our framework with the scalability

achieved while calculating sensitivity indices for simulated fires in Tasmania

using the Spark wildfire modeling system. The framework was able to achieve

a significant speed improvement (at least about 15 times faster) over a sim-

ilar analysis on a local machine. The SA in our demonstration investigated

the variation in the fire area caused by the input parameters temperature,

relative humidity, and wind speed. Relative humidity was found to have the

greatest impact on the area burned by the fire, while the temperature was

the parameter with the least impact. Future work will involve optimization

of the framework and extensions to create and assign tasks to the Cloud

Workers in an optimal manner. Our framework is also model-agnostic and

40

is directly applicable to other environmental and disaster models.

Declaration of Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] L. Cai, H. S. He, Y. Liang, Z. Wu, C. Huang, Analysis of the uncertainty

of fuel model parameters in wildland fire modelling of a boreal forest in

north-east china, International Journal of Wildland Fire (2019).

[2] Y. Liu, E. Jimenez, M. Y. Hussaini, G. Ökten, S. Goodrick, Para-

metric uncertainty quantification in the rothermel model with ran-

domised quasi-monte carlo methods, International Journal of Wildland

Fire 24 (3) (2015) 307–316.

[3] J. Hilton, C. Miller, A. Sullivan, C. Rucinski, Effects of spatial and

temporal variation in environmental conditions on simulation of wildfire

spread, Environmental Modelling & Software 67 (2015) 118 – 127.

doi:https://doi.org/10.1016/j.envsoft.2015.01.015.

URL http://www.sciencedirect.com/science/article/pii/

S1364815215000468

[4] J. Nossent, P. Elsen, W. Bauwens, Sobol’sensitivity analysis of a com-

plex environmental model, Environmental Modelling & Software 26 (12)

(2011) 1515–1525.

41

[5] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,

M. Saisana, S. Tarantola, Global sensitivity analysis: the primer, John

Wiley & Sons, 2008.

[6] X. Qin, H. Wang, Y. Li, Y. Li, B. Mcconkey, R. Lemke, C. Li, K. Brandt,

Q. Gao, Y. Wan, et al., A long-term sensitivity analysis of the denitrifi-

cation and decomposition model, Environmental modelling & software

43 (2013) 26–36.

[7] X. Li, G. Hadjisophocleous, X.-q. Sun, Sensitivity and uncertainty anal-

ysis of a fire spread model with correlated inputs, Procedia Engineering

211 (2018) 403–414.

[8] D. Hamby, A review of techniques for parameter sensitivity analysis of

environmental models, Environmental monitoring and assessment 32 (2)

(1994) 135–154.

[9] S. Tarantola, N. Giglioli, J. Jesinghaus, A. Saltelli, Can global sensi-

tivity analysis steer the implementation of models for environmental

assessments and decision-making?, Stochastic Environmental Research

and Risk Assessment 16 (1) (2002) 63–76.

[10] E. Jacquier, N. G. Polson, P. E. Rossi, Bayesian analysis of stochas-

tic volatility models, Journal of Business & Economic Statistics 20 (1)

(2002) 69–87.

[11] S. An, F. Schorfheide, Bayesian analysis of dsge models, Econometric

reviews 26 (2-4) (2007) 113–172.

42

[12] J. E. Oakley, A. O’Hagan, Probabilistic sensitivity analysis of complex

models: a bayesian approach, Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 66 (3) (2004) 751–769.

[13] A. Yegnan, D. Williamson, A. Graettinger, Uncertainty analysis in air

dispersion modeling, Environmental Modelling & Software 17 (7) (2002)

639–649.

[14] G. Kuczera, E. Parent, Monte carlo assessment of parameter uncertainty

in conceptual catchment models: the metropolis algorithm, Journal of

Hydrology 211 (1-4) (1998) 69–85.

[15] C. Freissinet, M. Vauclin, M. Erlich, Comparison of first-order analysis

and fuzzy set approach for the evaluation of imprecision in a pesticide

groundwater pollution screening model, Journal of Contaminant Hydrol-

ogy 37 (1-2) (1999) 21–43.

[16] A. D. Richardson, D. Y. Hollinger, Statistical modeling of ecosystem

respiration using eddy covariance data: maximum likelihood parameter

estimation, and monte carlo simulation of model and parameter uncer-

tainty, applied to three simple models, Agricultural and Forest Meteo-

rology 131 (3-4) (2005) 191–208.

[17] A. Bachmann, B. Allgöwer, Uncertainty propagation in wildland fire

behaviour modelling, International Journal of Geographical Information

Science 16 (2) (2002) 115–127.

[18] R. Cibin, K. Sudheer, I. Chaubey, Sensitivity and identifiability of

43

stream flow generation parameters of the swat model, Hydrological Pro-

cesses: An International Journal 24 (9) (2010) 1133–1148.

[19] K. Holvoet, A. van Griensven, P. Seuntjens, P. Vanrolleghem, Sensitivity

analysis for hydrology and pesticide supply towards the river in swat,

Physics and Chemistry of the Earth, Parts A/B/C 30 (8-10) (2005)

518–526.

[20] A. v. van Griensven, T. Meixner, S. Grunwald, T. Bishop, M. Diluzio,

R. Srinivasan, A global sensitivity analysis tool for the parameters of

multi-variable catchment models, Journal of hydrology 324 (1-4) (2006)

10–23.

[21] K. L. White, I. Chaubey, Sensitivity analysis, calibration, and valida-

tions for a multisite and multivariable swat model 1, JAWRA Journal

of the American Water Resources Association 41 (5) (2005) 1077–1089.

[22] C. Yang, Y. Xu, D. Nebert, Redefining the possibility of digital earth

and geosciences with spatial cloud computing, International Journal of

Digital Earth 6 (4) (2013) 297–312.

[23] H. Brohus, P. V. Nielsen, A. J. Petersen, K. Sommerlund-Larsen, Sensi-

tivity analysis of fire dynamics simulation, in: Proceedings of Roomvent,

Citeseer, 2007.

[24] J. E. Hilton, A. G. Stephenson, C. Huston, W. Swedosh, Polynomial

chaos for sensitivity analysis in wildfire modelling.

[25] R. Salvador, J. Pinol, S. Tarantola, E. Pla, Global sensitivity analysis

44

and scale effects of a fire propagation model used over mediterranean

shrublands, Ecological Modelling 136 (2-3) (2001) 175–189.

[26] P.-A. Ekstrom, Eikos: a simulation toolbox for sensitivity analysis in

matlab, FACILIA AB (2005).

[27] A. F. D’Augustine, Matlode: A matlab ode solver and sensitivity anal-

ysis toolbox, Ph.D. thesis, Virginia Tech (2018).

[28] F. Pianosi, F. Sarrazin, T. Wagener, A matlab toolbox for global sensi-

tivity analysis, Environmental Modelling & Software 70 (2015) 80–85.

[29] J. Herman, W. Usher, Salib: An open-source python library for sensi-

tivity analysis, Journal of Open Source Software 2 (9) (2017) 97.

[30] T. Wagener, J. Kollat, Numerical and visual evaluation of hydrologi-

cal and environmental models using the monte carlo analysis toolbox,

Environmental Modelling & Software 22 (7) (2007) 1021–1033.

[31] P. T. Roy, S. Ricci, R. Dupuis, R. Campet, J.-C. Jouhaud, C. Fournier,

Batman: Statistical analysis for expensive computer codes made easy.,

J. Open Source Software 3 (21) (2018) 493.

[32] A. Dutfoy, I. Dutka-Malen, A. Pasanisi, R. Lebrun, F. Mangeant, J. S.

Gupta, M. Pendola, T. Yalamas, Openturns, an open source initiative to

treat uncertainties, risks’ n statistics in a structured industrial approach,

2009.

[33] S. Tarantola, W. Becker, Simlab software for uncertainty and sensitivity

45

analysis, Handbook of Uncertainty Quantification; Ghanem, R., Higdon,

D., Owhadi, H., Eds (2016) 1–21.

[34] I. Bertrand, J. Alexandre, P. Gilles, Senstivity Analysis, r package

version 1.18.0, https://CRAN.R-project.org/package=sensitivity

(2020).

[35] B. Stanfill, H. Mielenz, D. Clifford, P. Thorburn, Simple approach to

emulating complex computer models for global sensitivity analysis, En-

vironmental Modelling & Software 74 (2015) 140–155.

[36] B. A. Keating, P. S. Carberry, G. L. Hammer, M. E. Probert, M. J.

Robertson, D. Holzworth, N. I. Huth, J. N. Hargreaves, H. Meinke,

Z. Hochman, et al., An overview of apsim, a model designed for farming

systems simulation, European journal of agronomy 18 (3-4) (2003) 267–

288.

[37] R. Sheikholeslami, S. Razavi, H. V. Gupta, W. Becker, A. Haghnegah-

dar, Global sensitivity analysis for high-dimensional problems: How to

objectively group factors and measure robustness and convergence while

reducing computational cost, Environmental Modelling & Software 111

(2019) 282–299.

[38] F. Pianosi, T. Wagener, Distribution-based sensitivity analysis from a

generic input-output sample, Environmental Modelling & Software 108

(2018) 197–207.

[39] F. Pianosi, T. Wagener, A simple and efficient method for global sensi-

46

tivity analysis based on cumulative distribution functions, Environmen-

tal Modelling & Software 67 (2015) 1–11.

[40] E. Borgonovo, X. Lu, E. Plischke, O. Rakovec, M. C. Hill, Making the

most out of a hydrological model data set: Sensitivity analyses to open

the model black-box, Water Resources Research 53 (9) (2017) 7933–

7950.

[41] O. Rakovec, M. C. Hill, M. Clark, A. Weerts, A. Teuling, R. Uijlenhoet,

Distributed evaluation of local sensitivity analysis (delsa), with appli-

cation to hydrologic models, Water Resources Research 50 (1) (2014)

409–426.

[42] M. S. Eldred, W. J. Bohnhoff, W. E. Hart, Dakota, a multilevel parallel

object-oriented framework for design optimization, parameter estima-

tion, sensitivity analysis, and uncertainty quantification, Sandia Na-

tional Labs Report, No. SAND99-0000 (1999).

[43] K. Ujjwal, S. Garg, J. Hilton, J. Aryal, N. Forbes-Smith, Cloud com-

puting in natural hazard modeling systems: Current research trends

and future directions, International Journal of Disaster Risk Reduction

(2019) 101188.

[44] K. Ujjwal, S. Garg, J. Hilton, An efficient framework for ensemble of

natural disaster simulations as a service, Geoscience Frontiers (2020).

[45] F. Campolongo, A. Saltelli, Sensitivity analysis of an environmental

model: an application of different analysis methods, Reliability Engi-

neering & System Safety 57 (1) (1997) 49–69.

47

[46] F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephenson,

T. Wagener, Sensitivity analysis of environmental models: A systematic

review with practical workflow, Environmental Modelling & Software 79

(2016) 214–232.

[47] M. D. Morris, Factorial sampling plans for preliminary computational

experiments, Technometrics 33 (2) (1991) 161–174.

[48] T. Homma, A. Saltelli, Importance measures in global sensitivity analy-

sis of nonlinear models, Reliability Engineering & System Safety 52 (1)

(1996) 1–17.

[49] A. Saltelli, R. Bolado, An alternative way to compute fourier amplitude

sensitivity test (fast), Computational Statistics & Data Analysis 26 (4)

(1998) 445–460.

[50] G. Qian, A. Mahdi, Sensitivity analysis methods in the biomedical sci-

ences, Mathematical Biosciences (2020) 108306.

[51] B. Iooss, P. Lemâıtre, A review on global sensitivity analysis methods,

in: Uncertainty management in simulation-optimization of complex sys-

tems, Springer, 2015, pp. 101–122.

[52] I. M. Sobol’, On sensitivity estimation for nonlinear mathematical mod-

els, Matematicheskoe modelirovanie 2 (1) (1990) 112–118.

[53] A. Saltelli, Making best use of model evaluations to compute sensitivity

indices, Computer physics communications 145 (2) (2002) 280–297.

48

[54] H. Landau, Sampling, data transmission, and the nyquist rate, Proceed-

ings of the IEEE 55 (10) (1967) 1701–1706.

[55] A. Saltelli, S. Tarantola, K.-S. Chan, A quantitative model-independent

method for global sensitivity analysis of model output, Technometrics

41 (1) (1999) 39–56.

[56] Nectar cloud, https://nectar.org.au/research-cloud/, accessed:

2018-05-12.

[57] C. Miller, J. Hilton, A. Sullivan, M. Prakash, Spark–a bushfire spread

prediction tool, in: International Symposium on Environmental Soft-

ware Systems, Springer, 2015, pp. 262–271.

[58] T. F. Service, STATE FIRE COMMISSION ANNUAL REPORT, 2019.

[59] W. Tasmanian Department of Primary Industries, Parks, E. T. V. Mon-

itoring, M. Program, Tasveg 3.0 (2013).

[60] A. McARTHUR, Fire behavior in eucalypt forest. canberra, department

of development, Forestry and Timber Bureau (1967).

[61] N. P. Cheney, J. S. Gould, W. L. McCaw, W. R. Anderson, Predict-

ing fire behaviour in dry eucalypt forest in southern australia, Forest

Ecology and Management 280 (2012) 120–131.

[62] J. Marsden-Smedley, W. R. Catchpole, Fire behaviour modelling in tas-

manian buttongrass moorlands. ii. fire behaviour, International Journal

of Wildland Fire 5 (4) (1995) 215–228.

49

[63] W. R. Anderson, M. G. Cruz, P. M. Fernandes, L. McCaw, J. A. Vega,

R. A. Bradstock, L. Fogarty, J. Gould, G. McCarthy, J. B. Marsden-

Smedley, et al., A generic, empirical-based model for predicting rate of

fire spread in shrublands, International Journal of Wildland Fire 24 (4)

(2015) 443–460.

[64] N. Cheney, J. Gould, W. R. Catchpole, Prediction of fire spread in

grasslands, International Journal of Wildland Fire 8 (1) (1998) 1–13.

[65] A. McArthur, Weather and grassland fire behaviour. commonwealth de-

partment of national development, Forestry and Timber Bureau Leaflet

100 (1966).

[66] M. G. Cruz, J. S. Gould, M. E. Alexander, A. L. Sullivan, W. L. McCaw,

S. Matthews, A guide to rate of fire spread models for Australian veg-

etation, Australasian Fire and Emergency Service Authorities Council

Limited and CSIRO, 2015.

[67] M. D. Hill, M. R. Marty, Amdahl’s law in the multicore era, Computer

41 (7) (2008) 33–38.

[68] F. Sarrazin, F. Pianosi, T. Wagener, Global sensitivity analysis of en-

vironmental models: Convergence and validation, Environmental Mod-

elling & Software 79 (2016) 135–152.

[69] F. Campolongo, J. Cariboni, A. Saltelli, An effective screening design for

sensitivity analysis of large models, Environmental modelling & software

22 (10) (2007) 1509–1518.

50

View publication statsView publication stats

https://www.researchgate.net/publication/343544410

