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Abstract 15 

The pattern of sightings of a species that is rare, and then no longer observed, can be used to 16 

estimate its extinction date. However, other than physical captures or specimens, the veracity 17 

of any sighting is ambiguous, and should be treated probabilistically when used to infer 18 

extinction dates. We present a simple yet powerful computational approach for incorporating 19 

observational reliability into extinction date estimators (EDE). Our method: (i) combines 20 

repeated within-year sightings probabilistically, (ii) samples observations using the reliability 21 

score as an inclusion probability, (iii) infers a probability distribution and summary statistics 22 

of extinction dates with any EDE, and (iv) computes the frequency distribution of the 23 

extinction date. We applied this method to eight exemplar sighting records covering a range 24 

of lengths, sighting rates and uncertainties, using a variety of statistical EDEs, and compared 25 

these results with a threshold approach for selecting sightings. We also demonstrated a robust 26 

coverage of ‘true’ extinction dates based on selected real-world examples of rediscovered 27 

species and confirmed extinctions, and simulated sighting records. Our approach represents a 28 

powerful generalization of past work because it is not predicated on any specific method for 29 

inferring extinction dates, and yet is simple to implement (with R script provided). 30 

 31 

Key words: extinction model, extinction time, sighting record, uncertainty, computational 32 

ecology, species persistence  33 
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INTRODUCTION 34 

The occurrence and timing of extinctions are notoriously difficult to confirm. Extreme rarity 35 

typically precedes extinction (leading to detection problems and the need for substantial 36 

search effort), and the event is, by definition, an absence of all individuals. Consequently, 37 

extinction is usually inferred via proxy information, such as records of observations. These 38 

‘sightings’ can come in many forms, including museum/herbaria specimens, live-animal 39 

captures, acoustic recordings, photographs/film, hair/faecal samples, footprints, and visual 40 

observations. Yet, except for verified post-mortem specimens or live captures, the veracity of 41 

these sighting types is ambiguous, due to possible misidentifications, illusions or deceit. This 42 

is problematic, because the statistical inferences made using various model-based pattern 43 

analyses of sighting records (known as extinction-date estimators: EDE) can be highly 44 

sensitive to the decision to reject or include indirect or otherwise ambiguous observations 45 

(Lee et al. 2014). Indeed, the question of how to treat anecdotal or inconclusive data has led 46 

to much debate regarding the presence, species range, and population dynamics of a suite of 47 

species (e.g., ivory-billed woodpecker, Californian wolverine: McKelvey et al. 2008). 48 

However, ambiguous sightings of rare species are often made by trained biologists, 49 

experienced amateur naturalists, or well-meaning members of the public, making it hard to 50 

argue that they should be disregarded entirely (Lee et al. 2014). Decision errors caused by 51 

either the false rejection of valid sightings, or the acceptance of mistaken observations, can 52 

have conservation implications and result in economic or opportunity costs.  53 

Existing methods for handling mixed-certainty sighting records either classify 54 

observations as unambiguous or ambiguous based on sighting type, or else assign a specific 55 

reliability score, which can be thought of as the probability that the sighting is a true 56 

observation of the species (Boakes et al. 2015). This process might involve consultation with 57 

experts (Elphick et al. 2010) or application of a classification-scoring system to assign 58 
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‘plausibility ratings’ based on observation type (e.g., BirdLife International; see Lee et al. 59 

2014). For example, McKelvey et al. (2008) developed a set of evidentiary standards that 60 

increases in rigor depending on the species rarity. One approach is to thereafter compile a 61 

final sighting record for use in EDEs that is based on accepting or rejecting observations 62 

based on sighting type or some threshold ‘inclusion probability’ derived from a scoring 63 

system. Jarić and Roberts (2014) proposed an alternative, with all observations being used, 64 

but weighted within an EDE based on their sighting reliability; this permits the inclusion of 65 

controversial sightings (with lower probabilities of being a true sighting of the species). Most 66 

EDE methods for mixed-certainty data are based on a Bayesian framework, whereby 67 

observations are grouped (and modelled) as separate ‘certain’ or ‘uncertain’ sighting records 68 

(e.g., Solow et al. 2012, Thompson et al. 2013, Lee 2014, Solow and Beet 2014). However, 69 

these require prior information on population dynamics that is rarely available, are 70 

mathematically or computationally demanding, and can be difficult to compare to more 71 

traditional frequentist methods (e.g., Solow 1993, Saltre et al. 2015). This has tended to 72 

discourage their widespread use (Boakes et al. 2015); as noted by Lee (2014), the main 73 

reason for the widespread use of the Solow (1993) method is its user-friendly 74 

implementation, via a single equation. Simplicity of a method also increases its transparency 75 

and its accessibility as a decision tool (Rout et al. 2010). The only frequentist method to 76 

incorporate sighting reliability (Jarić and Roberts 2014) is simple, but it does not really 77 

constitute a new model. However, it remains unclear whether the probabilistic treatment of 78 

sighting veracity (or classification of observations into different reliability types) has a 79 

general effect of improving or biasing model-based estimates of extinction probability. 80 

Here we present a novel, generalized approach to account for observational reliability 81 

using any sighting-based EDE, hereafter referred to as weighted re-sampling (BBJ). The 82 

method is easy to implement (and we supply optimized R code [r-project.org] to run the 83 
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model), can combine repeated within-year sightings, and computes summary statistics and 84 

the frequency distribution of extinction times. We demonstrate its application on historical 85 

records with different lengths, sighting rates and underlying uncertainties (using a variety of 86 

statistical EDEs) and compare our results with established frequentist and Bayesian 87 

approaches. We also evaluate the method’s performance against real-world examples of re-88 

discovered species, ‘confirmed’ extinctions, and simulated records.  89 

 90 

METHODS 91 

Conceptually, the approach is straightforward. The idea is to repeatedly re-sample without 92 

replacement from a sighting record of length n, with each observation’s sighting reliability 93 

being used as a surrogate probability for randomly determining its inclusion in (or rejection 94 

from) the sample sighting record. The use of many replicate sample records (~1 000 or more) 95 

will yield a stable result in terms of the distribution of re-sampled TE, and its moments. The 96 

resulting stochastic sighting-record vectors (v), of length 3 < nv ≤ n, can then be used as input 97 

for any EDE model to estimate a distribution of the time of extinction (TE). Sighting 98 

reliabilities can either be specified on a continuous bounded scale (between 0−1) or 99 

aggregated in classes (e.g., physical evidence, expert opinion, controversial) that are each 100 

assigned an associated reliability. A notable advantage of the BBJ method is that the 101 

confidence bounds of any EDE can be determined empirically in this way, with sighting 102 

uncertainty handled in the data pre-processing step rather than as an assumption-driven 103 

characteristic of the EDE model itself. It can be applied to any EDE that does not otherwise 104 

attempt to account explicitly for ambiguous observations (other than via thresholding). An in-105 

depth justification for the re-sampling approach is given in Appendix S1: Section S1. 106 

In the case of datasets with multiple ambiguous sightings per year, the method can be 107 

adapted by a simple extension to account for the within-year sightings’ individual 108 
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reliabilities. If pij is a sighting reliability of ith sighting out of n sightings in year j, then the 109 

probability that there is at least one true sighting in that year (pj) will be: 110 

𝑝𝑗 = 1 −∏1− 𝑝𝑖𝑗

𝑛

𝑖=1

 111 

 In the algorithm, years with multiple sightings are thus processed first and the sighting 112 

record for that year is replaced with a single sighting of reliability pj. We note that the same 113 

extension can be also applied to the method of Jarić and Roberts (2014) or any other discrete-114 

time method (e.g., Thompson et al. 2013, Lee 2014, Lee et al. 2014). We also propose an 115 

additional improvement to the Jarić and Roberts (2014) approach, in which the most-likely 116 

year of first and last observation are both estimated, as detailed in Appendix S1: Section S2. 117 

The sensitivity of the extinction inference to each sighting within a record can be evaluated 118 

using jackknifing, whereby each sighting is omitted, in turn, as the algorithm is re-run. 119 

Our R script for implementing the algorithm (provided as DataS1.zip) is function-120 

driven and appropriately commented for ease of interpretability. Output includes the median 121 

TE (reported in the same units as the sighting record, typically as calendar years, although 122 

any positive integer is possible), the upper 95% confidence bound of the estimate (2.5th 123 

percentile of the frequency distribution of the TE values), and cumulative probability of 124 

persistence by year. Aside from these two EDEs, other methods that are currently 125 

implemented in the R code are Robson and Whitlock (1964), Strauss and Sadler (1989), 126 

Solow (1993), hereafter S93, ordinary least squares estimator (OLE) approach of Roberts and 127 

Solow (2003), hereafter OLE, McInerny et al. (2006), and the modified version of the Jarić 128 

and Roberts (2014) method (discussed above). The R code is modular, allowing new EDE 129 

functions to be added, provided they take a sighting record (specified as a vector of years, or 130 

positive integers) and return a time of extinction. 131 
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To evaluate the sensitivity of our new method to different circumstances, we applied 132 

it to eight real-world cases and compared its results with those EDEs which remove sightings 133 

that do not meet a reliability threshold (the ‘threshold approach’). In practice, this threshold 134 

can be quantitative or qualitative (e.g., based on sighting type). In our test, we used a 135 

sighting-type threshold, including only those based on physical evidence (live or dead 136 

specimens or parts thereof). The species examples we use represent: (i) four with well-known 137 

sighting records (baiji dolphin (Lipotes vexillifer), Barbary lion (Pathera leo), ivory-billed 138 

woodpecker (Campephilus principalis) and Oʻahu nukupuʻu (Hemignathus lucidus)), 139 

containing a mix of unambiguous (reliability = 1) and ambiguous (reliability < 1) records, 140 

and which have been used frequently in previous papers that have proposed or evaluated 141 

methods for estimating extinction from sighting records (e.g., Jarić and Roberts 2014, Lee et 142 

al. 2014, Boakes et al. 2015, Lee et al. 2015); (ii) two (the night parrot (Pezoporus 143 

occidentalis) and noisy scrub bird (Atrichornis clamosus)) with past sightings (of mixed 144 

certainty) spread across multiple years, followed by an extended interval (typically of many 145 

decades) of apparent absence, after which they were re-discovered (“Lazarus species”); and 146 

(iii) two (Bramble Cay melomys (Melomys rubicola) and Alaotra grebe (Tachybaptus 147 

rufolavatus)) that were regularly reported with a mix of sighting uncertainty, and might 148 

persist, except that other evidence (e.g., exhaustive searches across their range, or a complete 149 

loss of suitable habitat) implies that extinction is ‘definite’.  150 

In general, a robust method should indicate a low probability that a species from the 151 

Lazarus group is extinct, and vice versa for the definite group. A poor performance in such 152 

cases implies, respectively, that the method is either overly liberal or conservative (i.e., prone 153 

to either Type I or II errors). Analysis of additional examples, illustrating a diversity of 154 

sighting-record characteristics, are also provided in Appendix S1: Section S2 and the 155 

complete sighting records are available as a R script in DataS1.zip. Data were sourced 156 
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from the literature cited above, as well as the Global Biodiversity Information Facility 157 

(gbif.org), Atlas of Living Australia (ala.org.au), IUCN (iucnredlist.org) and grey literature. 158 

As an adjunct to the real-world case studies, we also ran a sensitivity analysis with 159 

simulated data, following the general approach by Rivadeneira et al. (2009) and Jarić and 160 

Roberts (2014). To do this, we generated mixed-certainty sighting records stochastically, with 161 

a duration of 50–80 years and a fixed per-year sighting probability ranging among 162 

simulations from 0.1–0.3; this resulted in 5–24 observations per record and a known 163 

(random) time of extinction set to occur at sometime within the second half of the sighting 164 

record. Although a simplified characterization of reality, these simulated data allowed us to 165 

explore the general circumstances under which the new method performs well (or poorly) 166 

compared to other approaches, when there is a known result. A detailed description of this 167 

simulation test is provided in Appendix S1: Section S3 and R scripts in DataS1.zip. A 168 

caveat of the simulation approach is that because we sought to make the BBJ re-sampling 169 

method and threshold application of S93 and OLE comparable, we had to use the same 1000 170 

simulated sighting records (one set for constant and one for declining sighting probability) for 171 

all methods. Thus, all simulated records had to meet the strictest criterion when setting the 172 

threshold of 0.8, to yield >=5 sightings; consequently, all such records tended to be ‘good’ 173 

datasets. For testing lower thresholds such as 0.4 or 0.2, much worse records (i.e., with poorer 174 

overall reliability) could be also used, and these ‘poor’ records are a priori likely to be those 175 

where the BBJ method ought to be superior to the threshold methods. Overall, the need for 176 

selection equivalence will tend to bias the sensitivity results in favor of threshold methods. 177 

 178 

RESULTS 179 

Figure 1 illustrates the consequences to the estimation of TE for the observational records of 180 

four well-known species, using four alternative EDEs. In these examples, we compared three 181 
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approaches to associating probabilities with sighting records: (i) use of the mid-point 182 

probabilities of BirdLife International (BL-M; where the veracity (inclusion probability) of 183 

physical records = 0.85, expert observations = 0.7 and controversial sightings = 0.25), (ii) 184 

retention of physical records only (P-only; where physical = 1, expert = 0, controversial = 0), 185 

and (iii) a choice to heavily down-weight—but not exclude—non-physical records (Extreme; 186 

where physical = 0.99, expert = 0.5 and controversial = 0.01); however, many alternatives are 187 

possible and available in the R script in DataS1.zip.  188 

For real-world species with a ‘known fate’, the results detailed in Table 1 illustrate the 189 

similarities and differences arising for predictions for Lazarus and definite species, using the 190 

S93 and OLE models in both their original form and when sighting uncertainty is included 191 

using our new re-sampling approach. In most cases, ‘coverage’ of the actual event (i.e., 192 

persistence for the Lazarus species, and extinction for the definite species) was improved 193 

when the re-sampling approach was used to incorporate ambiguous sightings along with 194 

unambiguous sightings (physical specimens). For example, for a Lazarus species (night 195 

parrot), both models predicted extinction before 1989 (the year prior to rediscovery) when 196 

only unambiguous sightings were used. But when ambiguous sightings were included via the 197 

BBJ method, both the S93 and OLE predicted that persistence was more likely than 198 

extinction. For a definite species (Bramble Cay melomys), the OLE predicted that the species 199 

was likely extinct by its declared date of 2014, whereas S93 was somewhat over-optimistic, 200 

irrespective of whether ambiguous sightings were included or excluded. 201 

The efficacy of the re-sampling approach is further supported by the results of the 202 

simulation study, where the extinction time is known. In general, the performance of S93 and 203 

OLE models were strongly influenced by the choice of the reliability threshold value, while 204 

the BBJ method performed well without a need to make arbitrary thresholding decisions 205 

(Table 2). The BBJ re-sampling showed consistently lower mean absolute differences 206 



10 
 

between the true and estimated time of extinction compared to S93 and OLE with ambiguous 207 

sightings excluded, under both constant and declining sighting rates and rejection thresholds. 208 

The BBJ method outperforms threshold approaches in terms of bias in all circumstances, and 209 

coverage of confidence intervals in most cases, except for when S93 is used in the case of a 210 

declining sighting rate over time, when a threshold rejection approach seems to fare better. 211 

 212 

DISCUSSION 213 

We have developed a fast, generalized and simple computational method for incorporating 214 

sighting reliabilities into any discrete-time extinction date estimator and used selected 215 

examples to demonstrate its utility. Our approach does not replace any existing EDE model, 216 

but it does mitigate against arbitrary data filtering (by obviating the need to decide upon 217 

some reliability threshold for including or excluding sightings). For any situation where an 218 

index of reliability can be estimated for species records, this method allows for explicit 219 

accounting of sighting uncertainty, either for quality types (e.g., physical specimens, expert 220 

opinion, controversial sightings, etc.) or for each observation individually. That said, we 221 

recommend that any analysis using sighting reliabilities includes a sensitivity analysis of the 222 

reliability scores, such as evaluating lower, upper and best-estimate bounds, to gauge how 223 

sensitive the extinction probability and/or date is to probabilities associated with different 224 

reliability scores or sighting-quality types. The approach is universal in not being predicated 225 

on any specific EDE model or statistical assumptions for inferring extinction dates. It is also 226 

‘future proof’, in that—because the method focuses on probabilistic sampling of the sighting 227 

record—it could be used with yet-to-be-developed EDE methods of arbitrary complexity.  228 

Key advantages of our method are its ease of implementation (with modular R code 229 

provided) and its ability to undertake a flexible sensitivity analysis of the factors that most 230 

contribute to uncertainty in the estimation of extinction times for rare species. Although 231 
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many EDE methods have been proposed in the literature, few have been available to use ‘off 232 

the shelf’, leaving researchers little choice but to write bespoke scripts (Lee 2014). This 233 

situation has improved recently, with the development of the R packages sExtinct 234 

(Clements 2013) for running various EDEs (e.g., Robson and Whitlock 1964, Strauss and 235 

Sadler 1989, Solow 1993, Roberts and Solow 2003, McInerny et al. 2006) and 236 

spatExtinct (Carlson et al. 2018) for applying the Bayesian approach originally 237 

developed by Solow and Beet (2014). An Excel spreadsheet-driven implementation of the 238 

Thompson et al. (2013) Bayesian model was also developed by Lee (2014), which can also 239 

account for survey effort. The sExtinct code only runs ‘traditional’ EDEs (no 240 

uncertainty), whereas the Bayesian methods categorize reliability into types (e.g., 241 

unambiguous or ambiguous). Our R script is philosophically different to the Bayesian 242 

approach. It is frequentist, and requires specification of reliability scores rather than priors for 243 

sighting types, but harmonizes with the sExtinct R package because it can make use of its 244 

EDE functions (or any other user-defined EDE function). 245 

The decision of how (or if) to account for uncertainty in sighting records remains a 246 

topic of contention (Solow et al. 2012). The few ‘Lazarus’ and ‘definitely extinct’ species 247 

that we assessed using various EDEs (Table 1) suggest that incorporating mixed-certainty 248 

sighting records generally improved decision making; however, resolving this question 249 

satisfactorily will require an in-depth investigation that is beyond the scope of the current 250 

work. What is undeniable is that the lack of consensus on the treatment of uncertainty in 251 

sighting records has led to inconsistency in published extinction dates (particularly for 252 

controversial species) and subsequent indecision as to which conservation interventions are 253 

required (Roberts and Jarić 2016). This has consequential real-world impacts; if a species is 254 

proclaimed as extinct and then rediscovered, this erodes researcher credibility, whereas in the 255 

converse case, limited funds for conservation might be misallocated (Akçakaya et al. 2017).  256 
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An obvious benefit of the BBJ method, or that of Jarić and Roberts (2014), is that 257 

there is no need for an arbitrary decision on reliability thresholds. A competing constraint is 258 

that assignment of reliability scores is subjective and lacks evidentiary standards, unless 259 

sighting data can be validated against some calibration standard (e.g., a test of observer 260 

reliability in identifying a bird song to species level, or correctly confirming a sighting, based 261 

on a known [experimental] target). However, this is also the case for the threshold approach, 262 

where observations are somewhat arbitrarily accepted or rejected based on perceived quality. 263 

The reliability ratings used by BirdLife International (see Methods) at least has the advantage 264 

of representing a consistent standard that has been developed by an organisation aware of the 265 

issues with (and frequency of) misidentification by expert and non-expert bird watchers, and 266 

so seems to offer a reasonable de facto standard. However, we also recommend that any 267 

analysis using sighting reliabilities undertakes a sensitivity analysis, such as lower, upper 268 

bounds, to judge the degree to which the conclusion is influenced by this choice. Indeed, it 269 

has been argued (McKelvey et al. 2008, Roberts et al. 2010) that flexibility in assigning 270 

reliabilities is usually warranted, given knowledge gaps in a species’ life-history traits and 271 

environmental context, and historical or social biases (Lee et al. 2017, Brook et al. 2018). 272 

Ultimately, the development of a more rigorous, explicit and repeatable framework 273 

for dealing with mixed-certainty observational records is critical; the approach we have 274 

developed here provides a tool that moves us closer to this goal. But regardless of the method 275 

used to account for uncertainty, it is hard to dispute the scientific need. Future research will 276 

likely focus on improved ways to incorporate spatio-temporal heterogeneity in sightings 277 

(Carlson et al. 2018), sighting probability (Lee et al. 2017), and survey effort (Gotelli et al. 278 

2012, Thompson et al. 2017). Such areas of development should, in principle, be readily 279 

incorporated within our general framework. 280 

 281 
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Code (written as scripts for Program R v3.5) to implement the method and all examples reported in 356 

the paper is supplied as DataS1.zip, and also accessed on the paper’s GitHub site: 357 

https://github.com/BWBrook/extdyn. Also included are a detailed justification of the basis for the ad 358 

hoc re-sampling method (Appendix S1: Section S2), further examples of application with case studies 359 

(Appendix S1: Section S2) and a sensitivity analysis using simulated data (Appendix S1: Section S3).  360 

https://github.com/BWBrook/extdyn
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TABLE 1.  Estimated year of extinction, based on the Solow (1993) equation (S93) and the 361 

Roberts and Solow (2003) OLE, for four example species, based on a) physical evidence only 362 

(with any ambiguous sightings being rejected), and b) including mixed-certainty sighting 363 

records, based on the re-sampling method described in this paper.  364 

 365 

                   a) Physical evidence only     b) BBJ method 366 

Type Species S93 OLE S93 OLE 

Lazarus 

NP 1956 (p1989=0.010) 1941 1998 (p1989=0.565) 2029 (p1989=0.648) 

SB 1970 (p1960=0.063) 1906 1925 (p1960=0.000) 1936 (p1960=0.013) 

Extinct 

BC 2089 (p2014=0.652) 2009 2035 (p2014=0.999) 2014 (p2014=0.075) 

AG 2014 (p2010=0.059) 1977 1999 (p2010=0.001) 2002 (p2010=0.017) 

 367 

Notes: The top two rows show ‘Lazarus’ species that were thought extinct and then 368 

subsequently rediscovered (NP = night parrot; SB = noisy scrub bird). The bottom two rows 369 

are species where extinction has been ‘confirmed’ by intensive surveys (BC = Bramble Cay 370 

melomys; AG = Alaotra grebe). In parentheses are shown the model-estimated probability of 371 

persistence for the year prior to rediscovery (for the Lazarus species) or the date when 372 

extinction was confirmed (the year they were considered ‘definitely extinct’). 373 

 374 
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TABLE 2.  Mean absolute difference between the true (Text) and the estimated time of 375 

extinction (TE) for simulated sighting records in different scenarios (lower values indicate 376 

better performance), based on the use of S93 (Solow 1993) and OLE (Roberts and Solow 377 

2003) EDE models and two extinction modes (sudden versus gradual) under: (a) exclusion of 378 

sightings which have a reliability below a threshold, which we varied from 0.8 to 0, and (b) 379 

BBJ, our new re-sampling approach. 380 

 381 

 382 

Sighting 

probability 

EDE 

Method 

a. Sighting reliability with threshold exclusion b. BBJ 

0.8 0.6 0.4 0.2 0  

Constant 
S93 8.9 8.2 9.1 10.2 11.3 8.3 

OLE 15.9 13.2 13.3 13.8 14.2 13.1 

Declining 
S93 9.9 8.4 8.0 8.0 8.2 7.2 

OLE 17.3 12.8 11.7 11.3 11.5 10.4 
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FIG. 1. Results of applying extinction-date estimators to four well-known and possibly extinct 383 

species for which sighting records include observations of mixed certainty. Shown are both a 384 

previous analytical approach (JR14, based on Jarić and Roberts 2014) that implements the 385 

Solow (1993) model (S93), and a computational re-sampling method (BBJ; this paper), that 386 

can provide estimates for any model—shown here is last appearance date (LAD), S93, and 387 

the ordinary least squares method of Roberts and Solow (2003), OLE. The colours represent 388 

the use of different probabilities for the record types (in this example being physical, expert 389 

or controversial), with the probabilities being, respectively: P-only = 1,0,0; Extreme = 390 

0.99,0.5,0.01 and BL-M (based on the mid-point probabilities selected by BirdLife 391 

International, see Lee et al. 2014) = 0.85, 0.7, 0.25. The dots represent point (median) 392 

estimates and dashed lines are the upper 95% confidence bounds (the lower bounds are not of 393 

interest in this context). The proportion of observations of each species falling into the 394 

physical, expert and controversial types respectively were: Panthera leo leo = 0.12, 0.47, 395 

0.41; Lipotes vexillifer = 0.47, 0.49, 0.04; Campephilus principalis = 0.32, 0.25, 0.43; 396 

Hemignathus lucidus = 0.3, 0.03, 0.67. 397 


