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Abstract
1.	 Detecting changes in marine food webs is challenging, but top predators can pro-

vide information on lower trophic levels. However, many commonly measured 
predator responses can be decoupled from prey availability by plasticity in preda-
tor foraging effort. This can be overcome by directly measuring foraging effort 
and success and integrating these into a measure of foraging efficiency analogous 
to the catch per unit effort (CPUE) index employed by fisheries.

2.	 We extended existing CPUE methods so that they would be applicable to the 
study of generalist foragers, which introduce another layer of complexity through 
dietary plasticity. Using this method, we inferred species-specific patterns in prey 
availability and estimated taxon-specific biomass consumption.

3.	 We recorded foraging trip duration and body mass change of breeding little pen-
guins Eudyptula minor and combined these with diet composition identified via non-
invasive faecal DNA metabarcoding to derive CPUE indices for individual prey taxa.

4.	 We captured weekly patterns of availability of key fish prey in the penguins’ diet and 
identified a major prey shift from sardine Sardinops sagax to red cod Pseudophycis 
bachus between years. In each year, predation on a dominant fish species (~150 g/
day) was replaced by greater diversity of fish in the diet as the breeding season 
progressed. We estimated that the colony extracted ~1,300 tonnes of biomass 
from their coastal ecosystem over two breeding seasons, including 219 tonnes of 
the commercially important sardine and 215 tonnes of red cod.

5.	 This enhanced pCPUE is applicable to most central-placed foragers and offers a 
valuable alternative to existing metrics. Informed prey-species biomass estimates 
extracted by apex and meso predators will be a useful input for mass-balance 
ecosystem models and for informing ecosystem-based management.
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1  | INTRODUC TION

As environmental changes propagate up food webs, high-order 
predators are particularly vulnerable, making them sensitive indi-
cators of changing food web patterns (e.g. Boyd & Murray,  2001; 
Robinette, Howar, Sydeman, & Nur, 2007). Yet, many predator traits 
commonly used to measure predator–prey relationships can be ob-
scured by behavioural plasticity of the predator. Individual predators 
may change their foraging approach to buffer themselves and their 
offspring against environmental variation (Grémillet et  al.,  2012). 
Conventional methods may not measure the imposed cost of 
changed foraging behaviour unless food is so scarce that predators 
reach the physiological limit of their plasticity, resulting in measur-
able demographic effects (Cairns, 1987). In particular, seabird popu-
lation parameters have limited value as indicators of prey resources 
because they vary nonlinearly in relation to food availability (Piatt, 
Harding, et al., 2007). Demographic responses, such as changes in 
population-wide survivorship, reproductive success or recruitment, 
require a critical threshold to be reached (Harding et al., 2007; Piatt, 
Harding, et al., 2007), or are latent (Durant et al., 2009). This masks 
or delays crucial signals needed by managers to detect and act on 
declining resources and threatened populations (Piatt, Harding, 
et al., 2007). Adult seabirds may maintain their body condition and 
chick provisioning across varying prey availabilities through flexible 
time budgets (Litzow & Piatt,  2003), by increasing foraging effort 
(Chiaradia & Nisbet,  2006), provisioning frequency (Suryan, Irons, 
& Benson, 2000) or by switching prey (Abraham & Sydeman, 2006).

The confounding effect of foraging plasticity can be overcome 
by directly measuring parameters over which individuals exert con-
trol (e.g. effort). Simultaneous records of foraging effort and success 
can be integrated into a measure of foraging efficiency that assumes 
a proportional relationship between catch rate and abundance 
(Grémillet,  1997). This measure is analogous to the catch per unit 
effort (CPUE) index used by fisheries to account for fishing effort 
when estimating stock abundance (Maunder et al., 2006). Although 
direct proportionality is exceptional, an imperfect CPUE remains the 
industry standard used by fisheries in the absence of more reliable 
measures of fish population size, recruitment and distribution (Dunn, 
Harley, Doonan, & Bull, 2000; Hinton & Maunder, 2004; Maunder 
et al., 2006) and has been suggested for use with ecological indica-
tors (Cairns, 1992).

Catch rates have been determined in ecological studies by record-
ing foraging success via direct measures of total prey mass ingested 
over a trip (Grémillet, 1997) or through proxies such as prey capture 
attempts (Ropert-Coudert, Kato, Wilson, & Cannell,  2006; Zimmer 
et al., 2008), temperature drops in the stomach or oesophagus as an 
indication of a cold food item being swallowed by an endothermic 

predator (Ropert-Coudert et  al.,  2001; Wilson, Culik, Bannasch, & 
Lage, 1994), beak angle and motion (Simeone & Wilson, 2003) or ob-
servation of food items caught by captive birds (Enstipp, Grémillet, & 
Jones, 2007), and dividing this measure by time spent foraging. These 
prey catch rates identify functional relationships between predator 
behaviour and overall resource availability, providing a more realis-
tic view of predator responses for conservation managers (Enstipp 
et  al.,  2007). However, without taxon-specific diet data, inferences 
are limited to overall resource availability, except for those dietary 
specialists that feed on only a single prey species. Generalist preda-
tors add another level of complexity when they mitigate low-resource 
availability by switching prey species (Abraham & Sydeman, 2006), 
making inferences based on catch rates alone unreliable as estimates 
of patterns in lower trophic levels. However, when taxon-specific diet 
information is included, a CPUE-type index could be a robust measure 
of both predator efficiency and the availability of individual prey spe-
cies. Generalist predators, whose diet composition reflects the avail-
ability of different prey types in the environment (Cullen, Montague, 
& Hull, 1991), could then be used to index the availability of a wide 
range of prey species.

Little penguins Eudyptula minor are high trophic level generalist 
predators that consume many ecologically and economically import-
ant fish (Cullen et  al.,  1991; Gales & Pemberton,  1990; Klomp & 
Wooller, 1988). These include primary prey items sardine Sardinops 
sagax and anchovy Engraulis australis, complemented by red cod 
Pseudophycis bachus, barracouta Thyrsites atun and jack mackerel 
Trachurus declivis and a wide array of marginal prey items (Cavallo 
et  al.,  2018; Chiaradia, Forero, Hobson, & Cullen,  2010; Cullen 
et  al.,  1991). Individual prey preference within a generalist popula-
tion may confound CPUE studies, but there are no indications that 
individual specialization occurs in little penguins. Indeed, there is lit-
tle variability between individuals within a sampling day (Chiaradia 
et al., 2010; Chiaradia, Ramírez, Forero, & Hobson, 2016). The pro-
portion of prey species caught varies between colonies and with time 
but agrees with concurrent local commercial and research catches 
(Cullen et  al.,  1991; Klomp & Wooller,  1988), suggesting that little 
penguins consume prey relative to its availability in the foraging 
zone (Kowalczyk, Chiaradia, Preston, & Reina,  2015). They forage 
throughout their foraging trips, as expected of a generalist forager 
(Pelletier, Chiaradia, Kato, & Ropert-Coudert, 2014; Sánchez, 2019) 
and appear to reach a threshold stomach mass before returning to 
the colony, spending more days at sea rather than reducing meal 
sizes to chicks during lean times (Chiaradia & Nisbet, 2006; Saraux, 
Robinson-Laverick, Le Maho, Ropert-Coudert, & Chiaradia, 2011). At 
the breeding colony, the penguins’ site fidelity and predictable use of 
walking paths facilitate the use of a transponder-based automated 
penguin monitoring system (APMS: Chiaradia & Kerry,  1999). This 
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system provides body mass, foraging trip duration and colony atten-
dance to be monitored for individual birds in real time, avoiding the 
time lag and disturbance associated with many traditional seabird re-
search methods (Kerry, Clarke, & Grant, 1993). Using an APMS, large 
datasets can be acquired over long time series with little disturbance 
to the colony.

In this study, we refine the CPUE index for ecological studies 
promoted by Cairns (1987) and introduced by Wilson (1992) and 
Grémillet (1997). We have integrated diet composition estimates 
measured using faecal DNA metabarcoding with foraging trip du-
ration and body mass data from the APMS. We use this method to 
determine the availability of key prey fish species of little penguins 
over time and to estimate the biomass consumed by breeding little 
penguins.

2  | MATERIAL S AND METHODS

2.1 | Study site and system

We monitored little penguins at two sites within the Phillip Island 
colony in Victoria, south eastern Australia (38°31′S, 145°07′E) dur-
ing the 2015–2016 and 2016–2017 breeding seasons (~August–
March). The sites were <2  km apart and were ‘Penguin Parade®’, 
where penguins breed in artificial wooden nest-boxes, and ‘Radio-
tracking Bay’, where penguins breed in natural burrows. We ran-
domly selected 100 nests at each site for monitoring (details in 
Sánchez et al., 2018).

2.2 | Foraging success and trip duration

All penguins within the study site were equipped with passive iden-
tification transponders (PIT tags: Penguin Parade-Allflex, Australia 
and Radio Tracking Bay-Trovan, United Kingdom), which are injected 
subcutaneously between the scapulae (Chiaradia & Kerry, 1999). An 
APMS with weighbridge, located on the main path in and out of each 
breeding site, reads these PIT tags, recording individual identity, 
time and mass, thus allowing us to identify and calculate both the 
foraging trip duration and the body mass change of individuals dur-
ing each foraging trip. We used the R statistical language and environ-
ment (R Core Team, 2013) to extract foraging trip information from 
the APMS dataset. We sorted the APMS data by PIT tag number and 
date, then compared each ‘out’ record with the previous ‘in’ record 
to identify distinct foraging trips made by individual birds. Two cal-
culations could then be made from the mass and date data relating 
to these trips.

2.2.1 | Foraging effort (trip duration)

Foraging effort was measured as foraging trip duration (days), be-
cause breeding little penguins typically leave on foraging trips just 

before dawn and return to the colony at dusk (Daniel, Chiaradia, 
Logan, Quinn, & Reina, 2007), foraging throughout their time away 
from the colony (Ropert-Coudert et al., 2006; Sánchez, 2019). Trip 
duration was calculated as the return date minus the departure date 
(Saraux et al., 2011).

2.2.2 | Foraging success (body mass change)

Foraging success was then measured as the change in body mass of 
individual birds over each foraging trip (body mass change; grams), 
calculated as the return mass minus the departure mass (Saraux, 
Chiaradia, Salton, Dann, & Viblanc,  2016; Saraux et  al.,  2011). No 
corrections were made for individual sex or mass because initial in-
vestigation with linear mixed-effects models indicated neither sig-
nificantly affected foraging success (sex: t = −0.09, df = 183, p = 0.92; 
body mass: t = −0.80, df = 223, p = 0.42).

2.3 | Breeding stage

We checked 100+ nests to record the presence of adults, eggs or 
chicks—three times a week at Penguin Parade and once a week at 
Radio Tracking Bay due to differing accessibility (Sánchez et al., 
2018). This frequency was required to detect discrete breeding 
stages of the little penguin breeding, which can be asynchronous 
among nests and significantly influence their foraging range 
and effort (Chiaradia & Kerry, 1999; Chiaradia & Nisbet, 2006; 
Kato, Ropert-Coudert, & Chiaradia,  2008). Breeding stages 
include a ~35.5  days (Chiaradia & Kerry,  1999) ‘incubation’, in 
which adults take turns incubating their eggs for 1–7 days while 
the partner forages at sea (Kato et al., 2008; Numata, Davis, & 
Renner, 2000); a variable (~14.5 days; Chiaradia & Kerry, 1999) 
‘guard’, where small chicks are guarded by one parent while 
the other forages at sea, swapping roughly daily (Chiaradia & 
Kerry, 1999) and a 4- to 6-week ‘post-guard’, where both adults 
forage to provision their large chicks, which are left unattended 
in the burrow while parents are out at sea (Saraux et al., 2016). 
Foraging trips during the post-guard stage can range from 1 to 
2 days when food is abundant and from 2 to 5 days when food is 
scarce (Chiaradia & Nisbet, 2006) with adults using longer trips 
to self-feed and recover condition (Saraux et al., 2011). Because 
of the need to frequently return to the colony to feed chicks 
and relieve partners, foraging range is most limited during the 
guard stage. For the distribution of breeding stages in this data, 
see Figure S1.

2.4 | Faecal DNA metabarcoding

Each week we sampled scats from approximately 50 nests of known 
individuals with eggs or chicks at each site. More than 800 scat sam-
ples were collected from 159 nests over the two sites. We used 384 
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samples from each year (randomized within month) for analysis and 
extracted DNA from approximately 30 mg of each homogenized scat 
sample, using a Promega Maxwell® 16 instrument and Maxwell® 16 
Tissue DNA Purification Kits. PCR inhibitor concentrations in DNA 
extracts were reduced by mixing samples with 250 μl Roche Stool 
Transport and Recovery (S.T.A.R.) Buffer (Roche Diagnostics) prior 
to extraction.

We used a two-step PCR amplification process enabling am-
plification of each gene region, and subsequent attachment of 
unique ‘index tag’ sequences to each sample, allowing samples to 
be pooled for sequencing (Binladen et al., 2007). We used a uni-
versal primer (18S_SSU; McInnes, Alderman, et al., 2017) to assess 
broad diet composition; and a group-specific primer (16S_Fish; 
McInnes, Jarman, et al., 2017) to provide fish species identifica-
tion. Detailed methodology can be found in Cavallo et al.  (2018) 
and Table S1.

Following sequencing, the separate forward and reverse reads 
were merged using the fastq_mergepairs function in USEARCH 
v8.0.1623 (Edgar, 2010, 2013). Amplicons that did not exactly match 
both the forward or reverse primers (either 18S_SSU or 16S_Fish 
primer pairs) and those with the number of expected errors >1 
(maxee = 1.0) were excluded. The primer sequences were removed. 
Sequences from each marker for all samples were then clustered into 
molecular operational taxonomic units (mOTUs) using the UPARSE 
algorithm (Edgar, 2010, 2013) with a cut-off threshold of 97% sim-
ilarity. The sequences from each sample were assigned to these 
mOTUs (-usearch_global -id 0.97) and an OTU table was generated 
using a custom R script. To assign taxonomy to mOTUs, we used dif-
ferent approaches for each marker. For 18S_SSU, we followed the 
procedure outlined in Cavallo et  al.  (2018), which provided class-
level identification based on matches in the SILVA database (Quast 
et al., 2013). For 16S_Fish, sequences were resolved to the lowest 
possible level based on matches to sequences of locally distributed 
species in GenBank using the NCBI Basic Local Alignment Search 
Tool (BLAST: Johnson et  al.,  2008) and then we manually curated 
the output (Table S1).

Following taxonomic identification of sequences, samples 
were filtered to retain only food sequences (i.e. penguin, par-
asite and contaminant sequences were excluded). Samples with 
fewer than 100 food sequences were discarded because these 
either contained insufficient DNA to analyse or were dominated 
by non-target DNA so that inferences about diet would be unreli-
able. Similarly, samples that were slow to amplify because of low 
template concentration (based on real-time PCR critical threshold 
values) were also discarded (see Table  S1 for cut-off values for 
each marker).

We calculated the relative read abundance (RRA) of ampli-
cons within each sample (Deagle et  al.,  2019). The RRA is the 
percentage of each prey taxon in each sample and is calculated 
by dividing the number of sequence reads of an individual taxon 
in a scat sample by the total number of food sequence reads in 
that sample and multiplying by 100. This was carried out for all 
food items in a sample (18S_SSU data) and for individual fish 

species in a sample. (16S_Fish data). The mean RRA for each spe-
cies was calculated for each month and each breeding season 
overall.

2.5 | Developing a prey-specific, predator-derived 
CPUE index (pCPUE)

We filtered APMS records so that only birds that returned on the 
day before each faecal sample collection were considered (Figure 1). 
We calculated foraging success (body mass change in grams) and ef-
fort (foraging trip duration in days) per trip. Weighbridge data can 
occasionally record multiple penguins crossing (recording errone-
ously high mass) or not detect a PIT tag (giving erroneously long for-
aging trips). To account for this, we retained only positive body mass 
change results <420 g (i.e. the maximum change in body mass for 
a foraging trip between 1 and 14 days long; Salton, Saraux, Dann, 
& Chiaradia, 2015) and filtered out foraging trip durations >7 days, 
which are rare for breeding little penguins as they can lead to nest 
desertion (Chiaradia & Kerry, 1999; Numata et al., 2000). DNA in 
little penguin scats presents dietary information from at least the 
four previous days (Deagle, Chiaradia, McInnes, & Jarman,  2010) 
and trip durations of breeding little penguins are usually <5 days 
(Chiaradia & Nisbet,  2006), especially during chick rearing (e.g. 
Saraux et  al.,  2016). We then calculated the prey-specific CPUE 
(g/day) of each fish species (hereafter pCPUE) and overall CPUE 
independent of diet (hereafter CPUE) as described by Figure  1. 
We used the medians for both foraging trip duration and body mass 
change because the data for each were skewed, and the median 
is less affected than the mean by extreme values in the tail. Since 
the differential demands of breeding stages may affect diet, all me-
dian calculations were made per breeding stage and date and then 
paired with diet data for birds at that breeding stage and date.

The 16s_Fish primer only amplifies fish DNA and so only 
measures the fish portion of the diet. Therefore, we needed to 
multiply the RRA of the 16S_Fish species sequences by the RRA 
of all 18S_SSU fish sequences (Actinopterygii) in the samples to 
determine the proportion of each individual fish species within 
the total diet. The individual species RRA (e.g. sardine) values 
were scaled by the mean fish RRA for each breeding season 
(Actinopterygii: 18S_SSU) rather than by monthly means, which 
could have been affected by secondary predation (Sheppard 
et  al.,  2005). See calculation example in Figure  1. The pCPUE 
was calculated only for fish species that accounted for more than 
2% of the diet in one or more years. Code to replicate pCPUE 
and CPUE from weighbridge and diet data is included in the 
Supporting Information (Appendix S1).

2.6 | Estimating biomass consumption

We estimated biomass consumed by breeding little penguins in 
each season by multiplying the number of days spent foraging by an 
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individual breeding bird by the number of birds breeding in a sea-
son and then by the mean pCPUE of each prey species in the diet.

We estimated the number of foraging days (Dj) undertaken by the 
average individual during a single nesting attempt per season j using.

where Ij, Gj and Pj are the mean number of days spent in incuba-
tion, guard and post-guard, respectively, by studied birds in season j. 
Note that in incubation and guard stages only one parent forages at a 
time, while in the post-guard stage both parents forage to provision 
chicks.

We then estimated the total number of birds in the population 
(Nj) involved in one, two and three nesting attempts (i) in season j as.

where Ai,j is the percentage of studied nests in season j that had 
at least one, two or three clutches, respectively, and 31,000 is the 
estimated size of the breeding population (Sutherland & Dann, 
2014).

Finally, we calculated the consumption (Cp,j) of prey species p in 
season j using.

where CPUEp,j is the mean pCPUE of species p for season j.
The same approach was used to derive an estimate of the total 

prey consumption for each season.

2.7 | Statistical analysis

Prey availability varies both between and within years (Hobday, 1991) 
and central-placed foragers often display foraging differences be-
tween breeding stages, due to the varying demands placed upon 
them by growing offspring (Shaffer, Costa, & Weimerskirch,  2003). 
We used nonparametric conditional inference trees in r 3.4.4 (R Core 
Team, 2013) to investigate patterns in the pCPUE for individual fish 
species over years, months, stages and sites and to determine the rela-
tive importance of these variables. Species were gathered into a single 
response (gather function, tidyr package; Wickham, 2017) and grouped 
by Species. August, February and March were dropped from analyses 
because they lacked observations for one or more combinations of 

Dj =

(

Ij + Gj

2

)

+ Pj ,

Nj =

3
∑

i=1

(Ai,j × 31,000),

Cp,j = CPUEp,j × Dj × Nj ,

F I G U R E  1   Details of the data generation and calculations of catch per unit effort (CPUE) and pCPUE (e.g. sardine). The method has 
three important data inputs: foraging success, which is recorded as mass change over a foraging trip, and foraging effort, which represents 
the duration of each foraging trip as obtained from the automated penguin monitoring system (APMS). The third input is diet composition, 
summarized as relative read abundance (RRA%). All inputs are averaged by breeding stage: incubation (i), guard (g) and post-guard (p)
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month and stage or month and season. Zero-inflation and overdisper-
sion are common in environmental DNA metabarcoding data wherein 
many rare species are present in only a few samples and a few species 
dominate most samples (Xu, Paterson, Turpin, & Xu, 2015). Likelihood 
ratio tests (lrtest function, lmtest package; Zeileis & Hothorn,  2002) 
indicated that our pCPUE data were both zero-inflated and overdis-
persed. Hence, we elected to investigate the complex relationships 
between terms using conditional inference trees (ctree function, party 
package; Hothorn, Hornik, & Zeileis, 2006a, 2006b; Johnstone, Lill, & 
Reina, 2014).

We built a conditional inference tree that included season, month, 
stage and site. Site was included because birds at the two sites exhibit 
strong spatial foraging segregation, even though they are only 2 km 
apart (Sánchez et al., 2018). Species was included as a structural term 
to allow the tree to split pCPUE by prey species, rather than per-
forming the analysis on the CPUE. We also included burrow ID, to 
determine whether repeated measures at this level had any effect 
on explaining variation in the data. We set the conditional inference 
tree to split only for p < 0.05, a conservative measure, since condi-
tional inference trees are generally fit with a splitting structure of 
p  <  0.1. Then, to explore the relative importance of variables, we 
built nonparametric random forests using cforest (package party; 
Hothorn et al., 2006b) with controls (n = 100,000 trees, mtry = 2, 
replacement = FALSE) set using the cforest_control function. We re-
trieved the relative importance of variables from this random forest 
using the varimp function in party with arguments conditional = TRUE, 
mincriterion  =  0.95 and threshold  =  0.95 (Strobl, Boulesteix, Kneib, 
Augustin, & Zeileis, 2008).

3  | RESULTS

3.1 | Penguin diet

The mean RRA of all fish (Actinopterygii) in the diet, identified 
by the 18S_SSU primer set, was 62% in 2015–2016 and 64% 

in 2016–2017 (Table  1), but individual samples varied widely. 
Crustacea, Mollusca, Cnidaria and Tunicata were also identified, 
the mean RRA of which varied over months and years. Fish had 
the highest RRA over both seasons, but in 2015–2016 there was 
moderately high RRA of salps, and in 2016–2017 moderately high 
RRA of calanoid copepods.

Using the 16S_Fish primers, 82 individual fish mOTUs were 
isolated, with ~75 identified to genus or family levels and 50 
identified to species level. Of these, 11 fish accounted for ≥2% 
of reads in the dataset in one or both years (Table  2). From 
September to December 2015, sardine accounted for 70%–86% 
of the data in each month. No single species accounted for >39.1% 
of the data per month for the remainder of that breeding season. 
In September and October of 2016, red cod accounted for a mean 
RRA of 54.7% and 79.3% RRA, respectively, and in December 
2016 and January 2017 barracouta accounted for 66.2% and 
60.7%, mean RRA, respectively. The full 16S_Fish diet composi-
tion is shown in Table S2.

3.2 | Determining the pCPUE

Foraging success (body mass change) detected by the weighbridge 
was highly variable (Figure S2). In contrast, foraging effort was much 
less variable, with the median foraging effort (trip duration) consist-
ently one day only (Figure S2). Consequently, CPUE (Figure  2a,b) 
followed foraging success closely in the years studied. The RRA of 
individual fish species in the penguin diet varied widely from month 
to month (Figure S2).

The colony maintained similar mean CPUE in both years studied 
(t = −0.47, df = 425.14, p = 0.64). This was 271.0 ± SE 5.1 g/day per 
individual in the 2015–2016 season and 274.6 ± 5.8 g/day per in-
dividual) in the 2016–2017 season. The monthly pattern appeared 
more variable in 2016–2017 than in 2015–2016 (Figure 2a,b).

The pCPUE of the key fish prey revealed dynamic diet and 
foraging behaviour over 2 years (Figure 2c,d). In October 2015, 

TA B L E  1   Number of samples analysed by 18S_SSU primer, with the relative read abundance (%) of classes that comprised ≥2% of the 
dataset in either year, split by season and month

2015–2016 2016–2017

Aug Sep Oct Nov Dec Jan Feb Sep Oct Nov Dec Jan Feb Mar

n Samples 8 57 53 49 54 5 28 24 81 67 17 20 9 6

Actinopterygii 79.5 54.3 44.1 62.2 82.8 44.8a  93.6 62 54.8 55.7 57 49.9 95.3 82

Calanoida 0.2 2.8 15.6 6.7 0.6 0 0.8 32.8 32.4 25.6 1.8 0 0.4 7.1

Copepoda (other) 0 0 0 0 0 0 0 0 0 0 34.3 18.3 0 0

Harpacticoida 2.1 7.1 1.5 1.4 0 0 0 0.1 0.3 0 0 0.2 0 0

Malacostraca 0 0 0.5 12.4 3.8 13.9 0.3 1.1 0.2 1.5 0.7 2.4 0.1 0.4

Oikopleuridae 0 0 3 7.6 7.7 11.5 2 0.8 6.2 2.9 2.5 28.8 2.8 6

Salpidae 11.9 33.1 24.4 3.3 0 0 0.9 0.2 0.5 2.5 0 0 0 0

aLow Actinopterygii RRA in January 2016 also coincided with high siphonophore RRA, of which sequences were abundant in that month but did not 
account for ≥2% of the dataset in that year. 
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little penguins ate a mean of 148.4  ±  14.0  g/day sardine, but 
from December they ate a mean of <40  g/day sardine and the 
fish component of the diet was spread across multiple species. 
For example, in February 2016, little penguins ate a mean of 
57.7 ± 12.9 g/day jack mackerel, 41.3 ± 11.2 g/day bluefin leath-
erjacket, 10.5  ±  4.1  g/day barracouta and 21.5  ±  9.2  g/day sar-
dine (Figure  2). The pCPUE of red cod showed a brief peak in 
October 2016 (165.4  ±  7.8  g/day) but the species was absent 
from December on. During February 2017, little penguins ate a 
mean of 59.8 ± 33.8 g/day bluefin leatherjacket, 38.4 ± 38.1 g/
day barracouta, 31.6  ±  30.7  g/day bluespotted goatfish and 
30.5 ± 26.0 g/day sardine.

Variable importance analysis within years showed that month 
was the most important explanatory variable for determining pCPUE 
and that other variables were not important (Figure 3a,b). The condi-
tional inference tree in Figure 3c illustrates this further.

3.3 | Estimated breeding-season biomass 
consumption

The colony consumed an estimated 618.0 ± 11.7 (M ± SE) tonnes of 
fish during the 2015–2016 breeding season, and 682.2 ± 14.4 tonnes 
in the 2016–2017 season. The sardine biomass extracted by little 
penguins in this colony during the 2015–2016 season was estimated TA
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F I G U R E  2   Overall catch per unit effort (CPUE; a, b) and prey-
specific catch per unit effort (pCPUE); (c, d) for the 2015–2016 (a, c)  
and 2016–2017 (b, d) breeding seasons fitted as Loess smoothers 
(lines) with span = 0.75 over observed data (points). The shaded 
area represents the 95% confidence intervals. Note that pCPUE 
has a lower bound at zero and cannot assume negative values, but 
the smoother may extend below zero if there is a rapid transition 
from high to low values. Note that only the five species with the 
highest mean pCPUE in each season are displayed here for ease of 
visualization



     |  1633Functional EcologyCAVALLO et al.

at 219.1 ± 13.4 tonnes. Red cod biomass consumed by the colony in 
that year was estimated as 7.7 ± 3.4 tonnes. Over the 2016–2017 
season, we estimate that 215.3 ± 15.2 tonnes of red cod and 38 ± 7.6 

tonnes of sardine were caught by Phillip Island penguins. Results for 
the 12 most common prey species and total catch across two breed-
ing seasons are shown in Figure 4.

F I G U R E  3   Variable importance analysis (a, b) and conditional inference tree analysis (c) of factors explaining patterns in pCPUE. In the 
upper panels, conditional relative variable importance is shown for the five explanatory variables used to build the conditional inference tree 
for 2015/16 data (a) and 2016/17 data (b). Predictors to the right of the dashed vertical line are significant (p < 0.05). Species was included 
as a structural term in both the conditional inference tree and variable importance analysis to separate pCPUE by species, to prevent the 
analysis being performed on the CPUE. Consequently, the influence of species on variable importance is structural only. In the lower panel, 
species are Ac, Acanthaluteres sp.; B, barracoota; BL, bluefin leatherjacket; BG, bluespotted goatfish; JM, jack mackerel; RC, red cod; S, 
sardine; SG, spiny gurnard; VL, velvet leatherjacket; W, warehou sp.; Wd, weedfish sp. Months are abbreviated to three letters and breeding 
stages are Inc, incubation; G, guard; PG, post-guard. The number of each node is shown in a small box inset in a larger oval bearing the 
relevant explanatory variable's name and associated p value. Categories for each split are shown immediately below the variable name box, 
for example, Node 1 is the first split and splits results into groups based on species, grouping sardine and red cod into one population, and all 
other species into another with a p < 0.001. Boxplots show pCPUE (g/day) medians, ranges and upper and lower quartiles
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4  | DISCUSSION

We devised a prey-specific catch per unit effort (pCPUE) that we 
suggest will provide an index of prey availability for marine-predators 
across the spectrum of resource availability. The pCPUE allows for 
more direct inferences of breeding performance for marine animals 
such as seabirds that breed on land. It offers a more sensitive vari-
able to detect short-term changes in the marine environment than 
conventional land-based variables on population demographics and 
reproductive success (Piatt, Harding, et al., 2007). Here, pCPUE indi-
ces varied significantly between breeding seasons, exposing a major 
prey shift from sardine in 2015–2016 to red cod in 2016–2017. 
Despite this, overall CPUE varied little between seasons, suggest-
ing that penguins were able to maintain stable foraging effort and 
success despite marked changes in diet (Baudrot, Perasso, Fritsch, 
Giraudoux, & Raoul, 2016; Holling, 1959).

Over the study, foraging effort and success remained favourable 
compared with past studies (e.g. one-day vs multi-day trips; Chiaradia 
& Nisbet, 2006 and comparable ‘meal sizes’; Saraux et  al., 2011), so 
we interpret this pCPUE variation to index patterns of prey availabil-
ity within the penguins’ foraging range. Each year, a transition from a 
narrow to broad diversity fish diet coincided with a drop in CPUE, after 
which CPUE values increased to a lower peak. Higher pCPUE/CPUE 
values were attained during periods when a single species dominated 
the diet, perhaps indicating exploitation of a preferred food source that 
was abundantly available early in the season (Davies,  1977; Lacher 
Jr., Willig, & Mares,  1982). This food source may have then moved 
away from the penguins’ feeding grounds (Birt, Birt, Goulet, Cairns, & 
Montevecchi, 1987), causing penguins to forage for a broader diet base 
(Chiaradia, Costalunga, & Kerry, 2003). It is also possible that these pat-
terns reflect fish spawning and aggregation patterns because little pen-
guins are gape-limited to catch mostly larval and juvenile fish (~12 cm: 
Cullen et  al.,  1991; Hobday,  1991) and there was concordance be-
tween pCPUE and the timing of spawning recorded by previous stud-
ies (Blackburn, 1950; Bruce, Neira, & Bradford, 2001; Sexton, Ward, & 
Huveneers, 2017). However, validation using simultaneous stock sam-
pling would be necessary to investigate the source of these patterns.

Penguins typically undertook one-day foraging trips and so 
most variation in pCPUE was mediated through foraging success 
and diet composition. We expect this low foraging effort to be 
related to high resource availability. Concurrent measures of chick 
fledging rates indicated very high breeding success (chicks per 
pair: 2015/16 = 2.18, 2016/17 = 1.76; PINP, 2018) and, in fact, the 
two seasons studied were among the three most successful in the 
50 years to 2017 (PINP, 2018). Above average breeding success is 
an accepted indicator of high resource availability onsite and else-
where (Chiaradia & Nisbet, 2006; Kowalczyk, Chiaradia, Preston, 
& Reina, 2014). We anticipate foraging effort to exert greater in-
fluence over CPUE and pCPUE in lean years, when little penguins 
attempt to maintain foraging success by increasing trip duration 
during incubation (Kato et al., 2008) and post-guard reproductive 
stages (Chiaradia & Nisbet, 2006). High resource availability may 
also explain why we noted very little variation in the pCPUE be-
tween breeding stages, contrary to our expectations. Chiaradia 
and Nisbet (2006) found that meal-size delivered to chicks varied 
quadratically with chick age. Adults also start to lose mass and 
condition during the post-guard stage, undertaking short trips to 
provision young and longer trips for self-maintenance (Chiaradia 
& Nisbet, 2006; Saraux et  al., 2016). These marked patterns are 
usually diminished or absent in years of high resource availability 
(Chiaradia & Nisbet,  2006) and we posit high resource availabil-
ity as a potential cause of the lack of pCPUE variation between 
breeding stages.

The pCPUE enabled us to estimate the prey biomass extracted by 
a colony of little penguins containing >30,000 individuals. Biomass 
estimates like these provide insight on the effect of localized prey 
consumption on trophic interactions, and improve ecosystem-based 
management (Hansson et  al.,  2017). Little penguins in this region 
have high niche overlap with large populations of other marine pred-
ators (Bulman et al., 2012). Understanding the individual and com-
bined impact of these major consumers will help us to plan for the 
sustainable future of the ecosystem and its components.

4.1 | A useful and adaptable index for 
ecosystem management

A single but robust index of prey availability, as proposed here, can 
assist in marine resource management (Jørgensen, 2009). We envi-
sion pCPUE time series enhancing ecological monitoring and im-
proving inputs for ecosystem-based models for commercial stock 
management and threatened species conservation. For instance, 
pCPUE derived from predator colonies located within highly local-
ized fisheries (Pichegru, Grémillet, Crawford, & Ryan,  2010) could 
provide information to ensure the sustainability of the fishery 
under true ecosystem-based management (e.g. Velarde, Ezcurra, & 
Anderson, 2013). A comprehensive picture of prey patterns over a 
larger region could be formed using several predator species with 
complementary ranges and water-column foraging depths. Adaptive 
management informed by pCPUE could ensure that prey resources 

F I G U R E  4   Estimated consumption by penguins of fish species 
(tonnes per season ± SE) that each constituted ≥2% of the total fish 
consumption in 2015–2016 (left) and 2016–2017 (right)
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are maintained at a third or more of their maximum long-term bio-
mass as has been proposed necessary to sustain seabird colonies 
and ecosystem resilience (Cury et al., 2011).

Fishery management is informed by estimates of stock spawn-
ing and recruitment, for which predator-derived information can fill 
an important gap (Scopel, Diamond, Kress, Hards, & Shannon, 2018; 
Velarde, Ezcurra, & Anderson,  2015). For example, red cod grow 
too large for little penguins to catch within a few month of spawn-
ing. They recruit to the fishery at 2  years of age and 50  cm long 
(Beentjes & Renwick, 2001). Therefore, a penguin-derived red cod 
pCPUE could be a useful predictor of cohort recruitment 2 years in 
advance, helping managers to set quotas accordingly (Beentjes & 
Renwick, 2001). We recommend that independent prey sampling be 
undertaken in conjunction with faecal DNA metabarcoding to vali-
date the use of pCPUE in such a way.

Long-term pCPUE time series from generalist predators could 
provide information on changing prey distribution and phenology, 
including trends in invasive and threatened species, as well as the 
implications for predators, and the effectiveness of management 
(Boyer, Cruickshank, & Wratten, 2015). For example, we now know 
that >10% of seabird species consume diverse gelatinous prey 
(Thiebot & McInnes,  2019), some of which readily invade ecosys-
tems and favour environments characterized by anthropogenic dis-
turbance (Purcell, 2012; Richardson, Bakun, Hays, & Gibbons, 2009). 
These gelata have lower nutritional content than fish, crustaceans 
and squid (Cardona, Álvarez de Quevedo, Borrell, & Aguilar, 2012; 
Gales & Green, 1990). Rapid digestion of low energy-density gelati-
nous prey may allow high levels of energy assimilation to be achieved 
by foraging adults (reviewed in Hays, Doyle, & Houghton,  2018; 
Thiebot & McInnes, 2019). However, seabirds with low provisioning 
rates may incur reduced chick growth and fledging success if they 
deliver predominately nutrient-poor food to offspring (van Heezik 
& Davis,  1990). Linking pCPUE with levels of chick production 
and adult mass may be used to identify the impacts of consump-
tion of low nutritional quality prey (‘junk food’, e.g. Alverson, 1992; 
Wanless, Harris, Redman, & Speakman, 2005).

4.2 | Caveats

This CPUE method relies heavily on measuring the most-appropriate 
parameters for the predator in question. For example, measuring for-
aging effort as trip duration in days is appropriate for little penguins 
because they are typically restricted to leaving and entering their 
colonies in the darkness, regardless of whether they forage for sev-
eral hours, days or weeks (Daniel et al., 2007). Foraging trips of spe-
cies that are not restricted in this way would be better recorded in 
hours (Clarke, Kerry, Irvine, & Phillips, 2002; Gaglio, Cook, McInnes, 
Sherley, & Ryan, 2018; Reid, Liddle, Prince, & Croxall, 1999).

The CPUE and pCPUE indices developed here are expected to 
be conservative. The gut passage time for a non-breeding little pen-
guin is ~8 to 6 hr (Gales, 1988), though breeding individuals are ex-
pected to have slower passage times (Thouzeau, Peters, Le Bohec, 

& Le Maho, 2004). Therefore, there will be minor information loss 
on trips longer than one day, resulting in a slight underestimation 
of foraging success (catch). Likewise, although little penguins forage 
throughout a trip (Ropert-Coudert et al., 2006; Sánchez, 2019), they 
are unlikely to be actively chasing prey for the entire time. Because 
we measured foraging effort as the total effort to bring a meal to 
their offspring (travel, search and capture), we potentially overes-
timate some effort. If our method is used in other systems, under-
standing the likely effect of such errors will require knowledge of the 
foraging behaviour and plasticity of the predator being employed.

Prey availability to predators may be considered a proxy for 
abundance (Velarde et al., 2013), but there are behavioural and en-
vironmental factors that can confound interpretation. Generalists 
may disproportionately feed on the most abundant prey (Jaworski, 
Bompard, Genies, Amiens-Desneux, & Desneux,  2013), and, when 
overall prey abundance is low, they may choose to target the most eas-
ily caught prey (‘rank switching’: Baudrot et al., 2016). If pCPUE analy-
sis indicates that species A has declined, it may actually be that species 
B has become more available. For example, sardines are a primary prey 
for little penguins, whereas barracouta, red cod and jack mackerel 
are considered alternative prey (Chiaradia et al., 2016). Therefore, we 
could interpret the lack of sardine in the second year of the study to 
indicate a decline in sardine abundance or availability, but, we can-
not discount a high abundance of red cod being the cause of the diet 
shift. The preference of individual seabirds and populations for cer-
tain prey species and sizes is another potential confounding issue for 
pCPUE. In this system, little penguins have diverse prey preferences, 
but are gape-limited to a prey-size up to ~12 cm (Cullen et al., 1991; 
Hobday,  1991). Therefore, we can draw inferences only on species 
that are present at or below this size within the colony's foraging area.

All measures of diet composition have their limitations 
(Bond & Jones, 2009; Deagle et al., 2019; Karnovsky, Hobson, & 
Iverson,  2012). In faecal DNA analysis, sources of error can in-
clude differences in digestion rates, gene copy number and am-
plification efficiencies, and false positives due to secondary 
predation (Deagle et  al.,  2019). Because we focus here on the 
fish component of the diet, error introduced by these factors is 
minimised. However, our estimates are affected by the propor-
tion of fish in the diet. In some months, high RRA of crustaceous 
or gelatinous sequences may indicate either direct or secondary 
predation (Sheppard et  al.,  2005; Thiebot & McInnes,  2019). In 
some cases, this likely represents targeted diet items (e.g. salps, 
Cavallo et al., 2018), while miniscule taxa are more likely to have 
been ingested within the gut of target prey (e.g. copepods and 
Oikopleurids, see Bowser, Diamond, & Addison, 2013). Therefore, 
the proportion of fish sequences in months dominated by taxa in-
gested through secondary predation is likely to be an underesti-
mate. We lessened the uncertainty introduced in these months 
by scaling individual fish-species pCPUE by the mean proportion 
(RRA) of fish (Actinopterygii) in the diet in that season, rather than 
the monthly proportion. Consequently, we may have underesti-
mated the pCPUE of individual fish species in some months as well 
as the seasonal consumption of some species. This does not affect 
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our estimates of total biomass extracted by the penguin popula-
tion, only that of individual species and the resulting pCPUE and 
consumption estimates produced are conservative. Importantly, 
the DNA technique used here has a superior resolution to isotopic 
analysis or lavage (Chiaradia, Forero, McInnes, & Ramírez, 2014) 
despite its limitations.

Predator-derived indices of prey availability reduce our reliance 
on limited fisheries data. The pCPUE offers a quantitative index that 
allows us to make more robust inferences of foraging success for ma-
rine animals such as seabirds that breed on land. Unlike population 
demographics and reproductive success, the CPUE/pCPUE index is 
not affected by land-based changes in the nesting environment such 
as adverse weather, predation and human disturbance, making it 
more sensitive to detect changes in the marine environment.
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