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Abstract: Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically
important methicillin-resistant Staphylococcus aureus (S. aureus). In S. aureus, BPL is a bifunctional
protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as
serving as a transcriptional repressor that controls biotin synthesis and import. In this report,
we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial
compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting
the enzymatic activity of BPL in vitro, as well as functioning as a transcription co-repressor. A low
spontaneous resistance rate was measured for the compound (<10~) and whole-genome sequencing
of strains evolved during serial passaging in the presence of BASA identified two discrete resistance
mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed
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to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase.
In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional
repression in vivo. We propose that this second resistance mechanism promotes bioavailability of
biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for
binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial
activity and resistance of BPL inhibitors in S. aureus.

Keywords: antimicrobial resistance; Gram-positive bacteria; Staphylococcus aureus; advanced
resistance studies; biotin; biotin protein ligase; BirA; novel antibacterials

1. Introduction

The need for new antimicrobial agents to combat the growing threat of drug resistance is currently
not being met, with only five novel classes of antibiotics introduced since 2000 [1,2]. Strains that are
now resistant to multiple classes of clinically approved antibiotics have been reported for Staphylococcus
aureus, Enterococci species and Mycobacterium tuberculosis amongst others [3]. Without new antimicrobial
agents, the inability to treat resistant microbial infections is predicted to result in 10 million deaths
annually by 2050 [4]. Hence, there is a desperate need for new products with novel mechanisms of
action that are not subject to existing resistance mechanisms. Precious few novel antimicrobial agents
are currently in the drug development pipeline. One promising new drug target is biotin protein ligase
(BPL) for which new potent, selective inhibitors are being developed (reviewed in [5,6]). In this report,
we examine one such inhibitor that is active against drug-resistant S. aureus [7] and probe mechanisms
of action and potential resistance.

In certain bacteria, such as clinically important S. aureus, BPL is a bifunctional protein with two
important roles; (1) enzymatic biotinylation of biotin-dependent enzymes, and (2) biotin-dependent
repression of certain target genes implicated in biotin homeostasis. This bifunctionality makes BPL
the key master regulator of all biotin-mediated metabolic processes in S. aureus and a promising new
antibiotic target [6]. S. aureus BPL (SaBPL) catalyzes the covalent attachment of a biotin prosthetic
group onto two key biotin-dependent enzymes, namely acetyl-CoA carboxylase (ACC) and pyruvate
carboxylase (PC). Protein biotinylation occurs through two partial reactions. Biotin is first ligated
to ATP yielding the reaction intermediate biotinyl-5’-AMP (Figure 1). BPL then employs the labile
biotinyl-5'-AMP to attach the biotinyl moiety onto a single target lysine residue present in the active
site of ACC or PC [8]. The appended biotin is necessary for the biotin-dependent enzymes to fulfill
their important metabolic roles. ACC catalyzes the first committed step in fatty acid synthesis, whilst
PC replenishes the tricarboxylic acid cycle with oxaloacetate. ACC and BPL have been identified as
essential gene products for growth in genetic knockout studies performed on S. aureus [9-12] and,
consequently, have been the targets of drug discovery programs. The antibacterial efficacy of ACC
inhibitors has been demonstrated in vivo (reviewed in [13,14]) and BPL inhibitors have shown efficacy
in vitro against S. aureus and M. tuberculosis [15-19]. Whilst dispensable for growth in culture, PC has
been shown to be an important virulence factor in bacteremia models in mice and nematodes [20,21].
As protein biotinylation is essential for the activity of ACC and PC, pharmacological inhibition of S.
aureus BPL (5aBPL) is proposed to impact bacterial viability and pathogenesis due to the disruption of
both enzymes (reviewed [6]).

SaBPL also regulates the transcription of three genetic elements, namely the biotin biosynthesis
operon (bioO), a gene encoding the substrate-specific subunit of the biotin transport protein BioY, as
well as a putative fatty acid ligase operon yhfT-yhfS [22,23]. Recent in vivo characterization in S. aureus
has revealed a hierarchy in the control of these genes by SaBPL. The biotin biosynthesis operon was
shown to be the most responsive to treatment with exogenous biotin, being repressed by 10 nM biotin
15 min post-treatment [23]. Transcripts for bioY and yhfI-yhfS persisted longer after biotin treatment
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than the biotin biosynthesis genes. It is proposed that this mechanism may assist with metabolic
adaptation of the bacteria to their environment, as de novo biotin biosynthesis is an energetically
expensive process that can be bypassed when exogenous biotin is readily available for import. This
was supported experimentally where the growth rate of S. aureus was enhanced in media containing
exogenous biotin, even though the bacteria were capable of biotin synthesis [23]. We propose that this
ability is important during infection as S. aureus occupies a variety of niche microhabitats with varying
biotin availability [23]. These findings also suggest that pharmacological induction of transcriptional
repressor activity may lead to biotin starvation through the dual actions of reduced de novo biotin
synthesis and reduced biotin import. Hence, small molecules that serve as co-repressors are beneficial
in the design of antibacterials that target SaBPL.

Structural biology has greatly assisted in understanding the bifunctional activity of SaBPL.
The protein contains an N-terminal helix-turn-helix domain necessary for DNA binding (Figure S1;
reviewed in [8,24]). When the cellular demand for biotin is low, and biotinyl-5’-AMP is not required
for protein biotinylation, this reaction intermediate also serves as a co-repressor by inducing protein
homodimerization, a pre-requisite for high-affinity DNA binding to the operator sequences and
repression of the target operons and genes [25,26]. A series of well-characterized conformational
changes occur in SaBPL to facilitate this protein dimerization [27]. Following the binding of biotin,
residues 118-129 (known as the biotin-binding loop) undergo a disordered-to-ordered transition that
creates a pocket that allows binding of ATP. An adenosine-binding loop, formed by residues 224-228,
also undergoes structural changes to stabilize the binding of the adenylate moiety [27]. Further
allosteric conformational changes occur to loops located in the dimerization interface upon ligand
binding. These include the ordering of loops contained between amino acids 142 and 150 (extending an
alpha-helix by three residues) and amino acids 198-201 [27]. Together these structural rearrangements
facilitate the transition from monomer to homodimer. Arg122 and Phel23 in the biotin-binding loop
stabilize the dimer by interacting directly with the side chain of Asp200 in the opposing subunit
(Figure S1) [26]. Homodimerization appropriately aligns the two N-terminal DNA binding domains to
facilitate their interaction with DNA (Figure S1) [27]. Protein dimerization has been reported to be
induced by chemical analogs of biotin and biotinyl-5"-AMP [15,26,28,29].

Several groups have reported on the development of anti-BPL compounds with antibacterial
activity [15-19,30-34]. Bisubstrate analogs that occupy both the biotin and ATP-binding pockets
and mimic the mode of binding adopted by biotinyl-5'-AMP have been particularly promising.
Non-hydrolyzable analogs of biotinyl-5'-AMP have been generated by replacing the labile
phosphoanhydride linker connecting the biotin and AMP moieties with alternative bioisosteres. These
new inhibitors exploited intermolecular interactions with the bacterial BPLs that are absent in the human
enzyme, to provide necessary selectivity. Recently, the bisubstrate analog biotinyl-acylsulfamide
adenosine (BASA, Figure 1) was reported with potent anti-S. aureus activity (minimal inhibitory
concentration (MIC) RN4220 = 0.125 ug/mL, ATCC 49775 = 0.25 pug/mL) and necessary in vitro
selectivity over the human equivalent (K; SaBPL = 2.4 nM, K; human BPL >10 uM; >4000-fold
selectivity) [7]. A full description of the synthesis of BASA and its chemical characterization has already
been described [7]. A crystal structure of SaBPL in complex with BASA revealed that the compound
adopted the same mode of binding and induced the same conformational changes necessary for DNA
binding and repressor activity as biotinyl-5’-AMP (Figure S1) [7]. In the current study, the cellular
mechanisms that contribute to the antibacterial efficacy of BASA were explored. Two discrete resistance
mechanisms were also discovered using advanced resistance studies and whole-genome sequencing
analysis. This study provides new insights into the mechanism of action of anti-BPL compounds and
possible resistance mechanisms to a novel class of antibiotics.
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Figure 1. Protein biotinylation catalyzed by biotin protein ligase (BPL). Biotin ligates with ATP to
produce the reaction intermediate, biotinyl-5'-AMP. Biotinyl-5’-AMP is employed to covalently attach
the biotinyl moiety onto a specific lysine residue present in the biotin-accepting protein substrate.
The chemical structure of biotinyl-acylsulfamide adenosine (BASA), a chemical analog of the reaction

intermediate, is shown.

2. Results

2.1. Biological Evaluation of BASA

The antibacterial spectrum, therapeutic window and mechanism of action of BASA were first
established using a series of microbiological and cellular assays. Antimicrobial susceptibility assays
performed against a panel of clinical isolates of S. aureus (n = 23) revealed that BASA was active
against both methicillin-sensitive and resistant strains with minimal inhibitory concentration (MIC)
measurements ranging from 0.125 to 0.5 ug/mL (Table 1). There was no change to the MIC when the
antimicrobial susceptibility assay was performed in growth media supplemented with 10% fetal calf
serum but it did increase eight-fold with 20% serum, suggesting slightly reduced efficacy in the presence
of serum fatty acids (Table 1). This potent antibacterial activity was restricted to Staphylococci as other
bacterial pathogens were insensitive to BASA including Gram-positive Streptococcus pneumoniae, and
Gram-negative Escherichia coli and Enterobacter species. Mycobacterium tuberculosis was the only other
bacterium susceptible to BASA (MIC = 55 ug/mL, 100 uM), albeit with weaker potency than S. aureus.
Cytotoxicity testing against two human cell lines HepG2 (liver-derived) and HEK293 (kidney-derived)
showed both were insensitive to BASA at concentrations up to 250 pg/mL (Table 1, Figure S2), providing
a >100-fold therapeutic window for S. aureus. Finally, concentration and time-dependent kill kinetics
experiments were performed by viable cell counts following 24 hours of treatment with BASA at one,
two and four times the MIC. Growth ceased at all concentrations, however, killing was not observed
consistent with BASA functioning as a bacteriostatic antibacterial (Figure S3). The bacteriostatic
activity of BASA implies that host-induced killing and/or combination therapy may be required for
in vivo efficacy. Consequently, synergy assays with other clinically used antibacterial agents were
performed using a checkerboard titration assay [35]. Of the eight antibacterial agents tested, none
were antagonistic with BASA, and synergy was detected with both methicillin and streptomycin as
determined by a fractional inhibitory concentration (FIC) of <0.5 (Figure S4) [35,36]. Together these
biological data establish BASA as a promising new antibacterial agent.
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Table 1. Antibacterial susceptibility and cytotoxicity of BASA.

Species MIC (ug/mL)
Staphylococcus aureus

Methicillin-sensitive (n = 8) 0.25-0.5
Methicillin-resistant (n = 9) 0.25-0.5
Coagulase negative Staphylococci (1 = 7) 0.125-0.5

S. aureus ATCC 49775 0.5

S. aureus ATCC 49975 MBH + 10% FCS 0.5

S. aureus ATCC 49975 MHB + 20% FCS 4
Mycobacterium tuberculosis (n = 1) 55
Streptococcus pneumoniae (n = 6) >32
Enterocococcus faecalis (n = 3) >128
Enterococcus faecium (n = 5) >128
Escherichia coli (n = 1) >128

Cell lines EC50 (png/mL)
HepG2 >250
HEK293 >250

2.2. Mechanism of Action of BASA

Three lines of evidence were consistent with BASA acting through direct binding to the BPL
target. Firstly, the compound showed reduced antibacterial activity against a strain of S. aureus
engineered to overexpress SaBPL [19]. The increased concentration of recombinant BPL in the bacteria
elevated the MIC by eight-fold over an isotypic control strain (Figure S5A). This response was specific
for BPL inhibition with a similar increase observed with another chemical analog of the reaction
intermediate, biotinol-5"-AMP [32], but not the unrelated 3-lactam amoxicillin (Figure S5B,C). In further
support, increased concentrations of the BPL substrate biotin in the growth media also reduced the
antibacterial activity of BASA. Super-physiological concentrations of 1 uM (i.e., >1000-fold serum
concentrations) of exogenous biotin increased the MIC of BASA by 64-fold (Figure S6). Finally,
we demonstrated that BASA functions as a co-repressor in vivo with a potency equivalent to that
of biotin. Electrophoretic mobility shift assays (EMSA) were first performed and confirmed that
BASA could promote SaBPL binding to DNA in vitro through the same mechanism utilized by the
natural co-repressor biotinyl-5"-AMP (Figure S7). Here, the SaBPL-BASA and SaBPL-biotinyl-5"-AMP
complexes were compared for binding to both the bioO and bioY promoter sequences. Prior to EMSA
analysis, unliganded (apo) SaBPL was incubated with either BASA, or biotin and MgATP to allow the
formation of biotinyl-5'-AMP. Equipotent binding was observed for the two complexes to both the
bioY and bioO sequences (Figure S7). Having established the DNA binding activity of the SaBPL-BASA
complex in vitro, the co-repressor activity of BASA was then investigated using transcriptome studies
on whole cells. S. aureus NCTC 8325 was grown in biotin depleted media until log phase and then
treated with 10 nM of either biotin or BASA. Cells were also treated with 3.9 uM of BASA, a level four
times the MIC. Cells were harvested at 0, 15, 30 and 90 min post-treatment and RNA extracted for
gRT-PCR analysis to measure the levels of the bioD (the first gene in the biotin biosynthesis operon)
and bioY (biotin transporter gene) transcripts (Figure 2). S. aureus treated with 10 nM biotin displayed
a 111-fold decrease in bioD expression at 15 min post-treatment and maintained this level of tight
repression throughout the 90-minute time course (Figure 2A). The addition of 10 nM of BASA resulted
in a 14-fold repression of bioD expression 15 min post-addition (p < 0.0001, Figure 2B). Similarly, this
level of repression was maintained throughout the 90-minute time course. Stronger repression of bioD
was achieved by increasing the dosage of BASA to 3.9 uM. A 52-fold decrease in bioD transcripts was
measured at 15 min, and bioD expression was maintained over the time course with a 32-fold decrease
measured at 30 min and 71-fold decrease at 90 min (p < 0.0001, Figure 2C). The bioY transcript exhibited
less dramatic repression than bioD for both supplemented biotin and BASA. With the addition of 10 nM
biotin, bioY was only repressed two-fold at 15 min (p < 0.01), five-fold at 30 min (p < 0.01) and six-fold
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at 90 min (p < 0.01; Figure 2D). S. aureus treated with 10 nM of BASA exhibited a similar response,
with bioY expression reduced by 1.5-fold at 15 min (p < 0.01), two-fold at 30 min (p < 0.01) and six-fold
at 90 min (p < 0.0001, Figure 2E). Together, these three lines of evidence demonstrated that BASA
binds directly to the BPL target and functions as a co-repressor, promoting transcriptional repression
comparable to that of the natural co-repressor biotinyl-5"-AMP.
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Figure 2. BASA represses expression of bioD and bioY. Quantitative RT-PCR was employed to measure
the repression of bioD following treatment with (A) 10 nM biotin, (B) 10 nM of BASA (0.01x minimal
inhibitory concentration (MIC)) and (C) 3.9 uM (4x MIC) of BASA, and the repression of bioY in
response to (D) 10 nM biotin and (E) 10 nM of BASA. Transcript levels were normalized against
an internal control (16s rRNA) and calculated relative to time = 0. Error bars represent SEM from
3 independent biological replicates (1 = 3), *p < 0.05, **p < 0.01, **p > 0.001, ****p < 0.0001.

2.3. Advanced Resistance Studies Identify Two Resistance Mechanisms

The ability of S. aureus to develop resistance to BASA was investigated using both spontaneous
resistance and serial passage approaches. The S. aureus NCTC 8325 strain was selected due to the
availability of a sequenced reference genome for comparative sequence analysis. To measure the rate at
which spontaneous resistance develops, 10? S. aureus cells were plated onto media containing four times
the MIC of BASA. No resistant mutants grew after 24 hours which equates to a calculated resistance
frequency of <1077 at this inhibitor concentration. BASA resistant S. aureus strains were subsequently
generated by the serial passage of seven populations of S. aureus NCTC 8325 in sub-inhibitory
concentrations of BASA for 18 days at which time individual colonies were isolated. These were
then passaged on non-selective media to verify that the inherited resistance was genetically stable.
The sensitivity of the strains to BASA was then established using antimicrobial sensitivity assays
(Table 2 and Figure S8A). The isotypic parent strain was highly sensitive to BASA, with an MIC of
0.0625 pg/mL. Interestingly, the most resistant strain, B7, still retained a low MIC of 4 pg/mL (64-fold
greater than non-treated control) suggesting complete resistance to this BASA is difficult to readily
evolve. The MIC values for B1-B6 were a modest 2-16-fold increase over the parent strain.
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Table 2. Strains used in this study and relevant genetic and phenotypic changes associated with BASA
resistance. MICs were determined against BASA. Significance for doubling times was determined by
ANOVA analysis using Dunnett’s multiple comparison test. (***p < 0.001). A full genotypic analysis of
strains B1-B7 is shown in Supplementary Table S2.

Strain MIC Doubling Time Genotype
pg/mL BASA (Min)
NCTC 8325 0.065 51.8+2.1
Apyc trkA
Bl 1 69.2 +11.6 pyc A194bp (2761-2954/3453)
SAOUHSC_01981 E20K
Apyc
B2 0.5 64.5 +1.42 A94bp intergenic (SAOUHSC_01476 to 01477)
presumed silent mutation (no rsbU)
B3 0.125 193.6 + 14.3 *** gdpP, yjbH
' R yjbH Q213-
Apyc
Bd 0-25 23.5£5.5 A113bp intergenic (SAOUHSC_01476 to 01477)
greA
55 025 688121 SAOUHSC 01504 P15L
Apyc, rpop, gtfA homolog
A139bp intergenic (SAOUHSC_01476 to 01477)
B6 1 419 +0.73 rpop P626L
SAOUHSC_02984 (gtfA-like) R296H
Apyc, birA D200E, fmtA
pyc A200bp (917-1116/3453)
b7 4 67.10.90 A139bp intergenic (SAOUHSC_01476 to 01477)
fmtA K163
JE2 0.5 ND Parent strain, USA300 JE2
NR-47297 4 ND JE2 Apyc
NR-47439 4 ND JE2 AyjbH
NR-47565 0.5 ND JE2 AfmtA
NR-47335 0.5 ND JE2 AgtfA
NR-47331 0.5 ND JE2 AtrkA

To determine if there was a fitness cost associated with these mutations, in vitro growth curves for
the seven strains were analyzed and doubling times calculated (Table 2, Figure S8B) [37]. All strains
had growth kinetics comparable to the parental strain NCTC8325 (52 min), except B3, which exhibited
significantly inhibited growth (doubling time, 193 min, p < 0.0001 B3 vs. NCTC8325) preventing
it from reaching half the maximum optical density of the other strains. Collectively, these data
suggest that in vitro resistance to the BPL inhibitor is possible without significant associated fitness
costs. To test if the resistance mechanisms identified were specific for BASA, all seven strains were
subjected to antibacterial susceptibility assays against a panel of diverse antibiotics that included two
known BPL inhibitors, namely biotinol-5-AMP [32] and BPL223 (compound 4c in [30]). The evolved
resistance mechanisms appeared specific to the BPL inhibitors as there was no change in susceptibility
to B-lactams amoxicillin and methicillin (Table S1). The only exception was observed for strain B3
which exhibited a modest two- to four-fold decrease in susceptibility to both 3-lactams. Conversely, all
strains exhibited decreased susceptibility to both BPL inhibitors. Whereas parent strain NCTC8325
exhibited an MIC of 1 ug/mL against biotinol-5"-AMP, all strains were resistant to this compound (MIC
>64 pg/mL), except B5, which exhibited an MIC of 8 pg/mL. Similarly, NCTC8325 also exhibited an
MIC of 8 pug/mL for BPL223, however B2, B4, B6 and B7 were not susceptible again (MIC >64 pg/mL).
B1 (MIC = 64 pg/mL) and B3 (MIC = 16 pug/mL) exhibited a modest decrease in susceptibility, and B5
(MIC = 8 pg/mL) showed no change.

Whole-genome sequencing was subsequently employed to characterize mutations arising in the
seven strains generated from advanced resistance studies, alongside a non-treated NCTC 8325 parent
strain. DNA sequencing was performed with 150 bp paired-end reads on the Illumina Miseq platform,
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with each strain having 434,000-809,000 reads (between 22 and 40 times coverage of genome) sufficient
for detection of single nucleotide variants [38]. The parent NCTC 8325 strain was compared to the
reference sequence and differences observed between the parental strain and reference genome were
accounted for in a new reference sequence. The resistant strains were then compared to this new
parental reference genome. Between two and four mutations were identified in each strain (phenotypes
summarized in Table 2, full characterization of genotypes in Table S2). Collectively, this encompassed
15 non-synonymous mutations in the coding regions of 11 independent genes. The majority of these
were single nucleotide variants. However, two episodes of insertions that mediated frame shifts in
coding regions were observed as were five deletion events, ranging from three base pairs (i.e., a single
codon) to larger deletions (194 to 200 bp). Four strains also contained 94 to 139 bp deletions between
open reading frames, SAOUHSC_01476 and SAOUHSC_01477, approximately 1 kb upstream of the
putative operon containing BPL encoding gene birA (ORF SAOUHSC_01473) which is predicted to
span SAOUHSC_01476 to SAOUHSC_01471 [39].

The only gene with non-synonymous mutations in five independent strains was pyc which encodes
the biotin-dependent enzyme PC. Strains B1, B2, B4, B6 and B7 all contained mutations that led to
premature truncation of the PC protein. These strains also exhibited the greatest (4-64 fold) increases in
MIC (Table 2). Streptavidin blot analysis performed on whole cell lysates to detect biotinylated protein
confirmed the loss of biotinylated PC (Figure S9). In addition to the deletion of pyc, the most resistant
strain B7 also contained the missense mutation D200E in the birA gene that encodes BPL. This was
accompanied by a nonsense mutation in the fmtA gene, involved in removing D-alanine from teichoic
acids in the cell wall [40], and an intergenic deletion between SAOUHSC_01476 and SAOUHSC_01477
(Table S2). Other mutations present in strains containing the pyc deletion included the following:
Strain Bl contained a frame-shift mutation, leading to premature truncation of the potassium transport
protein trkA and a missense mutation, E20K, in a putative sensor histidine kinase. Strains B2, B4 and B6
contained deletions in the same intergenic region as B7, and strain B6 contained two additional missense
mutations, P626L in the RNA polymerase 3-subunit and R296H in a glycosyltransferase-A-like gene.
It is worth noting that isolates from B6 and B7 were suspected to be derived from the same intermediate
strain, possibly due to cross-contamination, as they contained identical mutations in two separate
locations in the genome. Strains B3 and B5 that exhibited the lowest (two- to four-fold) reduced
susceptibility to BASA were devoid of mutations in the pyc gene. Strain B3 contained two mutations;
a missense mutation in the ci-di-AMP phosphodiesterase gdpP [41] that converted histidine 442 in the
presumptive catalytic triad in the DHH domain to proline and a 3bp deletion which led to the loss
of glutamine at position 213 in the disulfide stress effector yjbH [42]. Strain B5 contained a 111 bp
deletion in a gene predicted as a greA transcription factor elongation homolog and a missense mutation
P15L in a putative bacterial ferredoxin, SAOUHSC_01504. Interestingly, none of the strains harbored
mutations in biotin-dependent ACC. Together these data suggest S. aureus can evolve at least two
possible resistance mechanisms in vitro to overcome BASA: (1) deletion of pyc and (2) mutation of the
BPL target.

2.4. Resistance Mechanism 1: Deletion of pyc

Of all the mutations identified in the advanced resistance study, four were predicted to cause a
loss of function due to protein truncation (pyc, trkA, fmtA, greA), whilst two encoded for missense
mutations (gdpP, yjbH). To determine if the loss of function in any of these gene products was sufficient
for reduced susceptibility, strains containing transposon disrupted target genes were obtained from
the Nebraska transposon mutant library [43]. As all mutants in the library were generated in S. aureus
JE2 (CA-MRSA, USA300) this served as the isotypical control strain. Of the 10 discrete genes harboring
mutations identified in B1-B7, five transposons disrupted strains were available for further analysis,
namely pyc, trkA, fmtA, gtfA and yjbH. All five strains were initially tested for susceptibility to BASA by
monitoring growth for 20 hours in the presence of varying concentrations of the compound. Parental
strain JE2 exhibited an MIC of 0.5 pg/mL. Only transposon disruption of Apyc and AyjbH lead to an
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increased MIC. Both strains exhibited an MIC of 4 pg/mL, the same susceptibility as that observed
in the initial advanced resistance studies with isolate B7 (Table 2). To test if the deletions leading
to reduced susceptibility also resulted in changed growth kinetics (as had been observed in strain
B3 containing the mutation in yjbH), the growth kinetics were explored further for the Apyc and
AyjbH strains by monitoring growth over two days in the presence of 0, 0.5, 2 and 4 ug/mL BASA
(Figure S10). The strains showed no difference in growth in the untreated control, suggesting that
there was no growth defect associated with the mutations (Figure S10A). Consistent with the MIC
determination, the parental strain had no growth at concentrations higher than 0.5 ug/mL. Whilst
growth of the Apyc and AyjbH strains was still partially inhibited by BASA, even at low concentrations,
both strains showed significantly increased growth over the wildtype with 50% and 25% maximal
growth relative to untreated control after two days (Figure S10B). The Apyc strain also grew at 2 ug/mL
(Figure S10C) and AyjbH at both 2 and 4 pug/mL BASA (Figure S10D). The growth kinetics of the strains
under antibiotic pressure were also markedly different. The Apyc strain exhibited a pronounced lag
phase before entering a relatively rapid log phase growth. In contrast, the AyjbH strain showed slower
steady growth throughout the time course. The fact the Apyc strain was able to grow at four times the
MIC suggested this mutation alone was sufficient for the four-fold increase in resistance observed in
the NCTC-8325-derived strains containing this mutation.

2.5. Resistance Mechanism 2: Missense Mutation in the BPL Target

The advanced resistance studies also identified the missense mutation SaBPL-D200E in clone
B7. Analysis of the available structural data revealed that this mutation resides in the dimerization
interface between the two BPL subunits (Figure S1D). Based on this observation, we subsequently
explored the proposal that SaBPL-D200E disrupted dimerization activity. Site-directed mutagenesis
was employed to re-engineer the D200E substitution into the protein sequence from S. aureus Mu50 for
which structural data has been published [27,44]. Recombinant SaBPL and SaBPL-D200E were purified
in their apo state for further characterization. Denatured mass spectrometry (MS) confirmed the
desired mutation was present in SaBPL-D200E (measured mass: 37,904 Da; predicted mass: 37,904 Da)
and native nano-electrospray ionization—-mass spectrometry (nESI-MS) together with a previously
described streptavidin blot method both confirmed that the proteins were devoid of any co-purified
biotinyl-5"-AMP (Figure 3 and Figure S11). The catalytic properties of wildtype and SaBPL-D200E
were then measured using an in vitro protein biotinylation assay. The biochemical data revealed that
enzyme activity was not significantly affected by the D200E mutation, with the affinity for biotin
increased modestly by two-fold (wildtype SaBPL K, 1.8 + 0.3 uM, SaBPL-D200E Ky, 3.8 + 0.4 uM
(p < 0.05)). Likewise, the D200E mutation had a minimal effect upon the inhibitory activity of BASA in
the enzyme assay (K; wildtype SaBPL 4.8 + 2.1 nM; K; SaBPL-D200E = 10.9 + 3.5 nM; p = 0.18). Native
nESI-MS was then utilized to investigate the oligomeric state of SaBPL-D200E (Figure 3, Figure 512 and
Table S3). This technique has previously been employed to study co-repressor induced dimerization
of wildtype SaBPL [25]. Whilst SaBPL underwent a well-characterized monomer-to-dimer transition
induced by biotinyl-5"-AMP (Figure 3A,B), no dimerization was observed for SaBPL-D200E in both its
apo and holo forms across a range of concentrations (Figure 3C,D). This point mutation, thus, prevents
protein dimerization. The native nESI-MS provided sufficient mass resolution to confirm the presence
of bound biotinyl-5’-AMP, indicating that lack of protein dimerization is not due to the inability to
catalyze the formation of co-repressor.
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Figure 3. Native native nano-electrospray ionization-mass spectrometry (nESI-MS) reveals S. aureus
BPL (SaBPL) D200E is monomeric in the presence and absence of ligands. The oligomeric states of 10 uM
of (A) wildtype apo SaBPL and (B) holo SaBPL were compared with 90 uM of (C) apo SaBPL-D200E
and (D) holo SaBPLD200E. Monomeric protein is diagrammatically represented by a single grey sphere,
homodimer by conjoined spheres and the presence of biotinyl-5’-AMP by a black triangle. Spectra
showing SaBPL D200E at varying protein concentrations between 1.4 and 90 uM are presented in Figure
512 and masses extracted from the spectra are in Table S3.

The effect of impaired homodimerization ability on DNA binding and transcriptional repression
was then assessed using a combination of in vitro EMSA analysis and a previously established in vivo
transcriptional reporter system in E. coli [23]. Both wildtype and SaBPL-D200E demonstrated weak
DNA binding activity in their apo states in the EMSA, with unbound bioO and bioY probes observed
even at the highest protein concentration tested (i.e., 625 nM; Figure 4A-D). EMSA analysis was then
repeated in the presence of biotin and MgATP to measure DNA binding in response to co-repressor
biotinyl-5"-AMP. Unlike the apo protein, 50 nM of wildtype SaBPL was sufficient to bind all of
the oligonucleotide probes consistent with the homodimer having a higher affinity for the DNA
(Figure 4E,G) [25,26]. Conversely, the D200E mutation had a significant impact on DNA binding.
Approximately three-fold higher concentrations of holo SaBPL-D200E were required for the same
response with bioO (156 nM; Figure 4F) and the mutant failed to achieve complete binding to the bioY
oligonucleotide even at the highest protein concentration tested (156 nM; Figure 4G,H). These data
reveal that the D200E mutation impaired 5aBPL dimerization and reduced binding to DNA.

Finally, the biological consequence of the D200E mutation upon repressor activity was determined
using an in vivo reporter assay. This in vivo reporter assay was previously developed in a biotin
auxotrophic E. coli strain that had the DNA binding activity of its endogenous BPL removed [45].
The assay was adapted such that the transcriptional repressor activities of both wildtype SaBPL and
S5aBPL-D200E could be investigated against the S. aureus bioO and bioY promoters (Figure 5A). Expression
of a 3-galactosidase reporter gene was measured in the presence of varying biotin concentrations, and
a repression constant determined (KR piotin i-€., the biotin concentration required for a 50% reduction
of B-galactosidase activity). A previously characterized SaBPL-F123G mutant that similarly disrupts
dimerization activity was also included for comparison [25,26]. Modest three-fold increases (p < 0.05)
in biotin concentration were required for repression of the bioO promoter by either of the mutant
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proteins (D200E KR piotin = 13.9 £ 3.4 nM; F123G KR piotin = 15.3 + 3.5 nM) compared to wildtype SaBPL
(KR biotin = 4.3 = 1.9 nM; Figure 5B). Greater differences were observed for the bioY promoter, where
wildtype BPL (KR piotin = 8.2 = 0.7 nM) repressed at vastly lower biotin concentrations than either mutant
(KR biotin >500 nM), neither of which reached basal levels of expression even at 500 nM biotin (Figure 5C).
These data were consistent with the reduced affinity of SaBPL-D200E for the bioY oligonucleotide
measured in the EMSA analysis. Together these data revealed that the dimerization-impaired mutant,
SaBPL D200E, reduced affinity for DNA binding in vitro and transcriptional repressor activity in vivo.
The data also suggest impaired repression of the genes required for biotin synthesis as a resistance
mechanism to combat BASA in S. aureus.

Wildtype SaBPL SaBPL D200E
A B

Apo(nM) | 625 312 156 78 39 20 O |Apn{nM) |625 312 156 78 39 20 o|

VIVIE IV

bioO hioO [ L
C D
Apo(nM) | 625 312 156 78 39 20 0 |ADO {nM) | 625 312 156 78 39 20 0
bieY bioY
E F
Holo (nM) | 50 25 125 63 31 16 0 Holo (nM)
bioO bioC
G H
Holo(nM) | 50 25 125 63 31 16 0 Halo (nM)
bioY

bioY

Figure 4. SaBPL D200E has reduced DNA binding activity compared to wildtype SaBPL. Electrophoretic
mobility shift assays (EMSA) analysis was performed to measure the binding of (A) apo SaBPL wildtype
binding to bioO, (B) apo SaBPL D200E binding to bioO, (C) apo SaBPL wildtype binding to bioY and (D)
apo SaBPL D200E binding to bioY, (E) holo SaBPL wildtype binding to bioO, (F) holo SaBPL D200E
binding to bioO, (G) holo SaBPL wildtype binding to bioY and (H) holo SaBPL D200E binding to bioY.
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Figure 5. Biotin-regulated repressor activity of SaBPL and mutants. (A) In vivo expression assays were
performed in an E. coli reporter strain containing chromosomally integrated repressor and promoter
constructs [23]. LacZ units were calculated by subtracting the value generated by the control strain
containing no integrated promoter construct (LacZ unit <10). Expression of the [3-galactosidse reporter
gene, under the control of promoters (B) bioO or (C) bioY, was measured in media containing varying
concentrations of biotin. Transcription factors SaBPL (orange), SaBPL D200E (green) and SaBPL
F123G (black) were analyzed alongside a control strain that harbored no repressor protein (blue).
Error bars represent SEM from independent biological replicates (1 = 6). The amount of biotin to
reach half-maximum repression (KR pjotin) Was calculated from the curves using GraphPad Prism.
The KR piotin for wildtype SaBPL repressing bioO and bioY was 4.3 + 1.9 nM and 8.2 + 0.7 nM, respectively.
The KR piotin for SaBPL-D200E repressing bioO and bioY was 13.9 + 3.4 nM and >500 nM, respectively.
The KR piotin for SaBPL-F123G repressing bioO and bioY was 15.3 + 3.5 nM and >500 nM.

3. Discussion

BPL has been proposed as a drug target for the development of novel anti-infective therapeutics
against antibiotic-resistant bacteria. In this report, we first investigated the mechanism of action of the
potent BPL inhibitor BASA as an exemplar for this new class of antibacterial. Multiple lines of evidence
were consistent with BASA acting directly through the BPL target. It has previously been proposed that
anti-BPL compounds exert their antibacterial activity through inhibition of the enzymatic function of
BPL and consequent reduced biotinylation and activity of the two biotin-dependent enzymes present in
S. aureus, namely PC and ACC [7]. The data presented here provide evidence that anti-BPL compounds
can also act as co-repressors to repress biotin synthesis and transport. In support, transcriptomic studies
revealed that BASA induced repression of both bioY (biotin transport) and bioD (biotin synthesis) in
S. aureus with similar potency and kinetics as the natural ligand biotin. These data are consistent
with the hypothesis that the pharmacological inhibition of BPL induces biotin starvation within the
bacteria by compromising both the supply and utilization of biotin. The combined effect of these
mechanisms contributes to the antibacterial efficacy of BASA. Biotin deprivation is detrimental to the
bacteria as neither PC nor ACC can be post-translationally activated by BPL without bioavailable
biotin. In response, the bacteria attempt to increase biotin supply through either de novo synthesis
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(using bioO) or import of exogenous sources (using bioY). The importance of the biotin starvation state
in the activity of anti-BPL compounds has not been previously reported.

Having established a greater understanding of the mechanism of action of BASA, we next
addressed possible mechanisms of resistance. The incidence rate for the generation of spontaneous
resistance was low, with no resistant colonies growing after 24 hours, resulting in a resistance rate
of less than 1 x 107, Similar low spontaneous resistance rates have been reported for another
anti-BPL compound active against M. tuberculosis (less than 1.4 x 107'9) [33]. This highlights BPL as an
important antibacterial target with low potential for resistance to develop. Our advanced resistance
studies involving serial passaging of S. aureus in sub-inhibitory concentrations of BASA for 18 days
and subsequent characterization of the resistant strains resulted in the identification of two discrete
resistance mechanisms; (1) deletion of PC and (2) a missense mutation in the BPL target. Loss of PC was
the most common resistance mechanism observed in laboratory testing. A premature truncation of PC
was present in five of the seven strains evolved to be resistant to BASA. As the biotin-accepting domain
of PC that is essential for catalysis is contained within the C-terminal region of the enzyme, these
truncated proteins were unable to be biotinylated and, hence, inactive. The transposon disrupted Apyc
strain in the genetic background of MRSA strain USA300 JE2 confirmed that PC deletion conferred
resistance independently of the other mutations and was a viable resistance mechanism in another
genetic background, exhibiting a four-fold decrease in MIC over the isotypic wildtype parent strain.
Notable was the observation that no mutations were observed in ACC. The current report suggests
that bioavailable biotin is selectively utilized such that ACC is preferentially biotinylated over PC. This
was consistent with previous genetic knockout studies which have demonstrated ACC, but not PC, is
essential for growth in laboratory cultures [9,10]. Removal of PC from the cell, therefore, overcomes
biotin starvation by removing the only other competing protein that requires biotin. However, this is
unlikely to be a mechanism readily available to S. aureus during infection in vivo, as loss of PC and
other tricarboxylic acid cycle genes have been shown to reduce virulence in murine and nematode
models of infection [20,21].

The advanced resistance studies also identified a strain with a missense mutation in BPL.
Biochemical characterization of this mutation revealed disrupted homodimerization, consequently
leading to weakened DNA binding and reduced repressor activities. This residue, D200, is located on
a loop within the dimer interface that becomes ordered upon ligand binding. The side chain of Asp200
forms hydrogen bonding interactions with Arg122 and hydrophobic interactions with Phe123 on the
opposing subunit. By inhibiting dimer formation, D200E disrupted the DNA binding activity of SaBPL
and repression of SaBPL target genes. The mechanism of resistance findings supports the proposal that
the co-repressor function of BASA contributes to antibacterial efficacy. We propose that disruption of
the repressor activity provides an opportunity for cells to resist the action of BASA by increasing the
availability of intracellular biotin. The D200E mutant with reduced repression of bioO and bioY will
result in increased de novo biotin synthesis and biotin transport, respectively. Increased accumulation of
intracellular biotin could compete against BASA for binding within the active site of SaBPL. In support,
we observed that increasing exogenous biotin concentrations decreased the antibacterial activity of
BASA. It has also been shown that S. aureus can stimulate import and sequester biotin inside the
cell in response to increased exogenous biotin concentrations [25]. Similar resistance mechanisms
through the deregulation of target genes have also been observed for other antibiotic targets in the
literature. The antibiotic pyrithiamine binds a riboswitch protein and causes the repression of thiamine
biosynthesis genes, leading to thiamine starvation. However, resistance to pyrithiamine is generated
through mutations in the binding site of the riboswitch protein such that the antibiotic can no longer
bind and cause gene repression, leading to a de-repression of thiamine synthesis [46,47].

The mechanism of entry of anti-BPL inhibitors into S. aureus has not been established. One
possibility is that their common biotinyl moiety facilitates import into the bacteria through BioY, the
biotin-specific subunit of the multivitamin transport system. Hence, targeting BPL with an inhibitor
that also acts as a co-repressor would reduce BioY expression and limit entry of the chemotherapeutic
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into the bacteria which would be an undesirable situation for an antibacterial. However, several lines
of unpublished data suggest that the BASA enters the bacteria through an alternative mechanism,
likely via membrane-associated aquaporins. No change in the antibacterial potency of BASA was
observed when tested against a bioY knockout S. aureus strain (data not shown). Similarly, increasing
the concentration of exogenous biotin in the growth media did not impede the internalization of a
fluorescent BPL inhibitor containing the biotinyl group [30]. Together these observations suggest that
BASA is imported into bacteria independently of BioY. Hence, the altered expression of BioY noted
here is unlikely to impact the accumulation of BASA inside the bacteria and affect its efficacy.

The oligomeric state of the SaBPL D200E variant reported here supports previous in vitro studies
on both S. aureus and E. coli BPLs, where modification of residues in the dimerization interface affect
repressor activity. The mutations, F123G in SaBPL [25,26] and D197Y in E. coli (equivalent of D200
in S. aureus) [48,49] demonstrate impaired homodimerization and loss of repressor activity [25,48,49].
However, it should be noted that the mutants used in those studies were engineered using site-directed
mutagenesis based on knowledge of the crystal structure. The current report provides the first
example where this phenotype has been evolved in vivo. The interaction between Phe123 and Asp200
appears particularly important in SaBPL dimerization. Asp200 from one subunit forms hydrophobic
interactions with Phe123 on the opposing subunit to facilitate dimerization. Mutation of these two
amino acids result in enzymes with similar affinity for biotin, and only two-fold weaker than the
wildtype enzyme [26]. Therefore, the ligand binding and catalytic properties of the mutant were
not impaired. Conversely, homodimerization was significantly disrupted for the mutants, thereby
perturbing DNA binding and repressor activities. It is proposed that these mutant strains require a
much higher concentration of biotin before SaBPL can be induced to be a fully active transcriptional
repressor. Additionally, crystal structures of SaBPL in complex with BASA reveal that the inhibitor
becomes buried deep in the homodimer and is shielded away from the solvent. Consequently, it is
difficult for the inhibitor to readily diffuse out from the binding site when SaBPL is in its dimeric
state. This results in a stable inhibitor-protein complex that ensures the compound experiences high
residency time with the BPL target, thus contributing to the overall efficacy of the antibacterial.

4. Materials and Methods

4.1. General Bacterial Culture and Molecular Biology Reagents

All chemicals and reagents were purchased as analytical grade or higher. All molecular biology
enzymes (restriction enzymes and DNA polymerase) and buffers were acquired from New England
Biolabs. Oligonucleotides were purchased from Geneworks Ptd Ltd. Details of oligonucleotides used
for cloning (Table S4), RT-PCR (Table S5) and EMSA analysis (Table S6), bacterial strains (Tables S7
and S8) and plasmids (Table S9) used in the study are supplied in the supplementary information.
Unless otherwise stated, all bacterial strains were purchased from the American Tissue Culture
Collection. The following strains were provided by the Network on Antimicrobial Resistance in
Staphylococcus aureus (NARSA) for distribution by BEI Resources (BEIResources.org), NIAID, NIH:
Staphylococcus aureus subsp. aureus, Strain USA300 (JE2), Transposon Mutants NE754, NE896, NE1022,
NE788 and NE792. Cation-adjusted Mueller Hinton II (Becton, Dickinson and Company, MD, USA)
was used to propagate S. aureus. Antibacterial agents were obtained from Sigma-Aldrich.

4.2. Quantification of Gene Expression Using gRT-PCR

The qRT-PCR protocols used to measure the expression of bioD and bioY were completed as
outlined previously [23]. However, the sub-cultured S. aureus NCTC 8325 cultures were treated with
either 10 nM biotin or BASA at 10 nM or 3.9 uM (i.e., 4x MIC) once reaching mid-log phase, prior to
cell lysis, RNA extraction and qRT-PCR analysis.
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4.3. Electrophoretic Mobility Shift Assay (EMSA)

The EMSA protocol was adapted from methods previously published [23,25,50]. For analysis of
BASA, 100 uM of the compound was added to the EMSA binding buffer. As BASA was dissolved in
100% DMSO, the final DMSO concentration in the binding buffer was adjusted to 2.5% (v/v). Control
reactions were prepared by adding 100 uM biotin and 2.5% (v/v) DMSO to the binding reaction.

4.4. Spontaneous Resistance Rate

A culture containing 10° CFU of S. aureus NCTC 8325 was plated onto cation-adjusted Mueller
Hinton broth (CAMHB) Agar containing 4x MIC of BASA. Nine technical replicate cultures were
plated from the same starting colony to control for priming mutations in the initial colony. Plates were
assessed for growth after 24 h at 37 °C. As the determination of true resistance rates using fluctuation
analysis requires some colonies to grow [51-53], a resistance frequency was instead calculated.

4.5. Generation of Resistant Mutants by Serial Passaging

Mutants were selected by serial passage in CAMHB in 96-well plates as previously described [54].
Briefly, a 2-fold dilution series of BASA was plated across 7 wells. Initial concentrations ranged from
1 pg/mL to 0.016 pg/mL, with these concentrations increasing (up to 64 pug/mL) as the MIC increased.
Approximately 10* CFU of S. aureus NCTC 8325 at mid-log phase were added to each well and allowed
to grow at 37 °C for 20 h. The OD at 620 nm was measured and the highest concentration of BASA
that permitted growth (ODgyg > 0.1 used as the threshold) was diluted 1000-fold to inoculate a new
concentration series of BASA. This process was repeated for 18 days, and on the final day, single
isolates were recovered by streaking out the strains from the highest concentrations of BASA that still
allowed growth. Genomic DNA was isolated with the Wizard Genomic DNA purification kit (Promega,
Wisconsin, USA) according to the manufacturer’s guidelines. Bacteria were treated with 10 pg of
lysostaphin (Sigma-Aldrich Inc, MO, USA) and 1 mg/mL lysozyme prior to lysis. These selected strains
were also propagated for 6 days on CAMHB agar in the absence of antibiotic selection, before re-testing
these strains for antibacterial susceptibility to assess the stability of the generated resistance.

4.6. Genomic DNA Purification and Whole-Genome Sequencing

Genomic DNA was isolated with the Wizard Genomic DNA purification kit (Promega, Wisconsin,
USA) according to the manufacturers’ guidelines. Bacteria were treated with 10 pg of lysostaphin
(Sigma-Aldrich Inc, MO, USA) and 1 mg/mL lysozyme prior to lysis. DNA quantities ranged from
15-60 ng/uL. Genomic DNA from parental strain NCTC 8325 and isolates B1-B7 was submitted to
ACREF (Cancer Genomics Facility, Adelaide, South Australia) for library preparation and sequencing.
Whole-genome sequencing was performed with 150 bp paired-end reads on Illumina Miseq. The
number of sequences for each strain ranged from 434,000-809,000 (between 22 and 40X coverage of
genome), 32% GC content. Sequence reads are stored on the Biosample with accession numbers B1:
SAMN14388873, B2: SAMN14388874, B3: SAMN14388875, B4: SAMN14388876, B5: SAMN14388877,
B6: SAMN14388878, B7: SAMN14388879, S. aureus subsp. aureus NCTC 8325 SAMN14388880.

4.7. Bioinformatic Analysis

The Fastq reads were analyzed using the Breseq analysis pipeline software [55]. The parental
NCTC 8325 strain that had not undergone antibacterial selection was mapped to the reference
genome (NC_007795.1) and the differences were applied to generate a new reference sequence using
gdtools. The de-multiplexed reads from isolates B1-B7 were then mapped to this new reference and
mutations identified. More than 98% of reads from each isolate were mapped to the reference genome.
Manual inspection of the resulting HTML files was used to determine true positives. Amongst those
manually excluded from further analysis was a missense mutation in rsbU which is not transcribed in
NCTC8325 [56], mislabeling of P626L (as P579L) due to a non-standard start codon and removal of
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mutations identified in all strains (including the parental NCTC 8325) that did not reach the threshold
required for inclusion into the new reference genome.

4.8. Antimicrobial Susceptibility Testing/Cross Resistance

Antimicrobial susceptibility assays were performed using a broth microdilution method as
recommended by CLSI (Clinical and Laboratory Standards Institute, Document M07-A8, 2009,
Wayne, Pa.). Antibacterial compounds were diluted two-fold in cation-adjusted Mueller Hinton
Broth (CAMHB) to a final concentration range of 64-0.06 pug/mL in 3.2% DMSO. To prepare the
inoculum, an overnight culture of S. aureus was subcultured 1:1000 into fresh media and grown to
mid-log phase. Then, 96-well microtiter plates containing diluted compounds were inoculated with
5 x 10* CFU and incubated at 37 °C for 20-22 h with shaking. Growth of the culture was quantified
after shaking for 15 seconds to disrupt any sedimentation by measuring the absorbance at 620 nm or
630 nm using either a Thermo Multiskan Ascent plate reader or Biotek EL808 plate reader, respectively.
Assays were performed in triplicate.

4.9. Measurement of the Kinetics of Bacterial Growth

The kinetics of bacterial growth were measured in Mueller Hinton broth devoid of antibiotics.
Growth curves were obtained by subculturing an overnight culture 1:1000 and incubating cells at
37 °C to an approximate ODgqg of 1 before a further 1:1000 dilution to yield an approximate initial
inoculum of 10° cells in 100 uL. Cultures were grown for 24 h in a 96 well plate at 37 °C. Growth of the
cultures was monitored at ODg3g every 30 min for 24 h with shaking using an EL808™ Absorbance
Microplate Reader (BioTek Instruments Inc, Winooski, VT, USA). Growth curves were analyzed by the
method described in [37]. In brief, the log of the ODs from OD 0.1-0.3 was plotted against time and
log(2)/gradient was determined giving the doubling time. Cultures were plated in technical duplicate
and three independent biological replicates were collected.

4.10. Protein Methods

Expression and purification of non-liganded (i.e., apo) SaBPL were performed following previously
described protocols [25,44,57]. Purification of apo protein was performed by incubating bacterial
lysate with streptavidin agarose at 30 °C for 1 h prior to incubating with purified biotin domain-GST
fusion protein from S. aureus [58] (5aPC90) at 30 °C for 1 h, as described previously [25,26]. Protein
concentration was determined by Bradford assay. Purified apo protein was confirmed by native
nano-electrospray ionization-mass spectrometry (nESI-MS) and by Western blot analysis as described
previously [25,26]. An enzyme activity assay to measure the incorporation of biotin onto protein by
BPL was performed as previously reported [30].

4.11. Mass Spectrometry

Native nESI-MS of apo SaBPL was carried out on a Waters Synapt G1 HDMS system completed
according to [25]. MS parameters were as previously reported to maintain non-covalent interactions
and included; capillary voltage, 1.5-1.7 kV; cone voltage, 40-80 V; trap collision energy, 20-50 V;
transfer collision energy, 15-20 V; source temperature, 50 °C; extraction cone, 2.0-5.0 V; trap gas flow,
5-8 mL/min; backing pressure, 3.95 mbar. Data analysis was performed in MassLynx V4.1 using
manual peak finding.

4.12. Chromosomal Integration and B-Galactosidase Reporter Assay

SaBPL-D200E was cloned into the established integration vector (methods provided in
supplementary materials) and incorporated chromosomally into the E. coli reporter strains prepared
previously [23,25], using established methods [45]. 3-galactosidase assays were performed as previously
reported [23,25,45].
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5. Conclusions

In this report, we demonstrate that BASA exerts its antibacterial effect through two mechanisms
inhibiting the catalytic biotinylation activity of BPL and serving as a co-repressor. BASA treatment
results in a biotin starved state within the bacteria. S. aureus strains resistant to BASA were characterized
and two discrete resistance mechanisms were discovered. However, the low spontaneous resistance
rate would suggest that resistance may be difficult to evolve in vivo and confirms BPL as a bona fide
antibacterial drug target. Further chemical development of BPL inhibitors will focus on maintaining
both mechanisms of action. New analogous with improved pharmacology are under development to
realize valid pre-clinical antibiotic candidates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/4/165/s1,
Figure S1: SaBPL structures; Figure S2: Cytotoxicity assays; Figure S3: Concentration kill kinetics; Figure 54:
Synergism of BASA with various antibiotics; Figure S5: Mechanism of action studies; Figure S6: BASA activity
with exogenous biotin; Figure S7: Electromobility shift assays; Figure S8: Growth curves of BASA resistant
strains; Figure S9: Blots demonstrating loss of PC; Figure S10: Growth curves of transposon mutants with BASA;
Figure S11: Blots demonstrating preparation of apo SaBPL; Figure S12: Native MS spectra; Table S1: MIC values
of BASA resistant strains; Table S2: Genotypes of BASA resistant strains; Table S3: Molecular masses measured
by native MS; Table S4: Oligonucleotides used for cloning; Table S5: Oligonucleotides used for qPCR; Table Sé:
Oligonucleotides used for EMSA analysis; Table S7: Bacterial strains used in this study; Table S8: Bacterial strains
used in reporter assays; Table S9: Plasmids used in this study.
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