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ABSTRACT: A stochastically forced linear inverse model (LIM) of the combined modes of variability from the tropical

and South Pacific Oceans is used to investigate the linear growth of optimal initial perturbations and to identify the spa-

tiotemporal features of the stochastic forcing associated with the atmospheric Pacific–South American patterns 1 and 2

(PSA1 and PSA2). Optimal initial perturbations are shown to project onto El Niño–Southern Oscillation (ENSO) and

South Pacific decadal oscillation (SPDO), where the inclusion of subsurface South Pacific Ocean temperature variability

significantly increases themultiyear linear predictability of the deterministic system.We show that the optimal extratropical

sea surface temperature (SST) precursor is associated with the South Pacific meridional mode, which takes from 7 to

9 months to linearly evolve into the final ENSO and SPDO peaks in both the observations and as simulated in an

atmosphere-forced ocean model. The optimal subsurface precursor resembles its peak phase, but with a weak amplitude,

representing oceanic Rossby waves in the extratropical South Pacific. The stochastic forcing is estimated as the residual by

removing the deterministic dynamics from the actual tendency under a centered difference approximation. The resulting

stochastic forcing time series satisfies the Gaussian white noise assumption of the LIM. We show that the PSA-like vari-

ability is strongly associated with stochastic SST forcing in the tropical and South Pacific Oceans and contributes not only to

excite the optimal initial perturbations associated with ENSO and the SPDO but in general to activate the entire stochastic

SST forcing, especially in austral summer.
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1. Introduction

TheSouthPacific decadal oscillation (SPDO;ChenandWallace

2015; Lou et al. 2019) is the dominant mode of (inter)decadal cli-

mate variability in the South Pacific and is analogous to the Pacific

decadal oscillation (PDO;Mantua et al. 1997) in theNorth Pacific.

Lou et al. (2019, 2020) show that the SPDO represents not a single

physical mode but instead combines different processes operating

on a range of time scales. These processes include stochastic at-

mospheric forcing related to the Pacific–South American pattern

(PSA;Mo2000;O’Kane et al. 2017),ElNiño–SouthernOscillation

(ENSO) teleconnections from the tropics (e.g., Power andColman

2006; Shakun and Shaman 2009), and subsurface oceanic processes

(e.g., baroclinic Rossby waves in the southwest subtropical Pacific;

O’Kane et al. 2014; Lou et al. 2019).

The idea that fast-moving atmospheric variability may act as

stochastic forcing of slowly varying oceanic processes has been

extensively discussed in the literature (e.g., Capotondi et al.

2018; Liu and Di Lorenzo 2018; Lou et al. 2019 and references

therein). Hasselmann (1976) and Frankignoul andHasselmann

(1977) first proposed a stochastic climate model [i.e., the first-

order autoregressive (AR1) model] to illustrate how climate

variations can arise as an integrated response to random ex-

citation from weather disturbances. Numerous studies have

since developed AR1 models to broadly investigate climatic

reddening processes between stochastic forcing and slow var-

iability (e.g., Newman et al. 2003; Power and Colman 2006;

Shakun and Shaman 2009; Di Lorenzo and Ohman 2013;

Capotondi et al. 2018; Lou et al. 2019).

Although useful conceptually, univariate AR1 models are

limited by their simplicity (limitations are documented, e.g., in

Newman 2007). Alternatively, the linear inverse model (LIM;

Penland and Sardeshmukh 1995, hereafter PS95), which can be

regarded as a multivariate analog of the univariate AR1 hy-

pothesis, may be preferable to diagnose the underlying dy-

namics and understand the source of predictability.

The LIM has been widely applied to investigate the dy-

namics and predictability of atmospheric variability (von

Storch and Xu 1990; Xu 1992; Schnur et al. 1993; Cavanaugh

et al. 2014), tropical ENSO variability (Penland and Magorian

1993; PS95; Penland and Matrosova 2006; Newman et al. 2011;

Gehne et al. 2014; Capotondi and Sardeshmukh 2015, 2017),

Atlantic (multi-)decadal variability (Zanna 2012; Penland and

Hartten 2014; Huddart et al. 2016), North Pacific (inter)de-

cadal variability (Newman 2007; Alexander et al. 2008), and

South Pacific (inter)decadal variability (Lou et al. 2020).

Previous studies have shown that reduced-order multivariate

LIMs are capable of revealing the appropriate linearized de-

terministic dynamics and provide competitive forecast skill

relative to sophisticated nonlinear general circulation models.

In comparison with univariate AR1 models, where the one-

dimensional system decays monotonically in the absence ofCorresponding author: Jiale Lou, jiale.lou@utas.edu.au
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stochastic forcing [e.g., see Fig. 9 in Lou et al. (2019)], the

multivariate LIM allows transient growth if the dynamics of the

system are nonnormal in the absence of stochastic forcing,

thereby making it possible to investigate optimal initial states

that maximize the deterministic growth toward specified final

states (e.g., PS95; Zanna 2012; Vimont et al. 2014; Capotondi

and Sardeshmukh 2015; Thomas et al. 2018).

Many previous studies show that optimal growth maximizes

at about 7–9 months for ENSO events in the tropical Pacific

region (e.g., PS95; Newman et al. 2011; Vimont et al. 2014;

Thomas et al. 2018). Vimont et al. (2014) suggest that the Pacific

meridional mode (PMM) and thermocline variability are re-

sponsible for different types of ENSO events, while Capotondi

and Sardeshmukh (2015) further show that different initial

thermocline conditions can influence the selection of different

types of ENSO events by investigating the linearized optimal

evolution of different types ofENSOunder the LIM framework.

How climate variability in the extratropical South Pacific af-

fects the tropics is an active area of research. In a recent review

paper of the PMM, Amaya (2019) summarized that the South

Pacific meridional mode (SPMM; Zhang et al. 2014; Chung et al.

2019; Liguori and Di Lorenzo 2019) is triggered by internal at-

mospheric variability associated with the South PacificOscillation

(SPO), which was recently proposed by You and Furtado (2017)

to track the leading sea level pressure (SLP)mode of variability in

the subtropical South Pacific (108–458S, 1608–708W).

While the physical connections between the SPMM and ENSO

remain unclear, a fewmechanisms have been proposed to link the

extratropical South Pacific to the tropical Pacific. For example,

some studies (Ding et al. 2014; Zhang et al. 2014; Lu et al. 2016;

You and Furtado 2017) argue that the extratropical surface wind

anomalies associated with the SPMM can propagate to the tropics

via positive wind–evaporation–sea surface temperature (WES)

feedback.Larsonet al. (2018) suggest that the SPMMcanact as the

thermally driven sources of the tropical ENSO variability. In

separate modeling studies, Liguori and Di Lorenzo (2019) and

Chung et al. (2019) argue that the SPMM plays a key role in af-

fecting tropical variability on decadal time scales by artificially

suppressing the SPMM.

In addition, Okumura (2013) and Lou et al. (2019, 2020) show

that the PSA variability is the key atmospheric driver of large-scale

oceanic variability (e.g., the SPDO) in the South Pacific Ocean. In

particular, Okumura (2013) and Lou et al. (2019) argue that the

tropical Pacific is closely connected to the South Pacific, and the

PSAvariability canmodulateor even trigger the tropical variability.

To quantify the contribution arising from the stochastic forcing,

Penland and Hartten (2014) introduced a centered difference

approximation to the tropical North Atlantic sea surface tem-

perature (SST) system under the LIM framework. They found

that the atmospheric NorthAtlantic Oscillation plays a significant

role in affecting the predictability of the tropical North Atlantic

SST.Recently, Thomas et al. (2018) suggest that stochastic forcing

potentially contributes to the development of different types of

ENSO by application of the same centered difference approxi-

mation developed by Penland and Hartten (2014).

While previous LIM studies have focused on the linearized

deterministic dynamics of the combined tropical and South

Pacific Oceans (Lou et al. 2020), our understanding of the role

of stochastic forcing mechanisms in influencing the slowly

varying linearized characteristics under a LIM framework is

lacking. Motivated by the results of Lou. et al. (2019, 2020), we

seek to better understand the role of stochastic forcing asso-

ciated with the PSA variability in influencing ENSO and the

SPDO under the LIM framework.

The paper is organized as follows: Section 2a describes the

monthly and daily observational and simulated data used in this

study. An overview of the LIM method and the design of the LIM

experiments are presented in section 2b. The optimal initial condi-

tions, their growth and evolutionmaximizingENSO and the SPDO

predictability are investigated in section 3a. The role of stochastic

forcing, as estimated from a centered difference calculation be-

tween observed and estimatedLIMSST tendencies, is analyzed in

section 3b. Section 4 provides the discussion and conclusions.

2. Data and methods

a. Observed and simulated data

The monthly observed and simulated data used in this study

are the same as used in Lou et al. (2019, 2020). Specifically,

monthly observed SSTs are from the Hadley Sea Ice and Sea

Surface Temperature analysis (HadISST1.1; Rayner et al.

2003, and available at https://www.metoffice.gov.uk/hadobs/

hadisst/data/download.html) for the years 1948–2007.

The model used was an atmosphere-forced ocean general

circulation model, the Australian Community Climate Earth-

System Simulator–Ocean (ACCESS-O) configuration of the

U.S.Geophysical FluidDynamicsLaboratory (GFDL)Modular

OceanModel (MOM4p1) ocean-ice code (Delworth et al. 2006).

The detailedmodel configuration has been described byO’Kane

et al. (2014). ACCESS-O is forced by observed atmospheric

fields from the Coordinated Ocean-Ice Reference Experiments

(COREs; 1948–2007) (Griffies et al. 2009) and has 50 model

levels in the vertical covering 0–6000m. For comparison, the

original 360 3 300 tripolar ACCESS-O ocean model grid has

been interpolated to a regular 2.58 3 2.58 grid in this study.

To understand the role of stochastic forcing, daily SST anom-

alies from the Optimum Interpolation Sea Surface Temperature

data (OISST; Reynolds et al. 2002) over the period of 1982–2007

(26 years) were used (available at https://www.esrl.noaa.gov/psd/

thredds/catalog/Datasets/noaa.oisst.v2.highres/catalog.html). In

addition, daily surface pressure reanalysis data over the same

period of 1982–2007 are taken from the National Centers for

Environmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR; available at https://psl.noaa.gov/data/

gridded/data.ncep.reanalysis.surface.html). All data have been

remapped onto a common 2.58 3 2.58 grid.
In performing the empirical orthogonal function/principal com-

ponent (EOF/PC) analysis upon the variables, we make use of the

monthly detrended anomalous data. That is, all the observed and

simulated monthly data were first detrended at each grid point

using linear regression. Then, the seasonal climatology was re-

moved from the monthly data at each grid point to derive the

monthly anomalies.

Meanwhile, the linear trend over the full data record (1982–

2007) was removed from the daily OISST anomalous SST data
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and the daily NCEP–NCAR surface pressure data. The clima-

tology was then removed from the daily surface pressure data to

compute the daily surface pressure anomalies. For computa-

tional convenience, we ignored 29 February in all leap years in

the daily data. Our results were not sensitive to this choice.

b. The linear inverse model

The principles and assumptions of the LIM used in this study

are described in detail in Lou et al. (2020), and the interested

reader is referred to that paper. Here, we present only a brief

overview of the LIM method (see also PS95).

In the LIM framework, an N component (i.e., N 5 10 in the

present study) state vector of anomaliesX evolves according to

the following linear equation:

dX

dt
5LX1N , (1)

where the state vectorX can be expressed as the sum of the linear

deterministic dynamics, and a stochastic forcing term N, which is

assumed to be rapidly decorrelating white noise. The dynamical

operator L in Eq. (1) is a stable constantN3Nmatrix describing

feedback among the components of X. The matrix L that de-

scribes the linear deterministic dynamics is given by

L5 t21
0 ln[C(t

0
)C(0)21] , (2)

whereC(t0) andC(0) are the time lag and simultaneous covariance

matrices of the state vectorX at time lags t0 and 0, that is,C(t0)5
hX(t1 t0)X

T(t)i and C(0)5 hX(t)XT(t)i. The angle brackets here
denote an ensemble average or a time average over all t for vari-

ables with stationary statistics. In this study, t05 1month is used to

ensure the stability of the LIMs. Lou et al. (2020) examined the

sensitivity to using different choices of t0 to estimate the dynamical

operator L, finding similar results to those presented here.

Themost probable evolutionX(t1 t) of the system (PS95) is

given by

X(t1 t)5G(t)X(t)5 eLtX(t) , (3)

given a state X(t).

c. Experimental design of the linear inverse model

The EOF/PC analysis was applied as a prefilter to the

monthly SST and vertically averaged temperature (VAT)

anomalies in the tropical Pacific (TP; 208S–208N, 1208E–608W)

and South Pacific (SP; 708–22.58S, 1208E–608W), respectively.

For the LIM presented in this paper, we chose the state

vector X following Lou et al. (2020):

X5

�
SST

TP

SST
SP

�
(SST-only experiment) , or

X5

2
64

SST
TP

SST
SP

VAT
SP

3
75 (SST1VAT experiment) .

In the SST-only experiment, we considered a combination of

both the TP SST (i.e., SSTTP) and the SP SST (i.e., SSTSP),

whereas in the SST 1 VAT experiment we introduced

additional subsurface variability in the form of the VAT cal-

culated from 5 to 280m in the upper South Pacific Ocean. We

retained the leading four TP and six SP SST EOFs/PCs in the

SST-only experiment and the leading two, six, and two EOFs/

PCs from the TP SST, SP SST, and SPVAT, respectively, in the

SST1VAT experiment. As demonstrated in Lou et al. (2020),

the choices of using the leading 10–16 EOFs/PCs in each LIM

experiment to construct the state vector and the different

combinations of the leading EOFs/PCs used from the different

regions gives similar results.

In previous work, Lou et al. (2020) show that the LIM

configurations used in this study are linear and stable and ac-

curately represent the dynamics of the SPDO through a range

of evaluation tests. They demonstrate that the dynamics of the

SPDO can be accurately reconstructed based on two distinct

spatial and temporal scales—one associated with interannual

ENSO variability in the tropics and one oscillating on (inter)

decadal time scales with a broader meridional structure in the

tropical Pacific relative to the interannual ENSO.

3. Results

a. Optimal growth

The LIMmethodology allows an objective determination of

optimal initial states that evolve into the final specified events

(e.g., the SPDO peak in this study), thereby providing an ideal

framework to investigate optimal precursors and predictability

(Capotondi and Sardeshmukh 2015).

The growth over any time interval t can be written as the

norm of the final state X(t) divided by the norm of the initial

state X(0) (see PS95):

m(t)5
kX(t)k2
kX(0)k2 5

XT(t)X(t)

XT(0)X(0)
5

XT(0)GT(t)G(t)X(0)

XT(0)X(0)
. (4)

The maximum amplification growth {m(t)max} can be deter-

mined as the leading eigenvalue g1(i.e., {m(t)max} 5 g1) of the

matrix GT(t)G(t), which is a real, symmetric and positive-

definite operator with real and positive eigenvalues {gi} and

orthonormal eigenvectors {ui}.

Figure 1 shows the maximum amplification curve (MAC) of

the SST-only (Figs. 1a–d) and SST 1 VAT (Figs. 1e,f) exper-

iments. In the SST-only experiments, the linear deterministic

systems experience maximum growth over time periods of 7

and 9 months for the HadISST and ACCESS-O LIMs, re-

spectively (indicated by the vertical red lines in Fig. 1 and also

shown in Table 1), consistent with the previous LIM studies of

tropical ENSO variability (e.g., PS95; Newman et al. 2011;

Vimont et al. 2014; Thomas et al. 2018).

If the MAC is less than unity, then no growth is possible

without an additional stochastic forcing term, and all growth

events tend to be unpredictable (e.g., PS95). With this in mind,

we can see that no growth can be sustained by modal inter-

ferences for more than 16 and 22 months (Table 1) in the ob-

served and simulated SST-only system (Figs. 1a–d), which

defines an optimistic predictability limit (also referred to as

potential predictability) of such growth events. However, this

predictability limit does not consider the effects of stochastic
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FIG. 1. The MAC (in red) of (a),(b) HadISST and (c),(d) ACCESS-O for the SST-only experiments, and (e),(f)

ACCESS-O for the SST 1 VAT experiment. The average error energy growths 1 1 C(0) 2 G(t)C(0)GT(t) asso-

ciatedwith the stochastic forcing are shown in green curves in (a), (c), and (e). TheMACof forecasts begunwith initial

conditions, optimized to give maximum growth at other t’s ranging from 1 to 12 months, are given in blue curves in

(b), (d), and (f). The horizontal black line indicates the unity threshold. The vertical red line indicates the optimal

growth time.
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forcing, which might further reduce the predictability of the growth

events. Figures 1a and 1c show the error growth caused by the sto-

chastic forcing term [i.e., 1 1 C(0) 2 G(t)C(0)GT(t) shown in the

green curves]. The cross point between the MAC and error growth

may give us more practical predictability of 14 and 18 months

(Table 1) in the SST-only experiments taken from theHadISST and

ACCESS-O LIMs, respectively. For signals from the linearized de-

terministic system to be predictable, it is therefore not only necessary

that the MAC be greater than unity over some time interval t, but

that it be greater than the error growth over the same time interval.

When considering the subsurface processes (i.e., SST1VAT

experiment), the system experiences maximum growth over a

much longer timeperiodof about 12months (Table 1) relative to

those in the SST-only experiments. The predictability limit of

the growth event is around 44 months (Table 1) without con-

sidering the error growth from the stochastic forcing. The error

growth associated with the unpredictable stochastic forcing in-

tersects the MAC around 28 months (Fig. 1e and Table 1).

For comparison, the MAC of m commencing with several other

initial conditions optimized for other time intervals t ranging from1

to 12months is also shown in Fig. 1 (blue curves in the right panels).

The MAC estimated from several other initial conditions remains

below the corresponding maximum growth in all experiments. In

addition, it also suggests that an initial state that is optimal for one

t does not need to be optimal for another (see also, for example,

Fig. 4 in PS95). In the present study, the growth is ‘‘optimal’’ in the

sense that of all possible conditions of unit amplitude, it evolves into

the long-time-scale state vector at time t5 t (e.g., PS95).

The spatial patterns of optimal initial perturbations related to

the largest growth (obtained from the leading eigenvector u1

when t 57 and 9 months for HadISST and ACCESS-O in the

SST-only experiment) are shown in Fig. 2a and Fig. 3a. The

optimal structures from the observations (Fig. 2a) and simula-

tion (Fig. 3a) bear a strong resemblance with cooler-than-

normal SST anomalies along the cold tongue region in the

central to eastern equatorial Pacific and high–low–high–low

structures spreading in the extratropical South Pacific from

eastern Australia to South America. El Niño in the tropical

Pacific and the positive SPDO in the South Pacific coevolve into

their peak phases over 7 months in the observations (Fig. 2) and

over 9 months in the simulation (Fig. 3), respectively.

It is of interest to point out that the optimal initial SST conditions

in the extratropical SouthPacific from theSST-only experiment (i.e.,

Figs. 2a and 3a) resemble the features of the SPMM [e.g., Fig. 1c in

Liguori andDi Lorenzo (2019)]. Although the amplitudes shown in

the initial conditions (Figs. 2a and 3a) are not strong, it is worth

noting that any subtle perturbations identified in the initial

conditions could evolve into the maximum amplitudes given the

properties of the eigenvectors. Our results are consistent with

previous findings, which show that the SPMM is the extra-

tropical precursor of the tropical ENSO variability (Liguori and

Di Lorenzo (2019) and references therein). In addition, the

SPMM-like variability could also be the optimal precursor of the

SPDO variability in advance of 7 and 9 months in the observa-

tions and simulation, respectively.

Figure 4 shows the optimal initial conditions and final peak

structures for SST in the tropical Pacific andSouthPacific andVAT

in the South Pacific. By including subsurface processes in the South

Pacific Ocean, the optimal growth time increases to 12 months

(Table 1). Interestingly, we can see that the very weak loadings in

the SST field in the tropical and South Pacific at the initial states

(Figs. 4a,c) amplify nearly linearly, as the subsurface SPDO

(Fig. 4e) develops in the South Pacific and as the ENSO variability

in the tropical Pacific starts growing, evolving to the corresponding

peak phase (Fig. 4b) in 12months. That small optimal perturbation

specific to the South and tropical Pacific Oceans evolves to

capture a future ENSO event. It suggests that forecasts initialized

using closely related optimal perturbations, that is, singular vectors

(Palmer and Zanna 2013), specific to the upper ocean decadal

variability in the subtropical South Pacific, have the potential to

project onto future states of tropical ENSO variability.

The optimal initial VAT conditions (Fig. 4e) highlight the

subtropical region east of 1808 longitude, where previous litera-

ture (e.g., Maharaj et al. 2005; O’Kane et al. 2014; Lou et al. 2019,

2020) suggests that baroclinic Rossby waves tend to be amplified

and trapped by the bottom topography, and in particular in the

vicinity of the Kermadec Ridge, acting as a potential source of

decadal variability and predictability (e.g., Fig. 4 in Lou et al.

2019). The evolving VAT patterns in the South Pacific over the

following 12 months (not shown) resemble the optimal initial

conditions (Fig. 4e) but increase amplitudes as time evolves.

To further quantify whether the final evolved structures capture

the ENSO’s spatiotemporal characteristics and the SPDOwell, we

projected the peak phases (Figs. 4b,d,f) onto the corresponding SST

and VAT anomalies to reconstruct the time series. Figure 5 shows

the reconstructed time series of the peak phases and the corre-

sponding time series of the SST ENSO, SST SPDO, and VAT

SPDO.We can see that the reconstructed time series resemble the

simulated ENSO and SPDO variability with temporal correlations

of 0.95, 0.97, and 0.97, respectively. The reconstructed time series

(not shown) of the optimal initial VAT conditions (i.e., Fig. 4e) is

highly correlated to the VAT SPDO (r 5 0.95) but with reduced

amplitude, suggesting that the subsurface South Pacific Ocean

persists its signal from the initial states to the final peaks and

modulates the surface ENSO and SPDO evolutions.

b. Stochastic forcing

The stochastic forcing N of the system [see Eq. (1)] can be

estimated using a centered difference approximation (e.g.,

Penland and Hartten 2014; Thomas et al. 2018):

N(t)’
[x(t1Dt)2 x(t2Dt)]

2Dt
2Lx (5)

where N(t) empirically estimates the nondeterministic sto-

chastic forcing and x is the finely resolved (in time) state vector.

TABLE 1. The statistical properties of the MACs in the SST-only

and SST 1 VAT experiments.

Dataset Experiment

Growth

time

(months)

Potential

predictability

(months)

Practical

predictability

(months)

HadISST SST-only 7 16 14

ACCESS-O SST-only 9 22 18

SST1 VAT 12 44 28
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In this study, we made use of the daily OISST product [i.e.,

Dt 5 1 day in Eq. (5)]. Constrained by the availability of daily

data, we truncated the time period to 1982–2007 (26-yr period

of overlap with monthly HadISST and ACCESS-O products)

to make best use of the daily OISST products. The LIMs were

then rebuilt based on the truncated time period. Robustness

of the LIMs is demonstrated by the fact that the dynamical

operators L and optimal growth derived from different datasets

(results are not shown but statistically indistinguishable as in

Fig. 1) are not sensitive to the choice of time period (i.e., 1948–

2007 or 1982–2007) used to define the LIMs.

As described in Penland and Hartten (2014) and Thomas

et al. (2018), the central difference approximation is only valid

as the time interval Dt goes to zero, which is justified if the time

FIG. 2. Evolution of the optimal perturbations for the SST-only experiment in HadISST: (a) optimal initial

conditions (optimal structure), (b),(c) optimals at t 5 3 and 5 months, and (d) optimals at the maximum amplifi-

cation time, t 5 7 months. The contour interval is the same in all panels but is arbitrary.

FIG. 3. As in Fig. 2, but for the ACCESS-O.
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scale evaluated is much shorter relative to that of the linearized

deterministic system. Therefore, we make use of the daily SST

anomalous data in the present study to investigate the non-

deterministic stochastic forcing. The finely resolved (in time)

state vector x in Eq. (5) is then defined as the projection of the

daily SST anomalies onto the monthly leading 4 and 6 SST

EOFs from the TP and SP, respectively (as described in

section 2c). Note that we only investigate the stochastic forcing

based on the SST-only experiments due to there being no

available observed VAT datasets of sufficient spatial or tem-

poral resolution and of a sufficiently long time period. Finally,

the daily evolving stochastic forcing termN(t) is estimated as a

residual from Eq. (5), which can be regarded as the nonde-

terministic contribution arising from the noise.

In our study, we first projected themonthly leading SSTEOFs

derived from HadISST and ACCESS-O, respectively, onto the

daily SST anomalies to define the finely resolved (in time) state

vectors. Then, the centered difference approximation shown in

Eq. (5) was applied to estimate the nondeterministic noise term

as the residual by removing the deterministic term from the

actual tendency. Figure 6 shows the noise time series’ spectral

analysis and the corresponding deterministic time series related

to ENSO and the SPDO. We can see that although the noise

time series associated with ENSO and the SPDO in both the

observations and simulation (Figs. 6a–d) exhibit weak red noise

trends primarily due to the limited samples of the available data,

the spectra are, in general, evenly distributed across different

frequency bands, indicating that the noise time series estimated

fromEq. (5) can be approximately regarded as nondeterministic

white noise. Meanwhile, Kolmogorov–Smirnov tests have been

applied to all the noise time series in the present study. The

results suggest that the noise time series distributions are

significantly Gaussian (.95% significance level). For compari-

son, the deterministic time series related to ENSO and the

SPDO optimal initial conditions are also shown in Fig. 6 (i.e.,

Figs. 6e–h). We can see that the deterministic time series asso-

ciated with ENSO and the SPDO (Figs. 6e–h) display strong red

noise trends with increased energy across the low-frequencies

and decreased energy across the high frequencies. However, due

to the strong autocorrelations of the deterministic time series

and the short length of the data, values of statistically significant

power (at the 95% confidence level) are often too difficult to

achieve (Folland et al. 1999). In summary, linear inverse mod-

eling assumes that the noise forcing is spectrally white regarding

its deterministic time scales, which has been confirmed by the

spectral analysis shown in Fig. 6.

Lou et al. (2019) demonstrate that the atmospheric PSA

variability is the critical and significant stochastic forcing re-

quired to generate the observed SPDO using simplified uni-

variate AR1models.Wemight expect to see that the stochastic

ENSO and SPDO forcing estimated from a more generalized

multivariate LIM should also be related to the observed at-

mospheric PSA variability. To identify the spatial patterns of

the daily stochastic forcing associated with the ENSO and

SPDO optimal initial conditions, we regressed the corre-

sponding noise time series estimated from both the observa-

tions and simulation onto the daily surface pressure anomalies

from the NCEP–NCAR reanalysis dataset.

The resulting regression maps are shown in Fig. 7 for the

daily noise forcing in the observations and simulation, re-

spectively, with consistent structures seen over the extra-

tropical South Pacific. Although the regression maps do not

necessarily indicate specific mechanisms that guarantee ENSO

and SPDO growth in this case, they do identify some

FIG. 4. The optimal initial perturbations and final structures for the SST 1 VAT experiment in ACCESS-O:

optimal structures for (a) TP SST, (c) SP SST, and (e) SP VAT. Peak phases for (b) TP SST, (d) SP SST, and (f) SP

VAT at the maximum amplification time, t 5 12 months.
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atmospheric patterns that covary with the noise forcing asso-

ciated with ENSO and the SPDOoptimal evolutions. Thus, the

regression maps shown in Fig. 7 may be interpreted as the at-

mospheric variability that covaries with the noise forcing of a

given set of optimal initial conditions of ENSO and the SPDO.

The atmospheric structures of the noise forcing associated

with the ENSO optimal initial conditions (i.e., Figs. 7a,b) are

similar to the spatial patterns of the SPO [i.e., Fig. 1a in You

and Furtado (2017)] and the PSA1 [e.g., Fig. 2 in O’Kane et al.

(2017)]. The results here are consistent with previous literature

(e.g., Okumura 2013; You and Furtado 2017), showing that the

atmospheric PSA1 and SPO play an important role in trig-

gering the tropical ENSO variability. The noise structures re-

lated to the SPDO optimal initial conditions (Figs. 7c,d)

resemble the ENSO noise forcing (shown in Figs. 7a,b) but

with anomalies moving eastward. The spatial pattern is similar

to the PSA2 [e.g., Fig. 1 in Mo (2000); Fig. 2 in O’Kane et al.

(2017)], which was proposed as the third mode derived from

some atmospheric variables (e.g., sea level pressure and 500-

hPa geopotential height). Previous studies (e.g., Mo 2000)

argue that the PSA1 and PSA2 depict an eastward-propagating

wave train mode with their phases in quadrature. Recently,

some studies find that the PSA variability is linked to the

tropical ENSO variability (e.g., Okumura 2013) and the ex-

tratropical SPDO variability (e.g., Lou et al. 2019). These at-

mospheric noise patterns indicate that the PSA variability (i.e.,

the PSA1 and PSA2) is strongly associated with stochastic

forcing that could lead to themaximumdeterministic growth of

ENSO and the SPDO in the tropical and South Pacific Oceans.

Figure 7 shows that the PSA-like variability provides noise

forcing associated with the ENSO and SPDO optimal initial

conditions. However, our interest is to qualify to what extent

the PSA variability contributes to the entire unpredictable SST

component of the reduced-order system [i.e., N(t) in Eq. (5)].

Thus, we applied the regression vector technique documented

in Penland and Hartten (2014) to estimate the PSA1 and PSA2

contribution to the unpredictable SST forcing. Here, the con-

tribution of the PSA variability toN(t) is represented byRh(t),

where h(t) is the daily PSA1 or PSA2 time series, defined as the

second and third EOF/PC modes of the daily surface pressure

anomalies. The spatial patterns of the daily PSA1 and PSA2

(not shown) remain similar to those derived from the monthly

anomalies and explain 6.7% and 6.2% of the total variance,

respectively. We then stratified the data by month and re-

gressed each month’s N(t) onto h(t) to estimate annually pe-

riodic regression vectors Rmonth, which describe the PSA

contributions to the entire stochastic SST forcing.

Since N(t) estimated from the observations and simulation

gave us indistinguishable results (e.g., Fig. 6), for the conve-

nience of display, we only discuss the PSA contribution to the

SST forcing based on HadISST in the following text.

Figure 8 shows the PSA1 contribution to the stochastic SST

forcing in the tropical and South Pacific Oceans. Although the

spatial patterns shown in Fig. 8 resemble the deterministic

dynamics, it is worth noting that the corresponding time scales

of the SST forcing are much shorter than those of the deter-

ministic system (see Fig. 6). We can see that the PSA1 is most

influential in the extended austral summer (i.e., December–

March). Further, although the strongest sensitivity is shown in

the South Pacific domain (Fig. 8), there is evidence suggesting

that the PSA1 can modulate the stochastic SST forcing related

to the tropical ENSO variability, especially in austral fall

(March–May in Figs. 8c–e), and in austral spring (September–

November in Figs. 8i–k).

The PSA2 contribution to the stochastic SST forcing is

shown in Fig. 9. A zonal wave train pattern extending from

eastern Australia to Argentina can be observed throughout the

entire year with the PSA2 being most influential in austral

summer (i.e., DJF shown in Figs. 9i,a,b). Unlike the all-year-

round influence in the South Pacific, we can also see that the

PSA2 has strong seasonality in affecting the tropical stochastic

forcing related to ENSO (e.g., January–April in Figs. 9a–d, and

November in Fig. 9k).

4. Summary and discussion

Using a linear inverse modeling approach, we have investi-

gated the optimal initial conditions and growth for perturbations

thatmaximize specified final states. The role of nondeterministic

stochastic forcing has been analyzed using a central difference

approximation under the LIM framework.

FIG. 5. Reconstructed time series (red curves) of the peak phases

shown in Figs. 4b, 4d, and 4f, and the corresponding time series of

the SST ENSO, SST SPDO, and VAT SPDO (black curves) de-

fined as the leading PC of the SST and VAT anomalies in the

tropical Pacific and South Pacific in ACCESS-O, respectively.

150 JOURNAL OF CL IMATE VOLUME 34

hjauman
Sticky Note
None set by hjauman

hjauman
Sticky Note
MigrationNone set by hjauman

hjauman
Sticky Note
Unmarked set by hjauman



When only considering SST from the tropical Pacific and

South Pacific, the coupled SST system takes about 7–9 months

for the optimal initial perturbations to grow into the specified

peak phases, in agreement with previous ENSO studies (e.g.,

PS95; Vimont et al. 2014 and references therein). In most

previous tropical ENSO studies, low-pass-filtering techniques

are applied to remove subseasonal fluctuations, whereas we

used the combined monthly unfiltered SST anomalies from

FIG. 6. The spectrum of the (a)–(d) noise time series and (e)–(h) deterministic time series related to ENSO and the SPDO in

HadISST and ACCESS-O. The dashed curve in the middle of each plot indicates the red noise trend, and the upper and lower dashed

curves in each plot indicate the confidence intervals ranging from 5% to 95%.

FIG. 7. Atmospheric noise structures associatedwith (left) ENSO and (right) the SPDOoptimal initial conditions

in HadISST and ACCESS-O. Shown are the daily regression maps between the daily surface pressure anomalies

from NCEP–NCAR reanalysis and the daily noise forcing time series related to ENSO and the SPDO optimal

initial conditions.
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both the tropical Pacific and South Pacific in the present study.

The consistent results from filtered and unfiltered data suggest

that the South Pacific acts as a natural dynamical low-pass filter

to the tropical dynamics, and thus sets the background state to

modulate the decadal ENSO variability remotely.

The optimal growth period that maximizes the SPDO peak

amplifications increases to 12 months when subsurface pro-

cesses (i.e., characterized simply as VAT) are incorporated.

The signals arising from the region to the east of 1808 in the

subtropical South Pacific (Fig. 4) are highlighted in the

evolution of the SPDO, consistent with previous studies

(e.g., O’Kane et al. 2014; Lou et al. 2019), showing that

trapped baroclinic Rossby waves interacting with bottom

topography act as an important source of decadal variability

and predictability of the SPDO in this region. That optimal

initial perturbations with weak tropical expression evolve to

include ENSO-like structures (Fig. 4) further suggests that

the subsurface plays an important role for the subtropical

South Pacific in determining tropical ENSO variability and

predictability.

FIG. 8. The PSA1 contribution to the stochastic SST forcing. Shown are the monthly variations of the regression vector R. See text for

details.

FIG. 9. Similar to Fig. 8, but for the PSA2 contribution to the stochastic SST forcing.
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Thepredictability of the linearized systemdepends not only on its

own dynamics but also on the contribution due to the stochastic

forcing (i.e., in the absence of stochastic forcing, the linearized de-

terministic system eventually decays). Nevertheless, growth can still

be sustained for around 19months bymodal interferencewhen only

considering SST, which defines an optimistic limit to the potential

predictability of the system. When subsurface South Pacific pro-

cesses are incorporated, the potential predictability increases to

about 44 months (Table 1).

On the one hand, stochastic forcing is crucial for sustaining

the system dynamically. On the other hand, predictability is

lost as a result of stochastic forcing that is unpredictable over

the longer time scales of the deterministic dynamics. For a

deterministic system to be predictable, we might expect that

the energy growth of the linearized system has to be larger

than the error variance growth, which defines amore practical

limit to the predictability of the linearized system. Using this

criterion, the limit of practical predictability was found to be

around 16 months if only considering SST, increasing to

around 30 months (Table 1) when subsurface South Pacific

processes are incorporated. Although unpredictable over

longer time scales, stochastic forcing is nevertheless crucial in

setting up the optimal initial states and in determining the

characteristic damping time scales and oscillatory periods of

the SPDO.

In the present study, we have characterized the spatiotem-

poral features of stochastic forcing. Although we cannot esti-

mate the stochastic forcing term directly in this inverse method,

it is possible to use the residual by removing the deterministic

dynamics from the actual tendency, to infer the nondeterministic

stochastic forcing. By applying the central difference approach

under a generalized LIM framework, we have shown that the

resulting stochastic forcing time series satisfy theGaussianwhite

noise assumptions of linear inversemodeling.We found that the

PSA variability (i.e., the PSA1 and the PSA2) contributes not

only to the ENSO and SPDO optimal initial conditions, but in

general to the entire stochastic SST forcing in our reduced-order

system, especially in austral summer (DJF).

The linear inverse modeling technique applied in this study

has some other limitations. First, due to nonlinearity, non-

stationarity, or instability of the actual processes being sam-

pled, we have to truncate the entire system by applying EOF

analysis to reduce the spatial degrees of freedom of our trop-

ical, and South Pacific combined system. The reliance on a

truncated EOF space limits the dimensionality of the deter-

ministic dynamics. In addition, the LIM method assumes its

stochastic forcing has much shorter memory (i.e., rapidly

decorrelated) than the linearized deterministic dynamics. If

this assumption cannot be satisfied, the constructed LIM is

therefore invalid.

A variety of validation tests should always be conducted

before a LIM becomes useful. By applying tau tests and a

fluctuation–dissipation relation test, Lou et al. (2020) show that

the LIM performs well in the South Pacific. More tests have

been conducted into the stochastic forcing in the present study,

suggesting that the resulting stochastic forcing satisfies the

Gaussian white noise assumption. However, due to the rela-

tively short length of the record used to construct the LIM,

some deterministic and noise effects can be convolved [as

documented in, e.g., Thomas et al. (2018)]. Meanwhile, since

the LIM has an inherent linear damping time scale, ensemble

LIM forecasts are not possible as an alternative to global

forecast systems (Lou et al. 2020). Nevertheless, the LIM

provides a useful benchmark to understand the linearized dy-

namics and predictability.

The present study identified some optimal initial structures and

stochastic forcing related to the atmospheric PSA variability.

However, it is worth noting that the development of ENSO and

the SPDO can be affected by a wide variety of initial states and

stochastic structures. In addition, we stressed the important role of

the PSAvariability in contributing to stochastic SST forcing, while

stochastic forcing itself represents a blend of a variety of modes of

variability that can excite growth in the deterministic dynamics.

Hence, the relative importance of the PSA variability in gener-

ating the stochastic forcing might vary from case to case and re-

mains an important topic to be further investigated.
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