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Abstract  10 

Marine heatwaves are increasing in frequency and intensity, and indirectly impacting coral reef fisheries 11 

through bleaching-induced degradation of live coral habitats. Marine heatwaves also affect fish metabolism 12 

and catchability, but such direct effects of elevated temperatures on reef fisheries are largely unknown. We 13 

investigated direct and indirect effects of the devastating 2016 marine heatwave on the largest reef fishery 14 

operating along the Great Barrier Reef (GBR). We used a combination of fishery-independent underwater 15 

census data on coral trout biomass (Plectropomus and Variola spp.) and catch-per-unit-effort (CPUE) data 16 

from the commercial fishery to evaluate changes in the fishery resulting from the 2016 heatwave. The 17 

heatwave caused widespread, yet locally patchy, declines in coral cover, but we observed little effect of 18 

local coral loss on coral trout biomass. Instead, a pattern of decreasing biomass at northern sites and stable 19 

or increasing biomass at southern sites suggested a direct response of populations to the heatwave. 20 

Analysis of the fishery-independent data and CPUE found that in-water coral trout biomass estimates were 21 

positively related to CPUE, and that coral trout catch rates increased with warmer temperatures. 22 

Temperature effects on catch rates were consistent with the thermal affinities of the multiple species 23 

contributing to this fishery. Scaling-up the effect of temperature on coral trout catch rates across the region 24 

suggests that GBR-wide catches were 18% higher for a given level of effort during the heatwave year 25 

relative to catch rates under the mean temperatures in the preceding 6 years. These results highlight a 26 

potentially large effect of heatwaves on catch rates of reef fishes, independent of changes in reef habitats, 27 

that can add substantial uncertainty to estimates of stock trends inferred from fishery-dependent (CPUE) 28 

data. Overestimation of CPUE could initiate declines in reef fisheries that are currently fully exploited, and 29 

threaten sustainable management of reef stocks. 30 

Key words: Heatwave, coral reef fishery, coral trout, coral bleaching, catchability, Bayesian modelling, 31 

climate change.  32 
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Introduction  33 

Rapid changes in climate are an important driver of the exploitation status of fisheries (Brander, 2010; Free 34 

et al., 2019), with extreme climate events implicated in both fisheries collapses and unexpected 35 

productivity booms (Belhabib, Dridi, Padilla, Ang, & Le Billon, 2018). Marine heatwaves, in particular, are 36 

increasing in frequency and intensity under climate change, impacting the habitats and ecosystems that 37 

regulate the productivity of fisheries (Graham et al., 2007; Lefcheck, Wilcox, Murphy, Marion, & Orth, 2017; 38 

Oliver et al., 2018; Robinson et al., 2019; Smale et al., 2019) and directly affecting the behaviour, ecological 39 

interactions, spawning, survival and the distribution of fishery species (Auth, Daly, Brodeur, & Fisher, 2018; 40 

Caputi et al., 2019). Heatwaves can impact fisheries productivity through the direct effects of temperature 41 

on the physiology of target species and indirect effects that play out through impacts on their ecosystem, 42 

but these are seldom distinguished.  43 

Coral reef fisheries support millions of livelihoods globally (Burke, Reytar, Spalding, & Perry, 2011), but their 44 

productivity may be jeopardized by effects of heatwaves on fish physiology and behaviour (Pratchett et al., 45 

2017), foodwebs (Hempson et al., 2017; Rogers, Blanchard, & Mumby, 2018), and through the loss of coral 46 

habitats that are sensitive to heatwaves (Hughes et al., 2018; Stuart-Smith, Brown, Ceccarelli, & Edgar, 47 

2018). Coral habitat loss is the most frequently observed cause of indirect heatwave impacts on reef 48 

fisheries to date (Bell et al., 2013; Graham et al., 2007; Robinson et al., 2019). Coral death causes shifts in 49 

benthic community composition (Darling et al., 2019; Hughes et al., 2018) and changes in structural 50 

complexity (Ferrari et al., 2016), both of which are important for early life-stages of reef fishery species 51 

(Graham & Nash, 2013; Wen, Pratchett, Almany, & Jones, 2013). The effects of warming on the physiology 52 

and ecology of fishes may also impact reef fisheries, by directly changing survival, growth, activity patterns, 53 

and therefore the availability of fish to the fishery (Pratchett et al., 2017), or indirectly by affecting habitat 54 

and prey availability (Hempson et al., 2017). The direct effects of heatwaves on reef fishes are strongly 55 

supported by experimental studies (Pratchett et al., 2017), but effects of contemporary heatwaves on reef 56 

fisheries remain poorly understood.  57 

The impacts of heatwaves on the growth and distribution of fish stocks are likely to be confounded with 58 

other environmental changes, because these impacts will play out over multiple years. Short-term impacts 59 

of heatwaves on fisheries species may be expected through sudden declines in survival and behavioural 60 

change. In particular, behavioural responses of reef fishes to changes in temperature can be strong 61 

(Pratchett et al., 2017). These behavioural responses to temperature change can affect the catchability of 62 

fish by fisheries, where catchability is commonly defined as a scaling constant relating catch-per-unit-effort 63 

(CPUE) to biomass (Patterson, Pitcher, & Stokes, 1993; Wilberg, Thorson, Linton, & Berkson, 2009). 64 

Importantly, catchability can change over time and space, depending on a number of behavioural attributes 65 

of the fishes, including changes in activity, feeding rates or escape responses – most of which are 66 

temperature-dependent (e.g. Bacheler & Shertzer, 2020). If catchability increases go unnoticed, a fishery 67 
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may maintain catch-per-unit-effort even as biomass declines, potentially resulting in a sudden unexpected 68 

collapse (e.g. Hamilton et al., 2016). For example, overfishing of the chub mackerel (Scomber japonicus) 69 

fishery off Ecuador was associated with temperature-driven changes in catchability that caused increases in 70 

fishing mortality, despite effort remaining consistent over years (Patterson et al., 1993). Temperature is 71 

known to affect the catchability of some reef species (Bacheler & Shertzer, 2020), though it is not clear 72 

whether heatwave events could induce changes in catchability. Such effects of temperature on catchability 73 

might be expected for reef fishes, given their sensitivity to temperature change (Pratchett et al., 2008).  74 

Here we analysed changes in the in-water biomass and catch rates of coral trout (Plectropomus and Variola 75 

spp.), the major targets of the largest commercial reef fish fishery along Australia’s Great Barrier Reef 76 

(GBR). The GBR is a World Heritage area and is managed through an extensive marine park and a number of 77 

fisheries regulations (Hopf, Jones, Williamson, & Connolly, 2016; Little et al., 2011). The major values of the 78 

reef for biodiversity, tourism and fisheries are increasingly under threat from repeated marine heatwaves 79 

that have caused mass bleaching events, and severe cyclones (GBRMPA, 2019; Mellin et al., 2019). The 80 

2016 pan-tropical heatwave caused coral bleaching on 60% of the GBR’s reefs, with widespread coral 81 

mortality subsequently observed (Hughes et al., 2018; Stuart-Smith et al., 2018). Changes in fish community 82 

structure were also evident along the entire GBR, much of which appeared to be in direct response to 83 

warming rather than a result of coral mortality (Stuart-Smith et al., 2018), although coral mortality also had 84 

clear impacts, particularly on small coral-dependent reef fishes (Richardson, Graham, Pratchett, Eurich, & 85 

Hoey, 2018). It is not clear whether the heatwave also affected reef fisheries. The reef line fishery is the 86 

largest fishery operating in the GBR marine park and the main targets are coral trout. Coral trout physiology 87 

and behaviour are sensitive to changes in temperature (Pratchett et al., 2017), but they also respond to 88 

changes in prey fish abundance (Hempson et al., 2017) and some species are dependent on coral habitats 89 

for settlement (Wen et al., 2013). Like many other reef fishery targets, the multiple potential responses of 90 

coral trout to elevated temperatures imply a high likelihood of impacts of the 2016 heatwave on the 91 

fishery.  92 

We used underwater visual census (UVC) data from 65 reef sites on the GBR that were surveyed before and 93 

after the 2016 heatwave along with CPUE data from the Queensland line fishery, enabling a concurrent 94 

assessment of how the heatwave and associated habitat changes affected both coral trout populations and 95 

the fishery. We first hypothesized that the heatwave decreased coral trout biomass on northern reefs, 96 

where (1) temperatures exceeded those found at the warmest sites most of the coral trout species have 97 

previously been recorded (Stuart-Smith, Edgar, & Bates, 2017; Wolanski, Andutta, Deleersnijder, Li, & 98 

Thomas, 2017), and (2) loss of coral habitat was greatest (Stuart-Smith et al., 2018). Warming beyond 99 

optimal temperatures of 25-31oC also affects multiple physiological and behavioural traits for P. leopardus, 100 

which together would be expected to reduce survival rates (Johansen et al., 2015; Pratchett et al., 2017). 101 

Therefore, we predicted that temperature rises above ~27oC would cause declines in biomass the year after 102 
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the heatwave. Second, we hypothesized that warming may increase the catchability of fish in the line 103 

fishery. We base this hypothesis on experimental studies of coral trout thermal performance curves, which 104 

indicate they eat more at warmer temperatures (Johansen et al., 2015), so they may be more likely to take 105 

a lure or baited line. We then used the empirical analysis on the response of the fishery to the heat wave to 106 

scale-up the data and estimate the effect of the heatwave on the annual catch of the fishery. We ultimately 107 

aimed to determine how the direct and indirect effects of heatwaves on coral reef fisheries may help or 108 

hinder the productivity and ongoing sustainable management of reef fish stocks.  109 

Methods 110 

Our analysis was divided into three stages. To address the first hypothesis, we used the fishery-111 

independent UVC data to model the association between coral trout biomass and environmental 112 

covariates, including the heatwave anomaly and coral habitat. We then predicted coral trout biomass at the 113 

scale of the entire GBR reef line fishery and analysed the association between predicted biomass and 114 

fishery-dependent catch-per-unit-effort data. This analysis allowed us to test the hypothesis that warming 115 

would increase catchability of coral trout. Finally, we estimated the effect of the heatwave on catches at 116 

the scale of the entire GBR.  117 

Analysis of fishery-independent data on coral trout biomass from the underwater visual census 118 

Underwater visual censuses were conducted from 2010 to 2017, comprising 117 surveys before the 2016 119 

heatwave and 124 surveys at the same sites between 6 months and 1 year after the heatwave (fig. 1a) 120 

(Stuart-Smith et al., 2018). The UVC methodology followed the standardized Reef Life Survey protocol 121 

(Edgar & Stuart-Smith, 2014), as detailed in an online methods manual (www.reeflifesurvey.com). The 122 

methods consist of diver counts and size estimates of reef fishes observed along 50 m transect lines 123 

(‘surveys’) in duplicate 5 m wide belts (total area per transect = 500 m2). Biomass was calculated from fish 124 

length and counts using species-specific length-weight coefficients obtained from FishBase 125 

(www.fishbase.org) and a correction factor for diver-bias in estimation of size, as used in previous studies 126 

with these data (Edgar, Barrett, & Morton, 2004). Although UVC data distinguished seven species of coral 127 

trout that are caught by fishers (dominated by Plectropomus leopardus, but also including four other 128 

Plectropomus spp. and two Variola spp.), these are not distinguished in the fishery statistics. Therefore, 129 

UVC data on coral trout species were aggregated for the main analyses to be consistent with the fisheries 130 

data.  131 
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 132 

Figure 1 (A) Map of the mean annual catch-per-unit-effort in the line fishery (2007-2016) across the Great 133 

Barrier Reef and the locations of the UVC sites (note that sites outside of the GBR in the western Coral Sea 134 

shown were used for the supplemental analysis of species composition, but are outside of the limits of the 135 

fishery, so were not used for matching to the fisheries data), (B) SST anomaly for 2015 with sites surveyed 136 

before the heatwave, and (C) SST anomaly for 2016 with sites surveyed after the heatwave.  137 

 138 

We modelled coral trout biomass from the UVC in response to the heatwave and other environmental 139 

covariates using a Bayesian generalized linear mixed effects model (GLMM). There was a high frequency of 140 

zero biomasses observed in the UVC, so we used a log-normal hurdle model. The hurdle model modelled 141 

presence-absence of coral trout on surveys using a Bernoulli GLMM with a logit link function, and then 142 

biomass of coral trout on surveys where they were present with a log-normal distribution. The mean 143 

expected biomass from the model for a given covariate combination is the product of predicted presence 144 

rate and biomass conditional on presence (e.g. Mellin, Russell, Connell, Brook, & Fordham, 2012).  145 

We modelled both occurrence (i.e. a binary variable for presence/absence), and biomass if present, as 146 

functions of three nested random effects and multiple environmental covariates including the long-term 147 

mean temperature for a location, the temperature anomaly for that location in the year of the survey, 148 

marine protected (MPA) area zone status, percent cover of live hard corals, wave exposure, depth and 149 

commercial fishing pressure. The random effects were included to model the spatial hierarchy of sampling 150 

and included: surveys (transect scale) within sites, and sites within the fishery logbook reporting grids (0.5 151 

degree grid cells, fig. 1). The MPA zone status was either fished (including restricted fishing ‘yellow zones’) 152 

or no-take (‘green zones’). Wave exposure was scored on a three-point scale with 1 = sheltered from winds 153 

in the prevailing direction; 2 = exposure to wind from the prevailing direction; and 3 = exposed to ocean 154 

swells. Depth was binned into three categories of <4 metres, 4-10 metres, >10 metres. Commercial fishing 155 

pressure was quantified as the sum of all days of fishing since 2007 in each survey’s logbook grid.  156 
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Sea surface temperature data was measured by AVHRR instrument on the NOAA-19 satellites (Integrated 157 

Marine Observing System, 2014). We obtained composite (IMOS - SRS - SST - L3C) sea surface temperatures 158 

at a daily resolution from night-time passes at a 0.02 by 0.02 degree resolution (L3S dataset, cylindrical 159 

equidistant projection) for 2010-2016. We chose this time period to be consistent with the time-period of 160 

the UVC data. Validation against ocean buoy data suggests that bias is usually <0.05oC (Integrated Marine 161 

Observing System, 2014). We then aggregated the daily data to monthly values by taking the maximum at 162 

any given grid cell in each month of each year. Monthly maximums were then resampled to unprojected 163 

coordinates, using a bilinear interpolation, and finally aggregated to the scale of the logbook reporting grids 164 

again by taking the maximum value. All analyses were performed in the R programming language (3.6.2 165 

Team, 2019) using the packages ‘raster’ (Hijmans, 2020) and ‘sf’ (Pebesma, 2018).  166 

The temperature data were pre-analysed to create two covariates representing the mean temperature for 167 

each logbook reporting grid (averaging over all days from 2010-2016) and the annual temperature anomaly 168 

for the year of the UVC survey. Years were taken as Australian financial years (1st July-30th June) that span 169 

summer and are consistent with the reporting of fish catch in Queensland. The anomaly was calculated per 170 

grid as the grid’s annual mean temperature minus its 2010-2016 mean (fig. 1b & c). Both temperature 171 

covariates were calculated at the scale of the logbook reporting grids to be consistent with the fishery data. 172 

The mean temperature was included to capture spatial gradients of biomass that relate to temperature, 173 

the anomaly was included to capture year-to-year responses of biomass to temperature. We also included 174 

a term for the interaction between the mean temperature (reflecting latitudinal gradients) and the 175 

anomaly. The interaction allowed for our hypothesis that in the year after the heatwave biomass would 176 

decrease at northern sites and show little response at southern sites.  177 

The model of biomass did not allow for different performance curves for different coral trout species. 178 

However, it is likely that Plectropomus species have similar thermal performance curves. The range mid-179 

point for all five Plectropomus species investigated occurs at average annual temperatures of 22-29oC and 180 

all three have similar latitudinal extents (Waldock, Stuart-Smith, Edgar, Bird, & Bates, 2019). Variola spp. 181 

tend to occur in warmer waters than Plectropomus spp. (and often a little deeper), but were more rarely 182 

observed in the UVC data and are a minor portion of the catch in the commercial fishery (Leigh, Campbell, 183 

Lunow, & O'Neill, 2014).  184 

Seasonal extremes of temperature may have a greater influence on fish range limits than annual means 185 

(Stuart-Smith et al 2017), so we compared models that used three different sea temperature metrics. The 186 

first metric was the annual mean and annual anomaly, as described above. We also ran models using either 187 

March maximum or July minimum sea temperatures to calculate the spatial gradient and anomalies. 188 

Comparisons of models fit with the three different temperature measures were made by comparing the 189 

models for their leave-one-out cross-validation scores (LOO). The LOO was computed using the efficient 190 
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approximate algorithm (Bürkner, 2018; Vehtari, Gelman, & Gabry, 2017). Some observations were a poor 191 

fit to the approximation, for these we calculated exact cross-validation scores (Bürkner, 2018). Model fits 192 

were verified by checking the spread of the Dunn-Smyth residuals of both the occurrence and biomass 193 

stages. We also confirmed there was no spatial auto-correlation present in the Dunn-Smyth residuals.  194 

We then sought to estimate how reliably we could extrapolate the biomass predictions to regions with no 195 

UVC surveys. After choosing the most parsimonious temperature covariate, we made one more comparison 196 

of the full model to a reduced model. The reduced model included only those covariates that were 197 

available across the entire GBR (i.e. fixed effects of SST covariates, MPA zone, commercial fishing pressure, 198 

and the random effects). The comparison of the full and reduced models was made with the LOO as above.  199 

All models were fitted with the “Bayesian Regression Models using Stan” (brms) R package (Bürkner, 2018), 200 

with four chains, where each chain had a warm-up of 1000 iterations and then 2000 samples. We 201 

confirmed algorithm convergence with visual checks and the Rhat statistic. We chose conservative priors 202 

that promoted shrinkage of effects towards zero, including a 𝑁(0, 10) prior for fixed effects and	𝐸𝑥𝑝(1) 203 

priors for the random effect standard deviations (McElreath, 2020).   204 

We present results as predicted change in expected biomass across the temperature gradients and 205 

anomalies. This facilitates interpretation of interactive terms. Other effects were plotted with marginal 206 

uncertainty intervals, and we calculated the 2-tailed probability of whether the estimate was different to 207 

zero.   208 

Analysis of catch-per-unit effort data 209 

Fisheries catch data for coral trout were provided by the Queensland Government (State of Queensland 210 

Department of Agriculture Fisheries and Forestry, 2020), obtained from mandatory logbooks filled out by 211 

commercially licensed fisheries operating in Queensland waters and the Great Barrier Reef Marine Park. 212 

Species-specific data for coral trout from the fishery are not considered accurate, but the fishery catch is 213 

primarily composed of P. leopardus (Leigh et al., 2014). Catch and effort (days of fishing) are available on an 214 

annual basis (financial years 1st July – 30th June) since 1990 for the fisheries reporting grids (fig. 1). The 215 

fishery generally operates in depths <30 metres. Grid/year combinations with less than five boats fishing 216 

are not available due to data privacy rules.  217 

We next estimated how catchability varied with temperature. We defined catchability as slope of the 218 

relationship between biomass and CPUE:  219 

𝐶𝑃𝑈𝐸!,# = 𝑒$!𝑒$"%#,%𝐵!,#𝑒&#,%;	 Equation 1 220 

Where the term 𝑒$!𝑒$"%#,%  reflected the ‘catchability coefficient’ with intercept 𝑞'and a slope of 𝑞(	on Ti,t, 221 

the annual mean sea surface temperature in a grid, i, in a year t. Bi,t was the unobserved biomass in a grid 222 
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and there are log-normally distributed errors ϵi,t on CPUE. If we log this equation, then we have a log-linear 223 

model that can be fit using Bayesian regression and a normal distribution on ln(CPUE).  224 

Biomass (Bi,t) at the scale of the logbook grids was unknown, so we predicted it from the reduced model of 225 

coral trout biomass in UVC surveys. This meant we matched UVC collected at the scale of 500 m2 surveys to 226 

the fishery grid cells (~2900 km2, fig. 1a). The disparity in scale meant it was important to account for 227 

uncertainty when scaling-up biomass predictions. So the unknown logbook scale biomass was modelled 228 

with a measurement error model:  229 

ln5𝐵!,#6 = ln5𝐵),#77776 + 𝑧!,#;  Equation 2 230 

Where 𝐵),#7777 was the predicted mean grid level biomass, zi,t was an error term taken as the standard error of 231 

the posterior predictive estimate of 𝐵),#7777 from the biomass model. Predictions for coral trout kg/ha were 232 

conditional on the grid level random effects, disregarding site level variation. For each grid we then 233 

obtained posterior distributions for grid-level biomass by multiplying posterior distributions for kg/ha by 234 

the grid’s area.  235 

The scale matching model had CPUE data from 25 grid/year combinations from 17 logbook grids and 236 

spanned an area of 1.22 million ha of reef and 21% of annual mean catch over 2010-2016. The model was 237 

fitted with the ‘brms’ R package using the measurement error model specification and 18000 samples from 238 

4 chains to achieve convergence. Priors and model verification were as above for the biomass model.  239 

Our hypothesis that temperature directly affects catchability may be invalidated if there were shifts in 240 

species composition before and after the heatwave, since different coral trout species may have different 241 

catchability. To confirm the dominance of P. leopardus, we examined the proportional composition of the 242 

biomass of the coral trout taxa observed in the UVC data by species before versus after the heatwave. We 243 

plotted composition for two regional covariates: inshore Great Barrier Reef, offshore Great Barrier Reef or 244 

Coral Sea, and southern (> 20.5oS), mid (20.5oS – 15.3oS) and northern regions (< 15.3oS). Regions were 245 

chosen to ensure a relatively even spread of sites among the different regions and capture known regional 246 

variation in species composition. We included an additional 121 Coral Sea sites from (Stuart-Smith et al., 247 

2018) in this analysis, but note these were not included in the model of coral trout biomass because paired 248 

CPUE data were lacking. 249 

Analysis of all CPUE data using reef area as a proxy of biomass 250 

We verified the relationship between CPUE and UVC data by conducting a further analysis on all annual 251 

CPUE data from 2011 onwards, giving us a sample size of 461 grid/years (compared to 25 grid/ year 252 

combinations in the UVC analysis). We chose to use data from 2011 because this recent period has had 253 

reasonably stable management regulations (Leigh et al., 2014). For this verification, we included reef area 254 

per grid cell as a proxy of coral trout biomass. We also included covariates for cumulative fishing effort 255 
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(days of fishing) over the past five years, as proxies for coral trout biomass. UVC biomass was highly 256 

variable across survey sites, and at the scale of the fisheries grids, variation in biomass was primarily driven 257 

by the area of reefs (fig S1). Fishing effort is also likely an important driver of spatial patterns in coral trout 258 

biomass. The larger sample of data allowed us to consider additional covariates that are known to affect 259 

catchability (Leigh et al., 2014). These were number of High-wind Days per year (number of days with mean 260 

wind speed over 20 knots) and number of cyclones per year (Bureau of Meteorology, 2020 ). Wind and 261 

cyclones were included because coral trout are believed to move deeper than the typical fishing depths 262 

after high-wind events (Leigh et al., 2014). We also used historical fishing effort (summed over the past 5 263 

years), area of reef in the grid cell, and a smoother on financial year. High wind days was estimated using 264 

the Cross-Calibrated Multi-Platform gridded surface vector winds product, which is an interpolated global 265 

wind product that uses a combination of remote and in-situ data (Wentz et al., 2015). We fit this model as a 266 

generalized additive mixed model (GAMM, (Wood, 2017)), estimating the effect of each covariate with thin 267 

plate smoothing splines. The GAMM framework allowed us to include spatio-temporal random effects, 268 

which would capture other spatial gradients in CPUE not related to the covariates. These were individual 269 

grid cell level random intercepts and a Gaussian process smooth for grid cell location, with the smooth 270 

varying by years (Wood, 2017). The model was fitted using restricted maximum likelihood optimisation and 271 

Bayesian credible intervals were estimated as per Wood (2017). We performed stepwise simplification on 272 

the full model using the AIC criteria (steps given in Table S1), choosing the model with the lowest AIC for 273 

analysis of effect sizes.  274 

Scaling up the impact of the heatwave on fishery catches 275 

We aimed to estimate the impact of the heatwave on fishery catches during the heatwave year. We first 276 

evaluated errors in the prediction of CPUE. We calculated the root-mean-square error by comparing model 277 

predictions for ln(CPUE) to observed ln(CPUE) for all grid/year combinations with no UVC survey over 2010-278 

2016. Ln(CPUE) was normalized against the range of ln(CPUE). As a further comparison we compared 279 

predicted catch, based on the 2015-2016 effort distribution to observed catch. These estimates of error are 280 

important when interpreting the strength of results of the scaling-up.  281 

To estimate the effect of the heatwave on the total catch of the fishery, we predicted CPUE across all grid 282 

cells in the 2015-2016 financial year using temperature conditions from that year. We then multiplied by 283 

effort to get the predicted catch distribution for that year. We compare the predicted catch distribution in 284 

2015-2016 against catch predicted for the average (2010-2016) temperature distribution.  285 

 286 

Results 287 

Response of coral trout biomass to the heatwave and other environmental covariates 288 
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Model selection did not discriminate among the three models with annual and seasonal temperature 289 

metrics, the LOO was 1622 (±81.2 S.E.), 1621 (±81 S.E.), 1622 (±81.5 S.E.) for the annual average, March 290 

maximum and July minimum temperatures respectively. We therefore proceeded with models based on 291 

the March maximum, because this matched the season when the heatwave was most severe.  292 

The biomass model had a predictive R2 of 0.30 (0.17-0.40, 95% CIs), and the occurrence model had an in-293 

sample AUC of 0.69 (0.62-0.75, 95% CIs). Model verification indicated normality assumptions were satisfied 294 

(fig. S1), and that there was no detectable spatial autocorrelation in Dunn-Smyth residuals.  295 

 296 

Figure 2 Expected biomass of coral trout on UVC surveys for mean SST and SST anomalies (a) and different 297 

levels of coral cover crossed with different mean SST (b). 298 

The expected biomass of coral trout was higher in regions with higher long-term averaged SST, but overall 299 

there was high unexplained variation in the biomass trend, so the effect of SST was weak (fig. 2). During the 300 

heatwave, the warmer than average SST flattened the gradient of biomass, such that warmer sites were 301 

predicted to have slightly lower biomass and cooler sites predicted to have slightly higher biomass (fig. 2). 302 

This flattening was indicated by high probability that mean SST and the SST anomaly interacted to affect 303 

biomass (probability the effect was < 0 = 0.94, fig. 3). There was slightly less evidence for an interactive 304 

effect on the occurrence rate (probability the effect was > 0 = 0.91, fig. 3). For example, the average 305 

temperature anomaly at sampling sites before the heatwave was -0.1o, whereas during the heatwave it was 306 

+1.0o. Given these anomalies, the models suggested with high probability that coral trout biomass showed 307 

regional increases after the heatwave in the coolest fishery grid cells (average SST 27.7 oC; probability = 308 

0.94) and decreased in the warmest grid cells (mean SST 30.1 oC; probability = 0.98). The broad uncertainty 309 

intervals indicate that this effect was weak relative to other sources of variation (fig. 2).  310 

None of the other environmental covariates, including coral cover, had a strong effect on coral trout 311 

biomass, and only depth affected coral trout occurrence (fig. 3). Coral trout were predicted to occur less 312 

frequently in shallower water (<4 metres deep; fig. 3, prob>0 = 0.99).  313 
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The reduced model that included only variables available across the GBR had a slightly poorer fit (fig. S1) 314 

than the models with the small-scale covariates, however the fit was within the error bounds of the full 315 

model LOO estimates (LOO = 1672, ±81.5 S.E.). The estimates for the effect of the temperature anomaly in 316 

the reduced model were similar to the full model (fig. S2).  317 

 318 

Figure 3 Distributions of the marginal parameter estimates from the environmental model of coral trout 319 

biomass (A) and occurrence (B). Colours indicate two tailed probabilities of x>0 or x<0, where darker 320 

colours indicate a higher probability the parameter estimate is different from zero.  Note the x-axis is 321 

truncated at +10, the SST anomaly parameter estimates had long positive tails. 322 

 323 

Catchability in relation to underwater biomass data and SST  324 

The estimates of UVC biomass for whole CPUE grid cells had a positive relationship with reef area, which 325 

flattened for reef areas >500 km2 (fig. S3). Across all grid cells with coral-trout catch, CPUE was positively 326 

related to reef area (fig. S4).  327 

CPUE was positively related to the estimates of mean in-water biomass (fig. 4; slope of 0.93, 0.57 to 1.34, 328 

95% CIs, fit to data shown in fig. S5). Deviations in the relationship between CPUE and in-water biomass 329 

were consistent with a positive effect of temperature on catchability (fig. 4, fit to data in fig. S6), with an 330 

average increase in CPUE of 1.4 times per 1 S.D. increase in temperature (1.08 to 1.78, 95% CIs) and a 331 

probability of 0.999 that the SST effect increased CPUE. For instance, at a biomass of 500 tonnes (per grid 332 

cell) there was a 0.003 probability that CPUE was >0.03 tonnes/day at average temperatures but 0.89 333 
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probability that CPUE >0.03 for a temperature 1 S.D. (=0.98oC) above average. The increase in catchability 334 

under warming meant that more catch can be taken with an equal amount of effort in warmer years, or the 335 

same amount of catch can be taken with less effort (fig. 4).  336 

 337 

Figure 4 Predicted relationship between grid-level expected biomass predictions and CPUE under different 338 

temperatures. Colours represent SST values (mean ±1 S.D.), 95% CIs, are given as dashed lines for just the 339 

mean SST for clarity of presentation. 340 

We confirmed that the catchability change could not be explained by shifts in species composition. 341 

Plectropomus leopardus was the dominant coral trout species on underwater censuses across most of the 342 

Great Barrier Reef region (fig. S7), while Plectropomus laevis dominated at Coral Sea sites and Plectropomus 343 

maculatus dominated at inshore southern sites. There was no significant change in the dominant species 344 

before versus after the heatwave for any region, although P. laevis became slightly more common as P. 345 

leopardus declined at northern offshore Great Barrier Reef and northern Coral Sea sites (which do not 346 

overlap with the fishery data).  347 

Analysis of all CPUE data using reef area as a proxy of biomass 348 
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The analysis relating all available CPUE data back to 2011 to reef area (a proxy of biomass) and other 349 

environmental covariates indicated that a model with a non-linear effect of reef area, linear effect of SST, 350 

non-linear effect of year, and a spatial smooth that varied by years was optimal (Table S1). Wind and 351 

cyclones were not important predictors of annual CPUE. The effect of area indicated increasing catch rates 352 

up to a maximum at a reef area of 400 km2 (fig. S4). Increases in SST in a grid in a year also increased CPUE 353 

by a multiple that was of similar magnitude to that estimated by the UVC model: 1.32 times (fig. S7, 1.1 to 354 

1.63, 95% CIs). The probability SST was associated with increased CPUE was also > 0.999.  355 

Scaling-up catch estimates for 2016 356 

Total catch in the grid cells with data for the 2015-2016 financial year was reported to be 850 tonnes. 357 

Transforming the predicted CPUE in all grid cells and using the 2015-2016 effort distribution gave an 358 

expected catch of 798 tonnes (368-1934 tonnes, 95% CIs). This estimate accounted for uncertainty in the 359 

grid level biomass estimates. The root mean square error for predictions of ln(CPUE) in grid squares that 360 

did not have a UVC survey was 1.41, or error that was 30% of the range of ln(CPUE) values (20-54%, 95% 361 

CIs). The error was high because of uncertainty in biomass and the estimated catchability coefficient.  362 

When predictions were made conditional on the mean UVC biomass, the CPUE model predicted a catch of 363 

805 tonnes in 2015-2016 (544-1224 tonnes, 95% CIs). The catch estimate was reduced to 680 tonnes (464-364 

1018 tonnes, 95% CIs) when predictions were made using average March temperatures over 2010-2016. 365 

Thus, the model predicted catches during the heatwave year were 18% higher than under average 366 

temperatures for the same amount of fishing effort. The greatest predicted effect of the heatwave on catch 367 

was in the Northern and mid-GBR (fig. 5), where the temperature anomaly was the greatest (fig. 1). In the 368 

north there was a high certainty of a positive effect of the heatwave on catches (95% C.Is >0, fig. 5), 369 

whereas in the south there was lower certainty as to the direction of the effect of the heatwave on catches 370 

(95% C.Is close to zero, fig. 5).  371 

The effect of the heatwave was not evident in the overall spatial pattern of catch in 2015-2016, which were 372 

largely consistent with earlier years (fig. S9). This suggests increases in catchability were compensated for 373 

by reduced fishing effort.  374 



14 Published Global Change Biology https://doi.org/10.1111/gcb.15472 

 375 

Figure 5 Expected difference in catch (%) during the heatwave year (2016) from mean temperature 376 

conditions. A, B, C show median and lower and upper 95% probability quantiles. Predictions were made 377 

assuming coral trout biomass was fixed at its mean for each fishery grid. 378 

Discussion 379 

The most significant effect of the heatwave on coral trout that we observed was a higher catch per unit 380 

effort where biomass had declined following the heatwave, caused by an increase in catchability. The 381 

increase in catchability could have many causes, but is consistent with experimental studies that have 382 

tested the physiological tolerance of coral trout to warming. Warming affects multiple physiological and 383 

behavioural traits that we hypothesize are related to catchability. Warming increases metabolic needs of 384 

individual fish, who respond by increasing their feeding rates (Johansen et al., 2015). Higher feeding rates in 385 

warmer seas may explain the increase in catchability: the reef line fishery uses bait or lures to catch fish 386 

(Leigh et al., 2014), so fish may be more likely to take the line if they are feeding at a higher rate. Warming 387 

to the extent that occurred in the heatwave reduces spontaneous swimming speed (Johansen, Messmer, 388 

Coker, Hoey, & Pratchett, 2014), and warmer climates and seasons are also associated with smaller home 389 

ranges (Scott, Heupel, Simpfendorfer, Matley, & Pratchett, 2019). Swimming speed and home range size 390 
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may both affect the likelihood that coral trout take bait or lures. Further work is needed to test how 391 

changes in these behavioural traits affect fish preferences for bait versus wild prey, which may be harder to 392 

catch.  393 

Three alternate hypotheses for the causes of these changes in catchability include foraging efficiency, prey 394 

availability and species turnover, all of which we consider less likely than physiologically mediated impacts 395 

on catchability. First, loss of coral habitats may impact feeding success by coral trout (Hempson et al., 396 

2017), which could presumably affect their catchability in the fishery. It has been proposed that the 397 

likelihood of coral trout taking bait or lures is lower after loss of structurally complex corals because it is 398 

easier for coral trout to catch their prey (Brown, Taylor, Wabnitz, & Connolly, 2020; Leigh et al., 2014). 399 

However, this hypothesis predicts declines in catchability following coral loss, the opposite pattern to what 400 

we observed.  401 

Second, declines in structurally complex coral may also see a reduction in prey fishes, increasing the 402 

likelihood that coral trout take bait or lures. This process is most likely to affect coral trout over longer 403 

time-scales than our study, because it requires erosion of reef structure to impact prey fishes. It is also 404 

unlikely to impact such flexible predators as coral trout. Populations of P. maculatus can switch to feeding 405 

through entirely different trophic pathways following coral degradation (Hempson et al., 2017). No 406 

widespread changes in potential prey items (small fishes) were observed in the UVC data as a result of the 407 

heatwave (although a subset of highly coral-dependent species suffered on the worst hit reefs)(Stuart-408 

Smith et al., 2018), and it is unlikely trout would be found at sites where they were food limited. Longer-409 

term degradation of coral will cause changes in food webs that may impact coral trout populations 410 

(Hempson et al., 2017; Rogers et al., 2018) but we suggest that the major impact on fisheries would be 411 

noticed through changes in occurrence and biomass rather than changes in catchability.  412 

A third hypothesis we can exclude is that changes in the relative proportions of the different coral trout 413 

species to the catch could also affect the overall catchability for the fishery. Our models predicted the 414 

greatest increase in catchability on northern reefs, which remained dominated in the UVC data by P. 415 

leopardus both before and after the heatwave (Fig. S8). Inshore northern reefs saw a decline in the biomass 416 

of P. maculatus relative to other coral trout species and it is possible this change in species composition 417 

may have contributed to changes in catchability if this species was harder to catch than the others. We are 418 

not aware of any evidence documenting that coral trout species vary in their catchability in line fisheries, 419 

but fish catch data resolved to the species level could help future studies to address this knowledge gap.  420 

We also observed that coral trout biomass was reduced after the heatwave in warmer low latitude reefs, 421 

but was stable or slightly increasing on cooler high latitude reefs. The model suggested that the decline in 422 

biomass was attributed to the temperature anomaly, rather than fishing pressure, but the high variability in 423 

predictions suggests further data are needed to confirm the effects of temperature on coral trout biomass 424 
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on the GBR. Further, it is unclear from this data if biomass changes were caused by migration or increased 425 

mortality. Coral trout population productivity may be sensitive to climate warming, and vulnerable to 426 

decline in low latitude locations that are already close to coral trout upper thermal limits (Stuart-Smith et 427 

al., 2017). Effects of high temperatures observed for coral trout species include reduced aerobic scope, 428 

swimming speeds and survival at temperatures from 27-30oC (Pratchett et al., 2017). These observations 429 

from laboratory studies are consistent with our finding that declining biomass may have occurred at the 430 

northern most edge of the range, where mean summer temperatures are close to 30oC and the heatwave 431 

raised temperatures by ~1oC (Wolanski et al., 2017). At higher latitudes, where typical temperatures are 432 

below the thermal optimal for coral trout, heatwaves may enhance coral trout survival and contribute to 433 

higher recruitment of early life-stage individuals (Bornt et al., 2015).  434 

A caveat to our finding of reduced biomass is that behavioural change may also affect UVC estimates of 435 

biomass. Some fishes may respond to warming by migrating to deeper, cooler water (Dulvy et al., 2008), 436 

and coral trout are believed to migrate deeper in response to other extreme weather events, like cyclones 437 

(Leigh et al., 2014). However, it is unlikely that the reduction in biomass observed is indicative of coral trout 438 

migrating to reefs beyond the span of the UVC surveys, because coral trout are most common down to 439 

depths of 20 m (Leigh et al., 2014) and the UVC surveys included surveys to 17 m (Stuart-Smith et al., 2018). 440 

Home range size also changes in response to temperature (Scott et al., 2019), and home-range size may 441 

affect the likelihood of detecting fish on UVC surveys, though it is not clear in what direction. Electronic 442 

tagging studies (e.g. Scott et al., 2019) and paired catch-UVC studies (Bacheler & Shertzer, 2020) would help 443 

identify the mechanism for reduced biomass at warm sites.  444 

Some coral trout species make use of live coral habitat for settlement (Wen et al., 2013) and feed on prey 445 

that use coral habitat (John, Russ, Brown, & Squire, 2001), so coral loss could cause declines in coral trout 446 

biomass over longer timespans than the duration of this study. Temperature may also impact spawning 447 

behaviour and affect fertilization and therefore numbers of settlers (Pratchett et al., 2017).  Settling P. 448 

maculatus rely on structured corals for shelter, with enhanced recruitment in areas with higher live coral 449 

cover (Wen et al., 2013). Given the age at first breeding for coral trout is 2-3 years and that adult biomass is 450 

dominated by older age-classes, the impacts of reduced coral cover on adult biomass are unlikely to 451 

manifest for >5 years (Brown et al., 2020). The dependency of coral trout on coral may expose the 452 

productivity of the fishery to the multiple stressors, including poor water quality and climate warming, that 453 

are currently causing coral declines and hindering coral recovery (Mellin et al., 2019; Wolff, Mumby, Devlin, 454 

& Anthony, 2018). Continuing monitoring is needed to understand the magnitude of coral habitat loss 455 

effects on coral trout over longer timescales than were studied here. 456 

Global warming could potentially affect sustainability of the coral trout fishery if heatwave-induced spikes 457 

in catchability are not accounted for in stock assessments. Currently, heatwave events of the magnitude 458 

observed in 2016 are predicted to occur every 3 years; with 1.5 degrees of global warming, 2016-like events 459 
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may occur more often than every 2 years on average (King, Karoly, & Henley, 2017). Since 2016, the GBR 460 

has experienced successive heatwaves in 2017 and 2020. The management regime of the reef line fishery is 461 

likely robust to infrequent changes in catchability of the magnitude we observed because catches are well 462 

below the maximum sustainable yield (Campbell, Leigh, Bessel-Browne, & Lovett, 2019). The existing 463 

management regime that mixes marine parks and catch quotas is also robust to regional variation in 464 

ecological dynamics (Bode, Sanchirico, & Armsworth, 2016), overfishing (Hopf et al., 2016; Little et al., 465 

2011) and climatic change (Hopf, Jones, Williamson, & Connolly, 2019). A stock assessment conducted in 466 

2014, which utilized UVC and CPUE data, did not find any effects of coral bleaching events on stock 467 

productivity, and environmental change was found to have limited impact on the fishery (Leigh et al., 468 

2014). Regardless, this may not be the case in future. If contemporary 3-yearly spikes in catchability are 469 

combined with productivity declines due to loss of recruitment habitat (Brown et al., 2020), the stock may 470 

become susceptible to overfishing. Continued monitoring of coral trout biomass is needed to assess the 471 

impacts recurrent heatwaves on catchability, so we can quantify the cumulative effects of multiple 472 

heatwave events, which may be non-linear. The recreational catch of coral trout adds further uncertainty 473 

(see below), and future increases in recreational effort could also take stocks to the point where 474 

catchability changes induced by warmer seas could be critical. The latest stock assessment identified that 475 

accounting for environmental change, including heatwaves, is a priority for future stock assessments 476 

(Campbell et al., 2019).  477 

Stock assessments, including stock parameter estimates, need updating more frequently in fisheries subject 478 

to rapid environmental change, regardless of the ecological causes of population responses to 479 

environmental change (Brown, Fulton, Possingham, & Richardson, 2012). For instance, the total current 480 

allowable catch in the reef line fishery is set on the basis of the ratio between current CPUE and a target 481 

CPUE (The State of Queensland, 2017), but this ratio assumes a constant linear relationship between CPUE 482 

and biomass. More generally than Australia, coral trout are caught in many tropical reef fisheries, but those 483 

fisheries are typically poorly regulated and often overfished (Frisch et al., 2016), and increasing catchability 484 

would only be expected to worsen overfishing. Our results indicate that this assumption is only reasonable 485 

in the absence of changing environmental temperatures, and highlights the critical importance of fishery 486 

independent data for informing stock assessments.  487 

An important caveat to our analysis is that we did not consider the impact of the recreational fishery on 488 

biomass or the effects of heatwaves on catchability in the recreational fishery. Overall, recreational fishing 489 

made up a minority of the catch in the 2017-2018 financial year (estimated at 17% of total catch (Campbell 490 

et al., 2019)), but its effects may be locally intense. The recreational fishery targets coral trout with line 491 

fishing and spearfishing. Line fishing is likely to be subject to similar increases in catchability during 492 

heatwaves as we observed here, whereas it is unclear how high temperatures would affect catchability by 493 

spear fishers. Data from the recreational fishery are only collected intermittently  and are not spatially 494 
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resolved for detailed use in analyses such as those undertaken here (Webley, McInnes, Teixeira, Lawson, & 495 

Quinn, 2015). Future research would usefully directly involve recreational fishers to better understand 496 

factors affecting catchability.  497 

Globally, fisheries are highly susceptible to climate change, potentially negatively affecting food security 498 

and livelihoods of hundreds of millions of people (Cheung et al., 2010). While the predominant research 499 

focus has been on impacts of habitat loss on coral reef fish assemblage composition and productivity (e.g. 500 

Hopf et al., 2019; Robinson et al., 2019), our study adds to the evidence that temperature-driven changes 501 

in catchability are important to consider in reef fishery management (Bacheler & Shertzer, 2020). We 502 

suggested here that changes in catchability are heavily influenced by mechanisms stemming from 503 

physiological responses to warming, but we recommend further experimental studies to explore ecological 504 

mechanisms that may independently involve changes in prey or habitat. Increases in catchability during 505 

heatwaves similar to that found for coral trout may also be widespread globally, given the prevalence of 506 

line and trap capture methods amongst coral reef fisheries. To avoid collapses induced by environmental 507 

change, fisheries management should use data on stock biomass that are independent of fishery catches. 508 

Our work highlights the importance of fisheries-independent data, which unfortunately are not collected 509 

for most reef fisheries (Pauly & Zeller, 2016), and precautionary management that is adaptive to climate 510 

change to sustain reef fisheries into the future.  511 
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