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ABSTRACT: Recently, El Niño diversity has been paid much attention because of its different global impacts. However,

most studies have focused on a single warm peak in sea surface temperature anomalies (SSTAs), either in the central Pacific

or the eastern Pacific Ocean. Here, we demonstrate from observational analyses that several recent El Niño events show

double warm peaks in SSTA—called ‘‘double-peaked (DP) El Niño’’—that have only been observed since 2000. TheDPEl

Niño has two warm centers, which grow concurrently but separately, in both the central and eastern Pacific. In general, the

atmospheric and oceanic patterns of the DP El Niño are similar to those of the warm-pool (WP) El Niño from the de-

velopment phase, such that the central Pacific peak is developed by the zonal advective feedback and reduced wind speed

anomalies. However, a distinctive difference exists in the eastern Pacific where the DP El Niño has a second SSTA peak. In

addition, the DP El Niño shows more distinctive anomalous precipitation along the Pacific intertropical convergence zone

(ITCZ) when compared with the WP El Niño. We demonstrate that the peculiar precipitation anomalies along the Pacific

ITCZplay a critical role in enhancing the equatorial westerly wind stress anomalies, which help to develop the eastern SSTA

peak by deepening the thermocline in the eastern Pacific.
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1. Introduction

Over the past several decades, our understanding of the El

Niño–Southern Oscillation (ENSO) phenomenon has in-

creased substantially (Bjerknes 1969; Wyrtki 1975; Rasmusson

and Carpenter 1982; Philander et al. 1984; Cane and Zebiak

1985; Jin 1997a,b; Timmermann et al. 2018; Cai et al. 2019). A

recent focus has been on ENSO spatial diversity because

the different patterns of sea surface temperature anomalies

(SSTA) can influence the atmospheric convection, which leads

to different global impacts on the distribution of precipitation,

temperature, and atmospheric pressure (Hoerling et al. 1997;

Trenberth et al. 1998; Capotondi et al. 2015). The classic cat-

egorization is that there are two distinct types of El Niño, and
there are various terms to refer to this. The canonical El Niño,
having SSTA maximum in the eastern Pacific Ocean, is called

the cold-tongue (CT) El Niño or the eastern Pacific El Niño.
The other type of El Niño, having a SSTA maximum in the

central Pacific, is called the warm-pool (WP) El Niño, the
central Pacific El Niño, the El NiñoModoki, or the date line El

Niño (Larkin and Harrison 2005a,b; Ashok et al. 2007; Kug

et al. 2009; Kao and Yu 2009).

Kug et al. (2009) showed that the WP and CT El Niños have
different dynamical mechanisms of their development and

decay phases. For example, the CT El Niño is mostly

developed by the thermocline feedback. In general, the CT El

Niño has stronger westerly wind anomalies, and the center of

maximum heating is shifted eastward of that of the WP El

Niño, which leads to a clear seesaw pattern in the equatorial

thermocline. The deepened thermocline in the eastern Pacific

easily induces sea surface warming in the eastern Pacific, which

is a major process for the development of CT El Niño.
However, the magnitude of the westerly wind anomalies as-

sociated with the WP El Niño is relatively weak and shifted

westward, so that it hardly deepens the eastern Pacific ther-

mocline. Instead, the eastward currents, due to both geo-

strophic and wind-driven currents, are evident in the central

Pacific during its development phase, which accompanies

considerable warm advection where the climatological zonal

temperature gradient is strong. In addition, the westerly

anomaly reduces the trade winds, which can help to develop

surface warming by reducing evaporation. This is more effec-

tive where the climatological SST is high. These different

mechanisms of the two El Niño types lead to their different

location of SSTA that could induce different global impacts

(Kug et al. 2010a; Shi et al. 2019; Capotondi et al. 2019).

In a recent analysis of the representation of ENSO in 36

CMIP5 coupled model simulations, a peculiar pattern of El

Niño was recognized by Graham et al. (2017): the double-

peaked (DP) El Niño. In theDPEl Niño, the twowarm centers

are separated, growing simultaneously in both the eastern and

central Pacific. They argued that the DP El Niño is an issue

seen only in coupled climate model simulations, and its exis-

tence is due to the models’ cold-tongue bias in the equatorial

central and eastern Pacific. By analyzing the mean location of

the dynamic warm-pool edge (DWPE; i.e., the maximum zonal

salinity gradient), they showed that the central Pacific warm
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peak is related to the magnitude of the cold-tongue bias, as

manifested by its unrealistic westward displacement (Brown

et al. 2013). They also pointed out that theDPEl Niño emerges

more frequently in the preindustrial PiControl coupled CMIP

simulations, because they display a stronger cold tongue due to

the lower CO2 concentrations, relative to results from histori-

cal simulations, which include the effects of historical increases

in atmospheric CO2.

As the DWPE moves toward the western Pacific because of

the cold-tongue bias, the westerly wind anomalies and resul-

tant eastward current anomalies occur farther westward. Also,

the maximum of the climatological zonal temperature gradient

moves westward (Picaut et al. 1996, 1997; Clarke et al. 2000).

Thus, the zonal advective feedback term, by the eastward

current anomalies and climatological zonal temperature

gradients, leads to the warm center in the central Pacific.

Additionally, the net surface heat flux contributes to the

development of the central peak since the cold-tongue bias

reduces the cloudiness, leading to an increase in incoming

shortwave radiation due to the weak SST–cloud interaction

(Rashid and Hirst 2015). The eastern SSTA warm peak of

the DP El Niño is generated by the thermocline feedback

term, climatological upwelling, and anomalous vertical

temperature gradients. However, the magnitude of this

peak is weaker than for the CT El Niño because the westerly

wind stress anomalies of the DP El Niño are located far-

ther west.

Interestingly, Graham et al. (2017) argued that DP El Niños
are not found in the historical observational data because of

the absence of a cold-tongue bias in the real world. In the

present study, with the analysis of longer observational records

from 1980 to 2018, we were able to identify at least three

characteristic DP El Niño events. This study not only aims to

detect DP El Niño events in the observational record but also

aims to identify the characteristic drivers and mechanisms of

these events. The individual SSTA pattern of each DP El Niño
is shown in Fig. 1. While there is overall warming in the eastern

and central Pacific, the warm centers are clearly separated. The

location of the central or eastern peak is very similar to the

respective location of the WP or CT El Niño center. Since the

SSTA peaks are separated, any conventional ENSO indices

such as Niño-3, Niño-3.4, and Niño-4 SSTA cannot identify

both peaks. In this study, we examined characteristics of this

new type of El Niño and suggest a possible mechanism. We

briefly discuss the data and methods in section 2. Section 3

explains how each peak develops separately. Last, a summary

and discussion are given in section 4.

2. Data and methods

a. Observational data

We use the NOAA Extended Reconstructed Sea Surface

Temperature (ERSST), version 5 (Huang et al. 2017), with

28 3 28 resolution as the primary data analyzed in this study to

detect the DP El Niño in the observations. We use monthly

mean zonal wind stress, oceanic currents, sea surface height,

and vertical potential temperature obtained from Global

Ocean Data Assimilation System (GODAS) with 0.3338 3 1.08
resolution (Behringer and Xue 2004). The potential tempera-

ture and currents are used for the heat budget analysis (Huang

et al. 2010). The monthly mean precipitation data are from the

CPC Merged Analysis of Precipitation (CMAP) with 2.58 3
2.58 resolution (Xie and Arkin 1997). Last, the monthly mean

wind speed data at sigma level 0.955 (from the daily wind

speed) and zonal wind at 850 hPa are from the National

FIG. 1. Individual SSTA pattern (8C) of NDJ for each DP El Niño event [(a),(b) 2002/03; (c),(d) 2006/07; and (e),(f) 2018/19] (left) from

ERSST and (right) from GODAS.

1292 JOURNAL OF CL IMATE VOLUME 34

Brought to you by UNIVERSITY OF TASMANIA MORRIS | Unauthenticated | Downloaded 01/20/21 10:49 PM UTC



Centers for Environmental Prediction–National Center for

Atmospheric Research (NCEP–NCAR) reanalysis 1 with

2.58 3 2.58 resolution (Kalnay et al. 1996). All of these data

sources cover the period from January 1980 to February 2019.

b. Methods

As outlined in the introduction, this study aims to first detect

DP El Niño events in the 40-yr observational record of ERSST

data, and second to identify the developing mechanisms of

these events. However, before we define what a DP El Niño is,

we first develop an algorithm to detect local maximum SSTA

because typically used area-averaged ENSO indices are unable

to detect DP El Niños. First, we carry out a 3-month running

mean SSTA and removed the long-term trend. Second,

we averaged the data meridionally (from 28S to 28N) and

calculated a moving average with a 308 longitude window from

1608E to 908W. The window is progressively moved by a 108
interval (from 1608E–1708W to 1208–908W; nine points). Third,

if the moving SSTA is greater than 1 standard deviation of the

SSTA, we define it as a warm point. If at least one warm point is

detected during November–January (NDJ) of a certain year,

that year is defined as an El Niño year. On the basis of this

criterion, a total of 12 El Niño events are detected from 1980

to 2018.

Next, to separate El Niño types based on the longitudinal

SSTA distribution, we try to identify a local maximum in the

SSTA. If a warm point is isolated, it is selected as a local peak.

Otherwise, if the warm points are adjacent, we detected the

local peaks among the consecutive warm points. If there is a

single local peak in NDJ, the case is classified as either aWP or

CT El Niño depending on the longitude of the warm center. If

there is a double peak in NDJ, the case is classified as a DP

El Niño.

Figure 2 shows the longitudinal distribution of the number of

local SSTA peaks. For all months (Fig. 2a), it is evident that the

number distribution shows a clear bimodal structure. One

center is located in the central Pacific, and the other is near the

eastern boundary of the equatorial Pacific. That is, the highest

frequency of the local peaks occurs at 1558 and 1058W. In ad-

dition, there are only two cases that have their SSTA maxima

at 1358W as shown in Fig. 2a.

When we only consider the ENSO peak time (NDJ), the

distribution still shows a bimodal structure (Fig. 2b), with no

cases of SSTA maximum at 1358W. The bimodal structure

suggests the possibility that at least two distinct physical modes

exist in the tropical Pacific, which can explain the zonal di-

versity of the ENSO patterns. Due to the clear separation, we

easily classify the WP El Niño and CT El Niño based on the

location of their SSTA peaks with the 1358Wcriterion. In other

words, if the peak is located to the west of 1358W, the event is

defined as WP El Niño; if the peak is to the east of 1358W, it is

defined as CT El Niño.
Interestingly, of the 12 El Niño events in the record, nine

events show a single peak, but three events (2002/03, 2006/07,

2018/19) have two local peaks. In this study, these three El

Niño events are classified as DP El Niño, and the others are

classified as WP (1986/87, 1987/88, 1991/92, 1994/95, 2004/05,

2009/10) or CT El Niños (1982/83, 1997/98, 2015/16) depending
on the location of the SSTA peak.

c. The mixed layer heat budget

To understand the dynamical processes that underpin the

development of the SSTA, we analyzed the mixed layer tem-

perature (MLT) tendency budget. Because the two warm

centers evolve separately, we examine each center respec-

tively. We use MLT to examine the heat budget as we checked

FIG. 2. The longitudinal structure of the SST peaks. The peaks are counted from (a) all months and (b) only NDJ.

Gray bars represent the single peak, and black bars represent the double peaks. The x axis is longitude; the y axis is

the number of peaks.

15 FEBRUARY 2021 SH IN ET AL . 1293

Brought to you by UNIVERSITY OF TASMANIA MORRIS | Unauthenticated | Downloaded 01/20/21 10:49 PM UTC



the consistency ofMLT and SST (not shown). The equation for

the temperature tendency budget is as follows:
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where overbars and primes are monthly climatology and

anomaly, respectively; u, y, and w indicate the zonal, meridi-

onal, and vertical oceanic current velocity components; T is

MLT; and t is time. For the temperature budget analysis, a fixed

mixed layer depth (50m) is assumed, but the main results from

the heat budget analysis are not sensitive to the definition of

the mixed layer depth (not shown). The w term is calculated at

the bottom of the mixed layer and other values are averaged

over the mixed layer. The term R represents the residual

processes. Derivatives are calculated by the centered differ-

ence method. This method of budget analysis is similar to

(Kang et al. 2001). To focus on the SSTA development through

to the mature phase, the temperature tendency budget is

averaged from August to November in the El Niño devel-

opment year.

d. Linear baroclinic model

In section 3, a linear baroclinic model (LBM) experiment is

conducted to confirm the atmospheric response to the diabatic

heating forcing. The LBM is a linear baroclinic model of at-

mosphere and it is based on the linear governing equation

about a basic state [see Watanabe and Kimoto (2000) for the

detailed mathematical expressions]. The prescribed heating is

obtained from the observed precipitation pattern of the WP

and DP El Niño by assuming a vertical structure, having a

maximum at the s 5 0.45 level. This model has a resolution of

T21 and with 20 vertical levels (T21 L20) and the time is inte-

grated 30 days to obtain the quasi-steady state. The basic state

is monthly climatology from 1980 to 2018. The experimental

design is similar to previous studies (Son et al. 2014; Kim

et al. 2018).

3. Results

a. Distinct El Niño patterns

Figure 3 shows the evolution of SSTA for the WP, CT, and

DP El Niños. To emphasize the pattern differences, the SSTA

is normalized by dividing by the NDJ SSTA of each year av-

eraged over the central to eastern Pacific (1608E–908W). The

warm center of the CT El Niño is located in the eastern Pacific

and the center of the WP El Niño is located in the central

Pacific, by definition. The DP El Niño has two warm centers in

both the eastern Pacific and central Pacific. Note that the

central peak of the DP El Niño is located in a similar region to

the WP El Niño, but the eastern peak is located to the east of

the CT El Niño’s peak. The DP El Niño tends to develop later

and to decay earlier so that the duration is shorter than either

of the other El Niño types. Strictly speaking, the central Pacific

SSTA slowly evolves and develops with an eastward propa-

gation in the development year, and slowly decays with a

westward propagation in the decaying year. However, the

eastern Pacific SSTA rapidly develops and decays. For exam-

ple, the sign of the eastern Pacific SSTA changed to positive in

the MJJ and then changed to negative in the next FMA. These

distinct evolutions of the central and eastern Pacific SSTA

suggest that different dynamical processes operate for the two

centers. Also, we found that the seasonal phase locking to the

early winter is consistent across the three El Niños as shown
in Fig. 3.

Figure 4 shows the atmospheric and oceanic patterns during

the mature phase (NDJ) of each El Niño type. As expected,

each type shows a distinct SSTA pattern. The DP El Niño
is narrower in meridional SSTA width than the others.

Atmospheric variables also show different spatial patterns for

the three types of El Niño. The different patterns and locations

FIG. 3. Composite evolution of (a) the CT El Niño SSTA, (b) the WP El Niño SSTA, and (c) the DP El Niño SSTA. The SSTA is

normalized by the NDJ SSTA index of each year and so is unitless. The x axis is longitude, and the y axis is months of the year of El Niño–
type evolution. Shadings indicate the 90% confidence level as based on a two-tailed one-sample t test.
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between the CTEl Niño andWPEl Niño have been previously

reported (e.g., Kug et al. 2009). The anomalous precipitation

and zonal wind stress patterns for the CT El Niño are shifted

eastward relative to the others. The central peak of the DP El

Niño shows a very similar zonal location to that of the WP El

Niño. For these two types of El Niño, the pattern of equatorial

westerly wind stress anomalies is similar in the western and

central Pacific. Interestingly, the easterly wind stress anomalies

are stronger in the eastern Pacific for the DP El Niño despite

the warmer eastern Pacific SSTA.While the overall anomalous

precipitation patterns are similar between the DP and WP El

Niño types, a distinctive difference is found at latitudes that are

off the equator. The DP El Niño shows a strong and concen-

trated positive precipitation anomaly along the Pacific ITCZ

over the central and eastern Pacific, which may play a role in El

Niño development. In the next section, we examine the different

dynamical processes that evolve in the WP and DP El Niño.

b. The central peak of the DP El Niño

We first examine the central peak of the DP El Niño com-

pared with the WP El Niño. Figure 5a shows each term of the

WP andDPEl Niños for the central peak (1758–1458W), where

manymaximum peaks exist as shown in Fig. 2b. It is shown that

the zonal advective feedback term by the anomalous currents

and climatological temperature gradient is the dominant term

in the central peak of the DP El Niño in Fig. 5a. The clima-

tological SST gradient is westward, so the anomalous eastward

currents induce surface warming. The anomalous eastward

current can be generated by geostrophic and wind-driven

currents. The DP El Niño has maximum sea level anomalies

at the equator meridionally. Thus, those anomalous sea level

patterns lead to the anomalous geostrophic eastward currents

(Hirst 1986; Wang andWeisberg 1994; Su et al. 2010) as well as

the westerly induced eastward current anomalies. Also, the

meridional advection by the climatological divergent currents

is large for both El Niños (Figs. 5a,b), related to the poleward

expansion of the equatorial SSTA (Kang et al. 2001), so that it

does not have an active role in developing but it is a conse-

quence of the warm center. In addition, the meridional ad-

vection by the anomalous currents is positive for both El Niño
events in Fig. 5a, possibly due to the Ekman convergence by

the westerly anomaly, but its magnitude is relatively weak.

Interestingly, this zonal advective term is relatively weak for

the WP El Niño. Previous studies argued that the zonal ad-

vective feedback term is also dominant in theWPElNiño (Kug

et al. 2010b), which is inconsistent with our results. However,

we found that the relatively weak zonal advective term in the

WP El Niño is related to the timing of the SSTA development.

As shown in Fig. 6a, the zonal advective term of the WP El

Niño stays positive during the development phase, but its

magnitude is stronger in late spring and early summer, and

gradually weakens afterward. However, the evolution of the

DP El Niño is very different. The zonal advective feedback of

the DP El Niño is weakly positive in the early summer but

rapidly increases to a much larger peak than for the WP El

Niño in late summer and early autumn (Fig. 6a). In other

words, the zonal advective term is dominant for both WP and

DP El Niño, but its evolution differs for each. The thermocline

feedback term of the WP El Niño is relatively large in the

spring season, but it gradually weakens in Fig. 6b. The DP El

Niño also shows a positive contribution of the thermocline

feedback term, but it is relatively weaker than the zonal ad-

vective term in Fig. 6a.

In addition to the zonal advective feedback, the latent heat

flux can be also important for the central SSTA for the WP El

Niño (Kug et al. 2010b). Due to the lack of an accurate heat flux

observation, we use the anomalous wind speed along the

equator as a proxy, as shown in Fig. 7. Near the date line,

FIG. 4. Composites of the mature phase (NDJ) of (a) SST anomalies (unitless), (b) precipitation anomalies (mmday21 8C21), and

(c) zonal wind stress anomalies (Nm22 8C21) (all variables are normalized as in Fig. 3) for (left) the CTEl Niño, (center) theWPEl Niño,
and (right) the DP El Niño. Stippling indicates the 90% confidence level.
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negative wind speed anomalies exist in both theWP and DP El

Niños. The reduced wind speed anomaly is related to the

westerly anomaly there under the climatological easterly wind.

The reduced wind speed anomaly is conducive to less evapo-

ration, which leads to surface warming. In particular, the mean

SST of the central Pacific is relatively high, and thus the latent

heat flux is more sensitive to the change in wind speed (Yeh

et al. 2014). Interestingly, there are significant positive wind

speed anomalies near 1358W for the DP El Niño in Fig. 7b,

possibly due to the easterly wind anomaly there (Fig. 4c). This

FIG. 6. Time series (month21) of the (a) normalized zonal advective feedback and (b) normalized thermocline

feedback term in the central peak area. These are averaged by 58S–58N and 1758–1458W. The light-pink line in-

dicates the DP El Niño, and the light-blue line indicates the WP El Niño. The dark lines indicate the 90% confi-

dence level.

FIG. 5. Normalized temperature tendency (month21) budget analysis of (a) the central

peak area (58S–58N, 1758–1458W) and (b) the eastern peak area (58S–58N, 1208–908W). Gray

bars represent the WP El Niño, and black bars represent the DP El Niño. The error bars

indicate the 90% confidence level.
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indicates enhanced evaporative cooling there, which likely

plays a role in reducing the warm anomalies. The location of

the reduced anomalies is similar to the location where the

number of the SSTApeak isminimized, as shown in Fig. 2. This

relationship should be examined in a future study. Based on

Figs. 5a, 6, and 7, we conclude that the central peak of the DP

El Niño develops by the zonal advective feedback and latent

heat flux feedback, similar to the WP El Niño, although the

timing of the evolutions differs.

c. The eastern peak of the DP El Niño

As shown in Fig. 4, the DP and WP El Niño show very

similar central Pacific SSTA patterns, but quite distinct mag-

nitudes in the eastern Pacific SSTA. For example, the eastern

Pacific SSTA (1208–908W) during NDJ is 0.55 and 0.95K for

the WP and DP El Niños, respectively. As shown in the tem-

perature tendency budget (Fig. 5b), it is evident that the total

advection term of the DP El Niño is about 2.5 times larger

than that of the WP El Niño. That is why the eastern peak

only happens in the DP El Niño. As expected, the ther-

mocline feedback term is the dominant term in the eastern

peak of the DP El Niño. The meridional term by the cli-

matological current and anomalous temperature gradient

is also large in the DP and WP El Niño, but this term

indicates a meridional expansion of the equatorial SSTA as

mentioned in section 3b. Therefore, the term that drives

the development of the eastern peak is mainly the ther-

mocline feedback term.

Figure 8 showswhy theDPElNiño has stronger thermocline

feedback in the eastern Pacific compared to the WP El Niño.
The sea level anomalies in theDPElNiño aremuch larger than

those in the WP El Niño (Figs. 8a,b). The higher sea level

anomalies are related to the deeper thermocline depth anom-

alies, which means the anomalous vertical temperature gradi-

ents are large due to the warmer subsurface temperature

anomalies; thus, the higher sea level anomalies in the eastern

Pacific are linked in the strong positive thermocline feedback

term. The positive sea level anomalies in the eastern Pacific are

related to the equatorial westerly wind stress anomalies. The

equatorial westerly wind stress anomalies in the central Pacific

are much stronger in the DP El Niño than that in the WP El

Niño (Figs. 8c,d), in spite of the similar pattern of anomalous

zonal wind stress. Note that the central Pacific SSTA in theWP

El Niño is even stronger than those in the DP El Niño, sug-
gesting that other processes as well as the equatorial SSTA

forcing contribute to the strong westerly wind stress anomalies

of the DP El Niño. The precipitation anomalies also show

distinct magnitudes between the WP and DP El Niños. As

shown in Figs. 8e and 8f, the equatorial positive precipitation

anomalies of the DP El Niño are stronger than those for the

WP El Niño, which is partly due to the higher eastern Pacific

SSTA. In addition to the equatorial precipitation, there are

distinct differences in the Northern Hemisphere off-equator

precipitation anomalies. That is, strong positive precipitation

anomalies exist along the Pacific ITCZ in the DP El Niño
events. These off-equatorial positive precipitation anomalies

can also contribute to the strong westerly wind stress anomalies

in the DP El Niño events.

To show the difference in the magnitudes of the key pro-

cesses, the precipitation, zonal wind stress, and sea level

anomalies are averaged in the regions 48–88N and 1658–
1358W, 58S–58N and 1708E–1608W, and 58S–58N and 1208–
908W over August to November (Fig. 9). As shown in Fig. 9a,

the ITCZ precipitation anomalies are significant in both ca-

ses, but the magnitude of the DP El Niño is about 2 times that

of the WP El Niño. Also, the equatorial zonal wind stress

anomaly of the DPEl Niño is about 1.3 times and the sea level

anomaly of the DP El Niño is about 1.5 times that for the WP

El Niño.
From the equatorial Sverdrup balance (Jin 1997a; Jin and

An 1999), the eastern Pacific sea level anomaly can be simply

explained as follows:

FIG. 7. Normalized anomalous wind speed (m s21 8C21) in the development phase averaged by equator for (a) the

WP El Niño and (b) the DP El Niño. Black lines indicate the 90% confidence level.
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where x is the longitude (positive is eastward), h is the sea level

anomalies averaged over the equator (58S–58N) and develop-

ment period (August–November), tx is the x component of

wind stress anomalies averaged over the equator and

development period (Nm22), g is the gravity (9.8m s22),H(m)

is the effective thermocline depth [which is determined by the

root-mean-square difference between the sea level anomaly in

the reanalysis data and the sea level anomaly obtained above in

Eq. (2)], and r is the seawater density (1025 kgm23). Here,

h(x) is the sea level anomaly (m) at the particular longitude (we

set this at 1058W, the center of the black box area in Fig. 8b)

that can be calculated from Eq. (2); h(0) is the sea level

anomaly at the starting longitude (1508E), and the last term is

FIG. 9. Normalized indices of the black-boxed areas in Fig. 8 for (a) precipitation anomalies, (b) zonal wind stress anomalies, and (c) sea

level anomalies. The light-pink bars indicate the integrated anomalous zonal wind stress terms, and dark-pink bars indicate the sea level at

the starting longitude (1508E). Green error bars indicate the 90% confidence level. Units are the same as for Fig. 8.

FIG. 8. Composite of the (a),(b) sea level anomalies (m 8C21); (c),(d) zonal wind stress anomalies (Nm22 8C21); and (e),(f) precipitation

anomalies (mmday21 8C21) for the development period (all variables are normalized as in Fig. 3) for (left) theWPEl Niño and (right) the

DPEl Niño. Stippling indicates regions where values are significant at the 90% confidence level. Black boxes represent the area where the

difference appears.
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the zonal integrated x component of wind stress anomalies

from the western Pacific to the eastern Pacific (1508E–1058W).

Figure 9c shows each term of Eq. (2). As expected, the

zonally integrated wind stress anomalies along the equator are

much larger in the DP El Niño event, which contributes to the

higher sea level anomalies in the eastern Pacific. These strong

westerly wind stress anomalies along the equator can induce

the downwelling Kelvin waves and propagate to the eastern

Pacific. Thus, the DP El Niño has higher sea level anomalies in

the eastern Pacific than the WP El Niño. Also, the sea level

anomaly at the western boundary is more strongly negative in

theWP El Niño. Therefore, the higher eastern Pacific sea level

anomalies of the DP El Niño can be explained by the stronger

equatorial zonal wind stress anomalies and weaker negative

sea level anomalies at the western Pacific. When we compared

the evolution of the sea level anomalies, the WP El Niño has a

lower anomalous sea level from FMA than the DP El Niño
(not shown). The weak negative sea level anomalies at the

western boundary are related to the late development of the

DP El Niño. The WP El Niño already shows significant SSTA

in the central Pacific in early summer (Fig. 3b), which induces

an equatorial westerly wind stress anomaly and off-equatorial

cyclonic wind stress curl anomaly. The cyclonic curl excites

upwelling Rossby waves, which propagate westward and are

reflected as an upwelling Kelvin wave at the western boundary,

contributing to the negative sea level anomalies in the eastern

Pacific. However, since the DP El Niño has weaker SSTA and

wind patterns in early summer due to the late development, the

negative sea level anomalies are weaker than those in the WP

El Niño. This means a weaker contribution of the reflected

upwelling Kelvin waves and less cancelation for the contribu-

tion of the westerly induced downwelling Kelvin waves in the

eastern Pacific, resulting in the stronger sea level. These dif-

ferences can lead to different sea level responses in the eastern

Pacific in late summer and autumn.

Therefore, we conclude that the higher sea level anomalies

in the eastern Pacific result from the equatorial westerly wind

stress anomalies and sea level anomalies in the western Pacific.

That is, the DP El Niño has a less low sea level anomaly in the

western Pacific and stronger wind stress anomaly along the

equator, which can induce the higher sea level anomaly in the

eastern Pacific. Finally, the eastern peak of the DP El Niño can

be generated by the advection of the anomalous warm water in

the subsurface advected by the mean upwelling (i.e., thermo-

cline feedback term).

A key question is, Why does the DP El Niño have the

stronger equatorial westerly wind stress anomaly? This can be

related to stronger precipitation anomalies in the western-

central Pacific as shown in Figs. 8e and 8f. In addition, there are

distinctive differences in the precipitation anomalies along the

Pacific ITCZ. This stronger precipitation anomaly may con-

tribute to the anomalous equatorial westerly wind stress. To

examine the effect of the ITCZ precipitation anomaly, Fig. 10a

shows the simple linear regression of the zonal wind stress

anomalies against the anomalous ITCZ precipitation index,

defined by averaging the precipitation anomalies over 48–88N
and 1658–1358W. It is clear that the anomalous ITCZ precipi-

tation is related to the westerly wind stress anomalies in the

western-central Pacific and weaker easterlies in the eastern

Pacific. However, this linear relationship can result from other

factors correlated to the ITCZ precipitation anomaly, such as

the western-central Pacific precipitation anomaly (58S–58N,

1508E–1808). In fact, the correlation between the ITCZ pre-

cipitation anomaly and the western-central Pacific precipita-

tion anomaly is about 0.65. Thus, we calculated a partial

regression with respect to the ITCZ precipitation anomaly

after linearly removing the effect of the western-central Pacific

precipitation. As shown in Fig. 10b, even with this removal

there are still westerlies in the western-central Pacific. Easterly

wind stress anomalies are evident in the Northern Hemisphere

subtropical region and Southern Hemisphere off-equatorial

eastern Pacific. This wind pattern is quite similar to the ideal-

ized Gill-type response to off-equatorial heating (Gill 1980).

The Rossby wave response to the off-equatorial heating can

explain the easterlies to the east of the heating.

To further quantify what causes the different equatorial

zonal wind patterns between the DP and WP El Niño, we
conducted LBM experiments. Figure 11 shows the effect of

precipitation anomalies on the low-level wind anomalies

(850 hPa). With prescribed precipitation anomalies over the

tropics (108S–108N, for all longitudes), the LBM model simu-

lates anomalous westerlies in theDPEl Niño over the western-
central Pacific (58S–58N, 1608E–1608W) that are about 2.6

times stronger (Figs. 11a, 11b, and 11i). In fact, the observed

westerly wind anomalies of the DP El Niño are also 1.4 times

those of the WP El Niño over the western-central Pacific (not

FIG. 10. Regression coefficients of (a) simple linear regression between the zonal wind stress anomalies and the anomalous ITCZ

precipitation index (48–88N, 1658–1358W) and (b) partial linear regression after the effect of the anomalous precipitation index in the

western-central Pacific (58S–58N, 1508E–1808) is linearly removed. Stippling indicates regions where values are significant at the 95%

confidence level.
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shown). This suggests that the anomalous tropical precipitation

is the dominant driver of the wind anomalies between the WP

and DP El Niño.
To understand the locations where precipitation anomaly is

more important for the difference of the wind anomaly, we

carry out additional experiments by only prescribing precipi-

tation anomaly for particular regions. Figures 11c–h show the

results for the forcing region in the western Pacific (108S–108N,

1108E–1808), the Indian Ocean andMaritime Continent region

(108S–108N, 608–1108E), and for the ITCZ (48–108N, 1808–
1208W). The western Pacific precipitation explains approxi-

mately 19.2%of the wind difference (Figs. 11c,d,i) between the

anomalous zonal wind response in Figs. 11a and 11b. Also, the

Indian Ocean precipitation explains approximately 20.9% of

the difference (Figs. 11e,f,i). Last, if we only prescribe pre-

cipitation in the ITCZ line, there is a relatively large difference

in the western-central Pacific in Figs. 11g and 11h. To quantify

the contribution of the ITCZ in Figs. 11g and 11h, it can explain

about 36.5% of the wind difference in Figs. 11a and 11b

(Fig. 11i). Thus, the difference of the wind response in the

western-central Pacific between the WP and DP El Niño is

affected by the ITCZ precipitation of about 36.5%. In spite of a

relatively small area of ITCZ precipitation, these results sug-

gest that the Pacific ITCZ precipitation is critical for the

stronger westerly anomalies, which lead to the development of

the DP El Niño.

4. Summary and discussion

We have shown here that the DP El Niño, first identified by

Graham et al. (2017), exists not only in coupled model simu-

lations but also in the observations. Distinct from the CT

El Niños, the WP and DP El Niño show similar patterns of

anomalous precipitation and zonal wind stress, in spite of the

clear differences in the eastern Pacific SSTA. As a result, the

DP SST structure is a new pattern in terms of the zonal di-

versity of ENSO. Each center of DP El Niño is mainly caused

by zonal advective and thermocline feedback terms, respec-

tively, which are fundamentally originated from the same

equatorial air–sea interaction such as the increased precipita-

tion and resultant zonal wind stress. However, the evolving

processes of central and eastern peaks are different. First, we

found that the mechanism of the central peak of the DP El

Niño is consistent with that of the WP El Niño. That is, the
zonal advective feedback term by the anomalous eastward

currents and the mean temperature gradient, and the latent

heat flux due to the reduced wind speed anomaly, are also

important for the DP El Niño.
Second, the main difference between the WP and DP El

Niños is found in the eastern equatorial Pacific. The DP El

Niños have a deeper (higher) thermocline (sea level) in the

eastern Pacific than that of the WP El Niño, which leads to the

stronger thermocline feedback term. The higher eastern Pacific

anomalous sea level is related to the late development of the

DP El Niño. In addition, the stronger westerly wind stress

anomalies in the western-central Pacific also contribute to the

stronger sea level anomalies responses. We find that the strong

westerly wind anomalies may be related to a peculiar precipi-

tation anomaly along the Pacific ITCZ (i.e., between 48 and 88N
and 1658 and 1358W). The positive precipitation anomaly along

the Pacific ITCZ can enhance the equatorial westerlies as a

result of theGill-type response to off-equatorial heating. These

westerly wind stress anomalies along the equator can excite

downwelling Kelvin waves that propagate eastward and induce

higher sea level anomalies in the eastern Pacific.

This distinct anomalous precipitation pattern of the DP El

Niño implies why the observed DP El Niño, clearly detected

and identified in the observations here for the first time, is

important for climate studies. Although the anomalous pre-

cipitation patterns are similar in the equatorial western and

FIG. 11. The 850-hPa zonal wind anomalies (m s21) from the LBM. We experiment with different forcing areas. The forcing areas are

(a),(b) the whole longitude; (c),(d) the western Pacific area (1108E–1808); and (e),(f) the Indian Ocean area (608–1108E), and in common

108S–108N. (g),(h) Forced only by the ITCZ area (48–108N, 1808–1208W). Forcing is shown for (left) the WP El Niño and (center) the DP

El Niño. (i) The differences in the anomalous wind for 58S–58N and 1608E–1608W.
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central Pacific between the WP and DP El Niño, the distinct

off-equatorial precipitation anomaly may suggest different

global impacts. Recently, several studies pointed out that off-

equatorial SSTA and precipitation anomaly are very important

for ENSO teleconnections (Jin et al. 2013; Son et al. 2016; Kim

and Kug 2019). Therefore, the distinct impacts of the DP El

Niño should be further investigated.

Although our study only focused on the dynamicmechanism

of the DP El Niño during the development period, one of the

distinctive features of the DP El Niño is the rapid development

and decay. In particular, the decay is extremely fast, such that

the positive SSTA in the eastern equatorial Pacific abruptly

decays in late winter and early spring. This might be related to a

stronger discharge of the equatorial heat content (Jin 1997a).

The DP El Niño has the stronger cyclonic wind stress curl

anomalies in the off-equatorial region in the central Pacific

because of the stronger equatorial westerly wind stress

anomalies from the development phase to the mature phase

(Figs. 4 and 7). This westerly wind stress anomaly can rein-

force the discharge process, which can lead to the fast decay.

However, more detailed analysis on the decay process should

be investigated in a future study.

In this study, we examined El Niño events in the last 40 years
and detected three DP El Niño events in the historical SSTA

observations. Interestingly, the three DP El Niño events are

observed only in the past 20 years (2002/03, 2006/07, and 2018/

19), which suggests that favorable conditions have been more

prevalent in recent decades for the occurrence of DP El Niño
event. It is conceivable that the recent La Niña–like trend is

responsible for the more frequent emergence of the DP El

Niño in the past 20 years. The La Niña–like SST background

accompanies relatively dry conditions in the central and east-

ern Pacific, which can suppress the anomalous precipitation

response to a given eastern Pacific SSTA forcing (Watanabe

et al. 2012; Ham and Kug 2012; Jang et al. 2013; Ham and Kug

2015). Instead, the precipitation anomalies tend to shift to the

western Pacific and off the equator where the convective in-

stability is relatively stronger (Watanabe et al. 2011; Kim et al.

2011). As we discussed in Fig. 8, the DP El Niño shows dis-

tinctively stronger precipitation anomalies along the Pacific

ITCZ as well as stronger western-central Pacific precipitation

anomalies in spite of the slightly weaker central Pacific SSTA.

These features are consistent with the conditions associated

with the La Niña–like trend. In addition, this argument is

consistent with the finding of Graham et al. (2017) from their

analysis of coupled climate model simulations of ENSO. They

argued that the cold-tongue bias in the coupled models leads

to a preference for DPEl Niño occurrence due to the westward
shifted mean temperature gradient and anomalous eastward

currents. In terms of the drier and cooler equatorial zone,

the cold-tongue bias and the La Niña–like trend are con-

sistent. However, some studies argued that the La Niña–like
trend ended in around 2016 (Meehl et al. 2016; Su et al. 2017;

Hu and Fedorov 2017; Hu et al. 2020). Based on these

studies, the 2018/19 happened under a different background

state. Therefore, we need to also consider a possibility for

other mechanisms. This will require a further research for

the future DP El Niño cases.

Although we clearly showed the existence of theDPEl Niño
in the observational data, our study has several caveats. First of

all, our study has a clear limitation due to the small sample size.

Since we separate El Niño events into three groups in this study
for 40 years, it is unavoidable that each group has a small

number of samples. Therefore, interpretation of the statistical

analysis, presented here, is bound to be limited. For example,

the role of the ITCZ precipitation is commonly robust for the

three DP El Niño events in our analysis. However, it will be

also possible that the other processes can enhance the equa-

torial westerlies, and lead to the development of DP SST

structure. Therefore, a more general conclusion for the DP El

Niño development should be followed by a further study with a

more accumulated observational analysis.

Second, the selection of DP El Niño depends on the criteria

of the SST anomaly. We used here the criteria of one standard

deviation to pick up the warm point, but a slight change of this

criteria brings about different groupings. For example, the

2014 warm event clearly showed the DP structure (see Fig. 1 of

McPhaden 2015), but it was not selected due to the one stan-

dard deviation criteria. If we change the criteria to 0.7 standard

deviations, 1987/88, 2003/04, and 2014/15 years are additionally

selected as the DP El Niño year. Some WP El Niño cases can

be moved to the DP El Niño case depending on the criteria.

Importantly, however, we checked that major characteristics

such as the late development (except for the 1987/88 El Niño
because it happened consecutively with 1986/87 El Niño) and
enhanced ITCZ precipitation anomalies are not sensitive to

how to defineDP El Niño, though detailed patterns are slightly

different (see Figs. S1 and S2 in the online supplemental ma-

terial). This supports our key arguments that the El Niño
events having DP structure exist in the observation, and a

particular physical process provides a favorable condition for

the occurrence of DP SST pattern.

Third, the selection of DP El Niño can be data dependent as

well as the criteria.We checked the other observed SST dataset

(e.g., OISST, HadISST, Kaplan, TropFlux, TOGA-TAO, and

GODAS), and analyzed interdata consistency. We found that

most SST data show consistent DP structure for the 2002/03,

2006/07, and 2018/19 El Niño cases (see Fig. S3 in the online

supplemental material). Especially, every dataset shows a clear

DP structure for the 06/07 El Niño event. However, it is also

evident that there are some interdata inconsistencies. The in-

consistencies are relatively large for 2002/03 El Niño. In par-

ticular, the HadISST data show the DP structure only for the

2006/07 case. This inconsistency may be related to relatively

large uncertainty in the eastern Pacific, where observations are

sparce and variability is large (Huang et al. 2020). Though the

data uncertainty prevents from drawing a concrete conclusion

for detailed processes of DP El Niño, it is certain that every

data exhibit the pattern of the DP SST structure (i.e., 2006/07

El Niño), supporting the existence of observed DP El Niño.
Along this line, a more detailed analysis of the influence of the

dataset on the occurrence of the DP El Niño event should be

further examined.
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