
1.  Introduction
The distribution of continental heat flow is the result of Earth's dynamic processes through geologi-
cal time: ongoing tectonic processes bring hot material to the surface, and enhance the local geothermal 
gradient; past tectonic processes distributed heat producing elements unevenly in the crust; exhumation 
and deposition controls the geothermal heat transfer on local, regional, and continental scales. Subglacial 
geothermal heat in Antarctica has significance for studies of the tectonic history (Artemieva, 2011), and 
has also been identified as a boundary condition for ice sheet models (Matsuoka et al., 2012; Pattyn, 2010; 
Pattyn et al., 2016; Pittard et al., 2016; Van Liefferinge et al., 2018; Whitehouse et al., 2019; Winkelmann 
et al., 2011). Understanding the response of the Antarctic ice sheets to changing climate, and improving the 
prediction of related contributions to global sea level, is of highest importance (DeConto & Pollard, 2016; 
Golledge et al., 2015). Due to limited geological data, and lack of values based on direct measurements, 
heat flow is difficult to constrain in the Antarctic interior, and existing maps have appreciable differences 
between them (discussed by, e.g., Burton-Johnson et al., 2020; Stål et al., 2020). The need for better estimates 
encourage us to develop methods to best constrain the spatial variation of heat flow using available data, 
while accepting that the uncertainties remain large. In this contribution, we present Aq1, a new approach 
to estimate Antarctic heat flow (Figure 1).

Abstract  We present a refined map of geothermal heat flow for Antarctica, Aq1, based on multiple 
observables. The map is generated using a similarity detection approach by attributing observables 
from geophysics and geology to a large number of high-quality heat flow values (N = 5,792) from other 
continents. Observables from global, continental, and regional datasets for Antarctica are used with a 
weighting function that allows the degree of similarity to increase with proximity and how similar the 
observables are. The similarity detection parameters are optimized through cross correlation. For each 
grid cell in Antarctica, a weighted average heat flow value and uncertainty metrics are calculated. The 
Aq1 model provides higher spatial resolution in comparison to previous results. High heat flow is shown 
in the Thwaites Glacier region, with local values over 150 mW m−2. We also map elevated values over 80 
mW m−2 in Palmer Land, Marie Byrd Land, Victoria Land and Queen Mary Land. Very low heat flow is 
shown in the interior of Wilkes Land and Coats Land, with values under 40 mW m−2. We anticipate that 
the new geothermal heat flow map, Aq1, and its uncertainty bounds will find extended use in providing 
boundary conditions for ice sheet modeling and understanding the interactions between the cryosphere 
and solid Earth. The computational framework and open architecture allow for the model to be 
reproduced, adapted and updated with additional data, or model subsets to be output at higher resolution 
for regional studies.

Plain Language Summary  We present a new map that shows how the heat from the deep 
Earth varies from place to place in Antarctica. The map shows where raised heat flow values beneath ice 
sheets need to be included to better predict how ice sheets will respond to the Earth's warming climate. 
Areas with volcanoes have high geothermal heat flow. Other medium to high heat flow locations are often 
hard to identify, especially as it is too difficult or expensive to measure the heat directly in the harsh and 
sensitive Antarctic environment. To overcome this challenge, we use a technique with computer-aided 
match between the best data we can compile for Antarctica and corresponding data and heat flow values 
from other continents.
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The few direct heat flow estimates across interior Antarctica have been 
made using measurements from the base of the ice sheet rather than in 
bedrock, as is typical on other continents. These subglacial measure-
ments suggest high spatial variability and complex hydrological interac-
tion between the cryosphere and solid Earth (Begeman et al., 2017; Fisher 
et  al.,  2015; Wright et  al.,  2012). Thermal gradients within the ice can 
provide insight for ice sheet models and models of subglacial hydrology 
(Price et al., 2002), but cannot be used to estimate the solid Earth con-
tribution with any certainty, unless the exact conditions at the base are 
known, or assumed, and the borehole reaches sufficient depth (Mony 
et al., 2020; Tulaczyk et al., 2001). Constraints for subglacial heat flow can 
also be inferred from thermomechanical ice-flow models (e.g., MacGre-
gor et al., 2016; Pattyn, 2010; Van Liefferinge et al., 2018), or mapping of 
subglacial lakes (e.g., Pattyn et al., 2016). Such models show the general 
trends in expected heat transfer, and also suggest large regional and lo-
cal variability. Crustal geothermal heat flow is difficult to separate from 
the impact of basal friction of fast flowing glaciers (Larour et al., 2012; 
Pattyn, 2010), the energy needed for melting ice (Fudge et al., 2013), or 
advection by ground water that occurs in sediment layers or other perme-
able rocks beneath (Siegert et al., 2016).

An alternative to calculating heat flow values from field measurements is 
to derive a temperature gradient using indirect methods applied to geo-
physical data, and calculate the resulting heat flow (An et al., 2015b; Fox 
Maule et al., 2005; Martos et al., 2017; Purucker, 2012). These methods 

are associated with large uncertainties regarding how well the temperature and depth are constrained (dis-
cussed by e.g., Haeger et al., 2019; Burton-Johnson et al., 2020; Lösing et al., 2020; Stål et al., 2020). Studies 
that rely on the temperature in the lower crust or upper mantle also depend on assumptions regarding the 
3D distribution of heat production and thermal conductivity in the crust, and shallow transient heat sources 
(e.g., Artemieva & Mooney, 2001; Jaupart et al., 2016). Shapiro and Ritzwoller (2004) used a global seismic 
model to match heat flow records in a global compilation (Pollack et al., 1993) to assign heat flow values in 
Antarctica. With this approach a realistic range of the crustal contribution is captured, noting that the result 
depends on how the low-resolution seismic wave speed data of the lithosphere captures variations in the 
crust. Using recent seismic tomography models from Shen et al. (2018) and Lloyd et al. (2020), and heat flow 
estimates in continental US, Shen et al. (2020) used similar approach to generate a heat flow map of higher 
resolution and defined uncertainty bounds. This body of work significantly progressed the understanding 
of particularly the thermal properties of West Antarctica, and accords to a great extent with the recently 
reviewed geological history (Jordan et al., 2020).

A large fraction of the heat flow originates from radioactive decay of elements within enriched material 
in the crust (e.g., Artemieva & Mooney, 2001; Hasterok & Chapman, 2011; Jaupart & Mareschal, 2014), 
and considering the crust can therefore substantially improve heat flow maps. Reviews suggest a general 
correlation between observed heat production and heat flow, but this relationship is not universal (e.g., 
Jaupart et al., 2016; Levy et al., 2010; McLaren et al., 2003). Studies of heat production in crustal rocks (e.g., 
Carson et al., 2014; Goodge, 2018) provide us with a first insight into the variability of heat production in 
Antarctica. Heat production in rocks has a weak correlation with thermal age and is informed by geochem-
ical composition (e.g., Hasterok et al., 2018; Hasterok & Webb, 2017; Jaupart & Mareschal, 2014), but such 
properties are to a large extent unknown in the subglacial interior. Burton-Johnson et al. (2017) provided 
a detailed study for the Antarctic Peninsula with heat production in the upper crust assigned from limited 
extrapolation of geological and geochemical observations. This study suggested that crustal heat production 
accounts for 6%–70% of the total heat flow. However, such studies cannot be performed on a continental 
scale as over 99.8% of Antarctica is unexposed (Burton-Johnson et al., 2016). A steady state Antarctic geo-
thermal heat flow model, AqSS (Stål et al., 2020), uses a constant mantle heat flow component and introduc-
es a first order approach for integrating heterogeneous heat production within segmented crust. Heat that is 
not generated by crustal heat production or heat flow across the Moho, must be associated to dynamic and 
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Figure 1.  Heat flow map of Antarctica, Aq1.
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transient heat transfer by ongoing tectonics or shallow processes. Significant differences between estimates 
from available Antarctic heat flow models and this steady state model, AqSS, can therefore indicate regions 
with such conditions.

Heat flow studies for Antarctica's neighbors prior to the breakup of Gondwana (e.g., McLaren et al., 2003; 
Pollett et al., 2019; Roy & Rao, 2003; Rudnick & Nyblade, 1999), and the continental shelf (e.g., Dziadek 
et al., 2017; Morin et al., 2010) suggest the nature of heterogeneity of heat flow to expect in Antarctica. 
However, extrapolations must be treated with caution due to the high spatial variability of heat flow (e.g., 
Carson et al., 2014; Jaupart & Mareschal, 2014), and limited extent of shared coastal domains (e.g., Aitken 
et al., 2014; Maritati et al., 2019; Stål et al., 2019; Tucker et al., 2017). Cenozoic processes of deposition and 
exhumation have a different history in domains that were recently separated at Gondwana breakup, as seen 
in the asymmetric distribution of terrigenous sedimentation in the marine environment between the Aus-
tralian and the Antarctic margins (e.g., Sauermilch et al., 2019). Sedimentation, erosion and exhumation 
have large impact on heat flow (Beardsmore & Cull, 2001; England & Richardson, 1980; Jessop & Majorow-
icz, 1994), but are still poorly constrained in the Antarctic interior, and is the subject of ongoing work (e.g., 
Paxman et al., 2019).

A much greater number of estimates of heat flow from in situ thermal gradient and conductivity meas-
urements exist for continents other than Antarctica. Motivation for those measurements includes studies 
underpinning hydrocarbon reservoirs, geothermal energy, structural studies for potential mineral explora-
tion, and understanding of Earth's energy balance and age (Beardsmore & Cull, 2001). The research area 
has been facilitated by cumulative compilations (e.g., Hasterok, 2019; Lucazeau, 2019; Pollack et al., 1993). 
Measurements are, however, irregular in distribution, and are of variable quality. To improve interpolation, 
Goutorbe et al. (2011) developed a similarity method where heat flow is linked to geological and geophysical 
observables. A heat flow value for a given location is derived from measurements with a similar geological 
context. When a number of observables combined suggests a heat flow value within a given range, this is 
more robust than a heat flow value constrained by only one data set. Lucazeau (2019) applied the method 
to a larger number of measurements from the New Global Heat Flow database (NGHF). In this study, using 
14–19 sets of observables produces a misfit of less than 10 mW m−2, and a larger number of datasets does 
not improve the estimates significantly yet risks the introduction of noise. Observables as crustal type, age, 
and sediment thickness provide robust constraints to link heat flow measurements to target locations. How-
ever, such datasets are not available for the subglacial interior of Antarctica and this method must therefore 
be adapted for application with a limited range of observables.

Our new model, Aq1, uses a modification of the similarity approach employed by Goutorbe et al. (2011) 
to infer Antarctic heat flow from global comparisons. We also provide uncertainty metrics to inform the 
interpretation of the resulting map and its further use. The Aq1 model is provided with a computational 
framework to facilitate generation of, e.g., refined regional studies and include future datasets (discussed 
by Stål et al. [2020).

2.  Data
In the following section we describe the datasets used in the study, and any necessary initial data preparation.

2.1.  Heat Flow Data

New Global Heat Flow is an extended compilation of earlier heat flow catalogs, associated with meta data 
attributes with links to original studies (Lucazeau, 2019). We exclude records in the case of missing co-
ordinates, missing heat flow values, and a few high latitude measurements, where map distortion might 
impact some observables used (Figure S1a). In order to remove records from deep oceans, but keep those on 
continental shelves and measurements at depths representing the low hypsometry of West Antarctica (e.g., 
Artemieva & Thybo, 2020; Morlighem et al., 2019), we exclude measurements deeper than 1,000 m below 
sea level (Table 1 and supplementary material Figure S1b). The quality of heat flow measurements is rated 
in NGHF. The rating category for each measurement is based on, e.g., the variation of heat flow in the bore-
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hole where the measurement is performed. Old and questionable measurements are generally assigned a 
lower rating. When removing lower rated heat flow measurements, the mean value decreases (Table 1). This 
is a consequence of removal of a small number of high values from locations with geothermal activity. The 
median of the heat flow data remains within 3 mW m−2. The distribution of heat flow values, before and 
after removal of records as above, is provided in Figure S1a. We include only records rated A. For reference, 
we also provide a version where also B-rated records are used (Figure S2). Including lower rated records 
generates a similar overall structure and significantly increases the uncertainty range of the model.

2.2.  Observables

We refer to associated data, models, and distances as observables, i.e., this term is used in a broad sense. 
Reference observables (oR) are linked to each listing in the heat flow catalog (NGHF, Lucazeau, 2019), and 
target observables (oT) are linked to each 2D grid cell for our Antarctic model. When provided, we include 
uncertainty estimates to guide the similarity analysis. For most of Antarctica, we are limited to datasets 
derived from satellite potential field measurements and large-scale seismology. For outcrops along the coast 
and Transantarctic Mountains, we access petrological data from previous studies and compilations (Gard 
et al., 2019), and take advantage of geological experience, and extrapolation (Hartmann & Moosdorf, 2012; 
Tingey et al., 1991). Additional information has been derived from existing datasets, for example, subglacial 
topographic shapes (e.g., van Wyk de Vries et al., 2018) and curvature in the gravitational field (e.g., Ebbing 
et al., 2018).

Eighteen pairs of observables are included to match heat flow measurements with Antarctic continental 
properties (Table 2 and Figure S3). Each observable is contributing to a decrease of cross-validated root 
mean squared error (RMSe) and mean absolute error (MAe) for heat flow measurements in NGHF (Fig-
ure S4). Reference observables are also plotted against measured heat flow in Figure 2 and maps of a selec-
tion of observables are given (Figure S5). The four types of observables are processed differently; continuous 
data, sparse data, classes, and distance functions.

2.2.1.  Continuous data

Continuous data cover most of the Antarctic continent and consist of satellite and airborne geophysical 
measurements, seismic tomography, and elevation data. Global models often lack resolution and accuracy 
in Antarctica (e.g., Figure S6). Where available, we use Antarctic studies as target observables. Global Moho 
depth is provided from Szwillus et al. (2019). The model is similar to CRUST1 (Laske et al., 2013), but has 
refined, transparent interpolation, and well-defined uncertainty bounds. In Antarctica, we use AN_CRUST 
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N Filtering

Mina Max Average Median

mW m−2 mW m−2 mW m−2 mW m−2

69,729 All records −401.0 72,000 120.5 62

69,377 Excluded incomplete records −401.0 72,000 120.5 62

46,270 Excluded deeper than 1,000 m bsl −401.0 15,600 99.6 62

46,113 Excluded high latitudes −401.0 15,600 99.6 62

35,647 Rating Ab, Bc, Cd −3.0 15,600 101.1 61

12,707 Rating Ab, Bc −3.0 5,146 66.1 59

5,792 Rating Ab 0.8 787.5 65.8 59

Number of records after cleaning of data.
aNegative value would here indicate heat flow into the Earth. bBest rating, e.g., defined as 10% variation in measurement. 
cGood rating, e.g., up to 20% variation in measurement. dAverage rating, e.g., up to 30% variation in measurement.

Table 1 
Heat Flow Records in NGHF
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Observable(s) (label oR in Figure 2) Weighting function, w

Reference observable, oR Similarity range, σR

Target observable, oT Similarity range, σT

Continuous Moho Depth (a)

oR: Szwillus et al. (2019) σR as provided

oT: An et al. (2015a) σT = 1.0 km

LAB Depth (b)

oR: Afonso et al. (2019) σR = 18 km

oT: An et al. (2015b) σT = 18 km

Lithospheric Mantle Thickness (c)

oR: LAB depth—Moho deptha σR = 20 km

oT: LAB depth—Moho deptha σT = 20 km

Shear Wave Speed, Versus 125 km

oR: Becker and Boschi (2002) σT = 1.50%

oT: Becker and Boschi (2002) σT = 1.50%

Pressure Wave Speed, Vp 150 km (e)

oR: Becker and Boschi (2002) σR = 0.25%

oT: Becker and Boschi (2002) σT = 0.25%

Curie Temperature Depth (f)

oR: Li et al. (2017) σT = 4 km

oT: Martos et al. (2017) σT as provided

Earth Magnetic Anomaly (g)a

oR: Meyer et al. (2016) σR = 0.06a

oT: Golynsky et al. (2018) σT = 0.06a

Elevation (h)

oR: Amante and Eakins (2009) σR = 275 m

oT: Morlighem et al. (2019)a σT as provided

Lithosphere Average Density (i)

oR: Afonso et al. (2019) σR = 12 kg/m3

oT: Ibid. σT = 12 kg/m3

Crustal Average Density (j)

oR: Afonso et al. (2019) σR = 36 kg/m3

oT: Afonso et al. (2019) σT = 36 kg/m3

Free Air Gravity (k)

oR: Förste et al. (2013) σT = 0.0075 mGal

oT: Förste et al. (2013) σT = 0.0075 mGal

Geoid Height (l)

oR: Förste et al. (2013) σR = 8 m

oT: Förste et al. (2013) σT = 8 m

Bouguer Gravity Anomaly (m)

oR: Sinem Ince et al. (2019) σR = 0.03 mGal

oT: Scheinert et al. (2016) σT = 0.03 mGal

Table 2 
Observables Used in This Study
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(An et al., 2015a) as the matching target observable. Both observables refer to Moho depth, but AN_CRUST 
has higher resolution and is generated from surface wave tomography and constrained by available regional 
receiver function studies (Figure S5a). Similarly, we use the global Lithosphere-Asthenosphere boundary 
(LAB) from Afonso et al. (2019), and the model AN_LAB from An et al. (2015a) in Antarctica (Figure S5b). 
Thickness of lithospheric mantle is calculated as the difference between LAB depth, and Moho depth 
(Afonso et al.,  2019). Depth to Curie temperature is derived from magnetic data. Reference observables 
are from GCDM (Li et al., 2017) using data from EMAG2 (Maus et al., 2009). In Antarctica, GCDM has 
limited cover, and we use CTD from Martos et al. (2017) with provided uncertainty bounds (Figure S5c). 
We use the EMAG2v3 magnetic anomaly map from Maus et al. (2009) and Meyer et al. (2016) as a separate 
reference observable and ADMAP2 (Golynsky et al., 2018) as a target observable, noting that EMAG2v3 
and ADMAP2 only rely on observed data. As magnetic anomalies vary over several orders of magnitude, 
we apply a logarithmic function that preserves the sign: Mlog = sgn(M) ×  ln(1 + M/400), clipped to range 
[−1, 1], where M is the linear data and Mlog the rescaled observable. Our reference digital elevation model 
is ETOPO1 (Amante & Eakins, 2009), and in Antarctica we use the subglacial topography from MEaSUREs 
BedMachine (Morlighem et al., 2019), with uncertainty bounds. A simplistic glacial isostatic adjustment 
(GIA) correction is performed for total ice loading relaxation (Stål et al., 2020), using an ice density of 917 
kgm−3 (Griggs & Bamber, 2011) and crustal, and lithospheric mantle densities from Afonso et al. (2019). 
Crustal and lithospheric thickness to estimate GIA are obtained from An et al. (2015a, 2015b). We apply a 
simplified flexural model as a Gaussian kernel of σ = 60 km. For this context, we chose not to correct for 
global sea level adjustment, as it would also impact coastal reference observables (Figure S7). By using the 
interpolated mean elevation for each cell, we remove most topographic effects on heat that depend on the 
roughness (Lees, 1910) as those are beyond the resolution of the target observable for most of Antarctica 
(Graham et al., 2017). Four aspects of the gravity field are included as observables, all derived from EI-
GEN-6C4 model (Förste et al., 2013). Computations of geoid, free air gravity and Bouger gravity are per-
formed by ICGEM (Drewes et al., 2016; Sinem Ince et al., 2019) and provide a global, reliable frame covering 
the whole Antarctic continent. The Bouguer gravity reference observable includes ETOPO1 (Amante & 
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Table 2 
Continued

Observable(s) (label oR in Figure 2) Weighting function, w

Reference observable, oR Similarity range, σR

Target observable, oT Similarity range, σT

Shape Index of Curvature (n)

oR: Ebbing et al. (2018) σR = 1/8

oT: Ebbing et al. (2018) σT = 1/8

Class Tectonic Regionalization (o)

oR: Schaeffer and Lebedev (2015) Identical only

oT: Schaeffer and Lebedev (2015) Identical only

Global Lithological Map (P)

oR: Hartmann and Moosdorf (2012) Identical only

oT: Hartmann and Moosdorf (2012) Identical only

Sparse Heat production (q) w = 1 −obs/250 km

oR: Gard et al. (2019)a,b σR = 0.5 μWm−3

oT: Gard et al. (2019) σT = 0.5 μWm−3

Dist. Distance-to-nearest volcano (r) w = 1 −obs/100 km

oR: Global Volcanism Program (2013) σR = 25 km

oT: Ibid. van Wyk de Vries et al. (2018) σT = 25 km

Note. The content is discussed in the text.
aDetails provided in text. bAnd references therein.
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Eakins, 2009). Global compilations of Bouguer corrected gravity field are not valid in ice covered areas. For 
Antarctica, we therefore use the Bouguer gravity model from Scheinert et al. (2016). This model covers 73% 
of the continent with gravity data from airborne surveys and topography model from BEDMAP2 (Fretwell 
et al., 2012). We also include the shape index of curvature of gravity field (Ebbing et al., 2018) from GOCE 
data (Pail et al., 2010) (Figure S5d).
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Figure 2.  Cross plots of reference observables (OR) and used heat flow records from NGHF (Lucazeau, 2019), as described in the text. Observable value and 
heat flow value are binned to a hexagonal grid, where the color represent the relative frequency of heat flow values. Classes are shown as violin plots with 
the distribution of heat flow measurements for each class. Linear regression (black line) highlights any general relation between observable and heat flow. A 
nonparametric locally weighted scatterplot smoothing (LOWESS) is plotted as dotted red line (Cleveland, 1979; Waskom et al., 2020). (a) Moho depth (Szwillus 
et al., 2019), (b) Lithosphere thickness (Afonso et al., 2019), (c) Thickness of lithospheric mantle (Afonso et al., 2019; Szwillus et al., 2019), (d) Shear wave 
speed at 125 km (SMEAN2 (2016) based on Becker & Boschi, 2002), (e) Pressure wave speed at 150 km (Becker & Boschi, 2002), (f) Curie temperature depth 
(Li et al., 2017), (g) Magnetic anomalies (Maus et al., 2009; Meyer et al., 2016), (h) Elevation (ETOPO1 Amante & Eakins, 2009), (i) Lithosphere average 
density (Afonso et al., 2019), (j) Crustal average density (Afonso et al., 2019), (i) Free air gravity anomalies (Förste et al., 2013; Sinem Ince et al., 2019), (j) 
Geoid height (Förste et al., 2013; Sinem Ince et al., 2019), (k) Bouguer anomaly (Förste et al., 2013; Sinem Ince et al., 2019), (l) Shape index of satellite gravity 
gradients (Ebbing et al., 2018), (m) Tectonic regionalization classes (Schaeffer & Lebedev, 2015), (n) Lithological data classes (Hartmann & Moosdorf, 2012), (o) 
Heat production (Gard et al., 2019), (p) Distance-to-nearest volcano (Global Volcanism Program, 2013). Examples of datasets are presented in more details in 
supplementary material Figure S5, and discussed in text.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (0) (p) (q) (r)
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2.2.2.  Discrete Class Data

We use the tectonic segmentation of Schaeffer and Lebedev (2015). This is a robust global segmentation, 
but it is produced in low resolution. We note that in some locations, particularly along the circumference 
of Antarctica, this segmentation does not agree with geological and regional geophysical studies. Projec-
tion artifacts are mitigated using a median filter, with a 111 km × 111 km circular kernel. We also include 
geological classification, including reasonable extrapolation of geological observations in Antarctica from 
the GLiM compilation (Hartmann & Moosdorf, 2012; Tingey et al., 1991). We exclude the classes for Water 
Bodies (wb), Ice and Glaciers (ig), and No Data (nd). With those classes removed, only 11% of the Antarctic 
continent is classified, mainly in West Antarctica, along the coast, and Transantarctic Mountains.

2.2.3.  Sparse Data

Estimates of heat production from geochemistry are taken from the compilation by Gard et al. (2019). The 
median heat production value and uncertainty for each grid cell are interpolated to nearest observation 
over unrealistic long distances, but are assigned a weighting function that decreases linearly over 250 km, 
as described below. We reduce errors in the sparse target observable by excluding reported observations not 
consistent with exposed outcrops (Burton-Johnson et al., 2016).

2.2.4.  Distance functions

Distance to phenomena that have an impact on heat flow are also included. Distances to nearest Holocene 
and Pleistocene volcano are calculated from global compilation by Global Volcanism Program (2013). In 
addition, as an Antarctic observable, we also include subglacial volcanoes suggested by van Wyk de Vries 
et al. (2018) with total quality rating over 2.5. All volcanoes in the list are suggested to be shield volcanoes, 
as defined by the morphology (Grosse et al., 2014). It could have been beneficial for our purposes to separate 
Holocene and Pleistocene volcanism, but as we do not have this information for the subglacial volcanoes, 
we treat those reference observables equally. Distances are calculated along the great circle using pyproj, a 
PROJ4 package for Python (Snow et al., 2020).

2.3.  Data Preparation

Using agrid (Stål & Reading, 2020), we setup a global multivariate grid to import reference observables, in 
WGS 1984 (epsg:4326), with a resolution of 0.2 × 0.2°. We exclude the few values south of 60°S and north of 
80°N to avoid distortion as previously noted. For continuous data, a bi-linear interpolation of the cell center 
is obtained. For classes, we use the nearest value to each cell center. Heat production values are included as 
median of all records in each cell. Distance (in km) to the nearest Holocene and Pleistocene volcano (Global 
Volcanism Program, 2013) is assigned to each heat flow record.

To extract continuous data for the locations of heat flow measurements, we identify the nearest grid cells 
and generate an index matrix using KD-tree (Bentley, 1975). The index matrix is used to extract interpolat-
ed values from reference observables at the location of the heat flow measurement. The average distance 
between heat flow measurements and nearest grid center is 7.6 km, the maximum distance is 15.6 km (Fig-
ure S8). We also extract provided uncertainty bounds for continuous data, where available.

An Antarctic grid is generated (similar to Stål et al., 2020). The grid is in 20 × 20 km resolution, with an 
extent of 5,600  ×  5,600  km in WGS 84/Antarctic Polar Stereographic (epsg:3031). We also set up a grid 
in 50 × 50 km resolution (Figure S9). We limit the model to the coastline and grounding line (Mouginot, 
Scheuchl, & Rignot, 2017). Target observables are listed in Table 2. We also construct a grid to generate a 
test heat flow map for Australia, as a comparison of the potential, and limitations, of the methodology and 
observables used (Figure S18).

3.  Methods
Data handling and other stages of the workflow are coded in Python, using packages including agrid (Stål 
& Reading,  2020), numpy (Harris et  al.,  2020), pandas (McKinney,  2015), and scipy (Jones et  al.,  2015). 
Throughout this contribution, visualization is carried out using agrid and seaborn (Waskom et al., 2020), 
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both with underlying matplotlib (Hunter, 2007). We use perceptually linear color representations by SCM6 
Crameri and Shephard (2019), as discussed by e.g., Morse et al. (2019) and Crameri et al. (2020).

3.1.  Degree of Similarity

Previous studies, using the methodology that we develop in this contribution, used step functions within 
a given range to define similarity between observables (Goutorbe et al., 2011; Lucazeau, 2019). To take full 
advantage of our more limited selection of data, we refine this approach by using a smoothly decreasing 
function derived from the Gaussian distribution. By using this relation, the precise similarity range is more 
robust. The main drawback is the substantially increased computational cost. Degree of similarity between 
each reference observable and target observable is detected as:

S o oR T

R T
 


 









exp ( )

( ) /
,

2

22   
� (1)

where S is a degree of similarity in the range [0, 1]. oR is the value of the reference observable, oT is the value 
of the target observable, σR is the uncertainty (as two standard errors, 95.4%, range) for the reference observ-
able, σT is the uncertainty for the target observable. Values used for σ are listed in Table 2. We introduce Ψ, 
a scalar representing similarity pickiness (Figure S10). A low value for Ψ relaxes the similarity function. We 
use the parameter to test and optimize the similarity detection (Figures 3 and S11). When an uncertainty 
range has been published with the datasets used as observables, we use this range. Shape index (Ebbing 
et al., 2018) is assigned a range of 1/8, as suggested by Koenderink and van Doorn (1992) to represent the 
categories of curvature shape. Classes are only accepted as similar when identical. This is achieved by using 
a very low value for σ. For most observables, the uncertainties are not defined. We optimize the similarity 
detection by performing a Monte Carlo simulation (N = 2,001) with random Ψ for each observable, and 
calculate cross-correlated misfit as MAe and RMSe, using the method described below. We find that the 
model is robust for defined ranges (Figures 3a and 3b, Figures S11 and S12). However, the acceptance range 
also functions as a spatial smoothing, as continuous data often change gradually. All acceptance ranges 
used are geologically and geophysical meaningful, and generally agree with our expected uncertainty in 
observables. Figure S12 provides the same test as Figures 3a and 3b, but also applying the step function 
similarity detection, to illustrate the less predictable response to parameter variations, for the limited range 
of observables used.

3.2.  Weighting

A weight is introduced for sparse data and distance functions. A weighting of 1, sets the observable as fully 
relevant, but when the value decreases to 0, it is effectively muted from the similarity detection, and does 
not contribute to the heat flow estimate. The weights for heat production data are set to decrease linearly 
over 250 km from nearest observation (Figure S13). The impact of distance to volcanoes is set to decrease 
linearly over 100 km (Figure S14g). Beyond the maximum distance, the weighting is set to 0. Heat flow 
anomalies associated with advection and diffusion from shield volcanoes has a limited extent of less than 
10 km (Hurwitz, 2003; Wright & Pilger, 2008). However, the existence of volcanoes also helps us to map 
the tectonic settings of volcanic provinces. The weighting functions are listed in Table 2. To assign dynamic 
weight, additional grids are constructed containing weighting factors. An example of the model with the 
distance to volcanoes observable excluded is provided by assigning a weight of zero (Figures S14a and S14b). 
We also generate a version without Moho and LAB observables (Figures S14c and S14d).

To investigate if an observable improves the result, or adds noise, we perform a Monte Carlo simulation 
with random weights assigned to the observables. We apply N = 2,001 random combinations, including the 
case with all observables weighted to 1. Keeping all observables fully weighted is demonstrated to provide 
good predictions (Figure S4).
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3.3.  Similarity Process and Optimization

For each Antarctic grid cell, observables are compared with reference observables' vectors for heat flow 
measurements to generate a similarity matrix. The similarities (S) are multiplied with the weighting matrix 
and stacked for each reference and target:

1
,

i
sim obs obs

nobs
N S w


  � (2)

where Nsim is the weighted similarity for each heat flow record, nobs is the number of observables used (18), 
wobs is the weighting for each observable for given heat flow record.

The stacked value Nsim is used as a power to a base K, to increase the value of multiple similar observables:

Nsim
iw K� (3)

To optimize and test the K parameter, together with the similarity pickiness (Ψ), we perform leave-one-out 
cross validation (LOOCV). We calculate misfit as root mean squared error (RMSe), mean absolute error 
(MAe), and coefficient of determination (R2). The results are shown as a parameter maps in Figures 3a 
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Figure 3.  Method optimization and correction applied, using leave-one-out cross validation (LOOCV) of heat flow 
values in NGHF, included in this study. The R2 value and MAe misfit cannot be optimized for the same parameter 
values. The choice of K and Ψ is therefore a trade-off between considerations, as discussed in text. (a) Parameter map 
for R2. (b) Parameter map for Mean absolute error (MAe) misfit. K values at y-axis, and Ψ values at x-axis. Bright 
colors indicate more favorable combinations, the color range is optimized and values outside this range are masked 
black. (c) Heat flow measurements along the x-axis, and predicted values along y-axis. The RANSAC cubic regression 
(black line) gives a robust value, as outliers (gray dots) are ignored and the regression is estimated from inlier data 
points only (green dots) (Fischler & Bolles, 1981). A local regression (LOWESS) is shown with orange dashed line. A 
linear RANSAC regression line is also shown for reference (green line). (d) Applied correction to compensate variance 
reduction of heat flow records. Orange line shows the impact, and blue line shows the applied compensation. The black 
marker show the average heat flow in Aq1. LOWESS, locally weighted scatterplot smoothing.

(a) (b)

(c) (d)
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and 3b and Figure S12. MAe is reduced with higher K (Figure 3b), but the R2 values (Figure 3a), and re-
lated RMSe (Figure S12a), suggests a lower value of K. With increasing Ψ, the spatial resolution increases 
(Figures S15d–S15f). K controls stability and accuracy. A high value of K would put more weight on fewer 
measurements, which reduces stability given the limited selection of observables available in Antarctica. In 
the lower range, K < 3, the resolution decreases and the output appears smoothed. High K and Ψ gives the 
best linear correlation, at the expense of increased RMSe and reduced R2. We hence optimize for good RMSe 
within acceptable range of MAe, and then correct for the effects on correlation, selecting K = 5, and Ψ = 3. 
Maps resulting from different values of K and Ψ are provided in Figure S15. When comparing the parameter 
maps, we note that the continuous detection (Equation 1) provides a smoother, more robust and predictable 
response to variations in K and Ψ, for the selected parameter ranges (Figure S11).

3.4.  Corrections of Heat Flow Values

A scatter plot of LOOCV predicted heat flow values and measurements shows that the overall trend captures 
the variations (Figure 3c). The residuals are heteroskedastic; high predicted values are underestimated. This 
is a result of extremely high values that cannot be detected due to rare combination of observables. We 
analyze the heteroskedasticity by fitting a local regression, a linear RANSAC regression, and a polynomial 
RANSAC regression (Fischler & Bolles, 1981). The local regression and the linear regressions are almost 
identical up to 80 mW m−2. Above 80 mW m−2, the local regression suggests an increasing underestimation 
of predicted values. Generally, predicted values are likely to gravitate toward the mean of the measurements 
as each predicted value is a weighted average of a large number of measurements and the selected similar 
distribution (σi) relates to the distribution of the total population as /M i iw  . When the K value is 
higher, fewer records get more of the weight, and smaller correction is needed. However, we show that the 
RMS error and coefficient of determination are better for moderate values of K, as the observables used in 
this study generate noise (Figure 3a). We accept the slightly skewed correlation, and apply a correction to 
account for the reduced range. We apply the RANSAC polynomial regressor to calculate a polynomial func-
tion for correction (Figure 3d):

3 2
pc 2 ( )p p p pQ Q a Q b Q c Q d        � (4)

where Qpc are the predicted and corrected heat flow values, Qp are the predicted values. a − d are the coeffi-
cients calculated for a cubic RANSAC regression using the Python package SKlearn (Pedregosa et al., 2011): 
a = 13.72, b = −3.38, c = 0.9566, d = 0.01258. The impact of the correction is shown in Figure S16, as maps 
and KDE plots of cross correlation.

3.5.  Generating Maps of Heat Flow and Model Metrics

Using the optimized parameters, we calculate heat flow value and uncertainty metrics for each (x, y) target 
grid cell in Antarctica. Heat flow is calculated using:

,
i i

i

i
i

w q
Q

w





� (5)

where Q is the weighted mean of all heat flow measurements for the area represented by grid cell (x, y), q 
are the heat flow measurements from NGHF, and wi is the weight from Nsim

iw K , where K = 5. Correction 
for reduced range is applied, as described in previous section.

The standard deviation of the heat flow values is used to calculate uncertainty:
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where σQ is the uncertainty assigned to the grid cell (Figure S17b). The uncertainties of the included heat 
flow records are not considered for this metric.
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We also compute Ntotal, the amount of similarity from all observables and reference records, and present 
it as a logarithmic value. This is a combined measure of data availability, and how many similar reference 
observables are considered:

total ln .simN N � (7)

For each location, all weighted reference heat flow values are binned to a histogram, Bn, with bin size 1 
mW m−2 in the range from 0 to 150 mW m−2. The histogram is a discrete probability distribution and is 
normalized as:

.n
A

n

Bp
B


� (8)

Information entropy is calculated (Shannon, 1948):

1
ln ,

i
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n
H p p


  � (9)

where n = 150, the number of bins, pA is the normalized sum of similarity distribution (Equation 8). The 
base is e, and hence H is given in nats. The bins are also stored to an array, and histogram can be extracted 
for any location. The theoretical upper range of entropy for the used histogram is ln 150 = 5.01.

Figure 4c shows entropy detected in each distribution of reference heat flow values. To facilitate interpre-
tation of entropy in this context, Figure 4d shows six normalized histograms of similar geological settings 
and binned heat flow values. The background colors are identical with the colormap used in Figure 4c. The 
six distributions shown are chosen to divide the total range in five equal sized bins, exact locations are only 
provided for reference.

We generate grids for Antarctica in resolutions 20 × 20 km and 50 × 50 km (Figure S9). As a test case to 
appraise the approach and also to understand its limitations, we generate a heat flow grid of Australia in 
20 × 20 km grid, GDA94/Australian Albers (epsg:3577) (Aq1.au, Figure S18). For the Australian test, we 
exclude heat production values to provide an estimate similar to the Antarctic conditions. For this map, we 
also exclude all Australian measurements from NGHF.

We calculate the differences between Aq1 and six previous heat flow maps, including Burton-Johnson 
et al. (2017) regional map of the Antarctic Peninsula. Grids are exported in interoperable formats as geo-
TIFF, netCDF and ascii tables using agrid functionality (Stål & Reading, 2020). We finally also generate a 
smoothed contour map by convolution with a Gaussian kernel with σ = 40 km (Figure 6).

4.  Results
We present a new heat flow map for Antarctica, Aq1 (Figures 1 and 6, the latter labeled with geographic 
locations), together with maps of uncertainty metrics: standard deviation from the distribution of similar 
heat flow measurements in NGHF (Figure 4a), total number of similarities (Figure 4b), and the information 
entropy in the weighted heat flow histogram for each location (Figure 4c). Those maps inform the robust-
ness of the assigned heat flow value.

For most of East Antarctica, we calculate a heat flow between 40 and 70 mW m−2, which is a similar range 
to that found in previous studies (Figure 5). The lowest heat flow values are shown south of Dome Circle 
in interior Wilkes Land, Coats Land, and Wilkes Subglacial Basin. Elevated heat flow is shown in Victoria 
Land and parts of Queen Mary Land. High values of over 120 mW m−2 are shown in the Thwaites Glacier 
region, West Antarctica, and in Marie Byrd Land and Palmer Land. The map shows areas of moderate heat 
flow in parts of Siple Coast, Ellsworth Land, and central Antarctic Peninsula, down to 60 mW m−2.

Compared with previous studies, Aq1 is similar to Shen et al. (2020), but shows higher heat flow in some 
West Antarctic volcanic provinces (Lough et al., 2013; van Wyk de Vries et al., 2018), and coastal East Ant-
arctica (Figure 5e). Aq1 is generally lower in large parts of West Antarctica. In most regions, the differences 
between Aq1 and Shen et al. (2020) are within the uncertainty ranges. Compared to earlier Antarctic heat 
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flow models, Aq1 is most similar to An et al. (2015b), however with generally higher values in West Antarc-
tica, and produced at higher resolution (Figure 5b). Aq1 also generally agrees with Martos et al. (2017) in 
East Antarctica, but assigns lower values in West Antarctic interior and the Antarctic Peninsula (Figure 5d). 
Aq1 is generally higher in East Antarctica than Fox Maule et al. (2005) (Figure 5a), but lower in Ellesworth 
Land, Oates Land and Mac. Robertson Land. We suggest high levels of heat flow in Palmer Land in the 
southern Antarctic Peninsula. This is in general agreement with earlier studies, particularly the regional 
study by Burton-Johnson et al. (2017) (Figure 5c). The pattern and range of the heat flow distribution in 
West Antarctica also agrees with O'Donnell et al. (2019), however, the multivariate approach provides high-
er spatial resolution. Finally, when Aq1 is compared with AqSS (Stål et al., 2020), the difference potentially 
points to areas with a neotectonic and volcanic contribution in West Antarctica: mainly Thwaites Glacier, 
Marie Byrd Land, and also coastal Victoria Land, and Queen Mary Land in East Antarctica (Figure 5f).

5.  Discussion
In this section, we first note the limitations associated with the methodology. We then discuss how the alter-
native uncertainty metrics inform our appraisal and provide an interpretation of the Aq1 map.
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Figure 4.  Uncertainty metrics for the Aq1 heat flow model. (a) Standard deviation of similar reference measurements. 
(b) Total number of similarities, in logarithmic scale. (c) Information entropy by natural logarithms, as described in 
methods section. (d) To assist the interpretation of information entropy, histograms from six examples are provided. 
The examples are the highest and lowest entropy, and four equal steps in between. The background color represent the 
same color as in (c). For clarity, the histograms of heat flow measurements are normalized to the range from 0 to 1. The 
color scales are chosen so that a darker tone indicates higher uncertainty, hence the scale for (b) is reversed.

(a) (b)

(c) (d)
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5.1.  Limitations of the Similarity Approach

The similarity approach relies on the compatibility between reference and target observables, and we note 
that some matches are not ideal. As the best available choice of target observable, we use Antarctic data-
sets for Curie temperature depth (Martos et al., 2017), seismic Moho depth (An et al., 2015a), LAB (An 
et al., 2015b), and also a unique source for distance-to-nearest volcano (van Wyk de Vries et al., 2018). The 
matches between the reference and target observables across Antarctica (Figure S6) show significant differ-
ences. While the impact of those differences is difficult to quantify, we provide robust maps of uncertainty 
metrics for the resulting model. The incompatibility between reference and target observables is a potential 
explanation for large uncertainties and information entropy (Figure 4), where global and regional datasets 
associate different tectonic settings. The impact of uncertainties and shortcomings of the datasets used is 
moderated by using multiple sets of observables.

The leave-one-out cross-validation Monte Carlo tests (Figure S4) show that each used observable improves 
the prediction, even as some of the datasets are usually not associated with thermal properties. Instead, they 
support tectonic association. The MAe misfit is around 12 mW m−2, which is encouraging (Figure 3b). We 
note, however, that heat flow datasets are affected by sample bias, particularly in Antarctica's Gondwanan 
neighbors. Heat flow measurements are often targeted on regions with particular economic interest, and 
might not well represent the average Antarctic continent. Records from mountainous areas are likely to 
be mostly from valleys rather than ridges, and hence higher heat flow due to topographic focusing (e.g., 
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Figure 5.  Comparison of Aq1 with previous published models. (a) Aq1—Fox Maule et al. (2005). (b) Aq1—An et al. (2015b). (c) Aq1—Burton-Johnson 
et al. (2017). (d) Aq1—Martos et al. (2017). (e) Aq1—Shen et al. (2020). (f) Aq1—AqSS (Stål et al., 2020). Outline of the Antarctic peninsula study (c) is shown 
in (f). Brown-green indicates that Aq1 shows higher heat flow values, the case for most of East Antarctica. Blue indicates that the model being compared shows 
higher heat flow. Average continental heat flow is near 65 mW m−2 (Pollack et al., 1993), Aq1 has a calculated average of 61.2 mW m−2. The average for Fox 
Maule et al. (2005) is 63.1 mW m−2, An et al. (2015b), 59.0 mW m−2, Martos et al. (2017), p. 70.4 mW m−2, and Shen et al. (2020), 57.1 mW m−2 (Figure S19), for 
the same extent as Aq1.

(a) (b) (c)
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Beardsmore & Cull, 2001; Lees, 1910). Heat production and heat flow can vary over a large range in a short 
distance (Figure S13). We therefore keep all individual records instead of cell or kernel averages. This might 
further skew the reference heat flow distribution.

5.2.  Methodology Appraisal

We test the methodology using the example of the Australian continent, and achieve a generally good predic-
tion (Figure S18). However, a few locations show values where the calculated value is far too low. The most 
striking misfits are generally associated with areas known for high crustal heat production (Figure S18b) 
(e.g., Holgate et al., 2010; McLaren et al., 2003), and those measurements are indeed targeted on geothermal 
energy or mineral exploration with an interest in enriched radioactive elements. The Australian example 
suggest that our method captures important properties of the crust, but observables used might fail to assign 
an extreme value associated with shallow high heat production. The resulting ambiguity with observables 
used, manifests as increasing noise, uncertainty and information entropy. The cross correlation suggests 
agreement with the parameter choices made in previous studies (Goutorbe et al., 2011; Lucazeau, 2019), but 
high value of K and Ψ create an overfitted prediction with the observables used. We aim to avoid overfitting 
by choosing parameters in a range with low sensitivity for parameter values (Figures 3a and 3b).
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Figure 6.  Locations mentioned in text, and an alternative visualization of Aq1. Heat flow is shown as smoothed 
contours to enable reading of numerical values, although some detail is lost. Smoothing is carried out using a Gaussian 
kernel with σ = 40 km. Geographic locations mentioned in text: AP, Antarctic Peninsula; ASB, Aurora Subglacial Basin; 
CL, Coats Land; DA, Dome Argus; DC, Dome Circle; DF, Dome Fuji; DML, Dronning Maud Land; ElL, Ellsworth Land; 
EnL, Enderby Land; GB, Gaussberg; GSM, Gamburtsev Subglacial Mountains; GVL, George V Land; KL, Kemp Land; 
KWL, Kaiser Wilhelm II Land; LHB, Lützow-Holm Bay; LV, Lake Vostok; MBL, Marie Byrd Land; MRB, Mac. Robertson 
Land; OL, Oates Land; PEL, Princess Elizabeth Land; PIG, Pine Island Glacier; PL, Palmer Land; QML, Queen Mary 
Land; SC, Siple Coast; SP, South Pole; SSB, Shmidt Subglacial Basin; SR, Shackleton Range; TA, Terre Adélie; TAM, 
Transantarctic Mountains; TG, Thwaites Glacier; VH, Vostok Highlands; VL, Victoria Land; VSB, Vincennes Subglacial 
Basin; WD, West Antarctic Ice Sheet (WAIS) divide; WL, Wilkes Land; WSB, Wilkes Subglacial Basin.
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Heat flow measurements in NGHF, we assume, do not represent all tectonic settings equally. By using the 
exponential function controlled by the K parameter, however, only a few measurements will define the heat 
flow distribution from similar locations. The results depend on the accuracy resulting from the combina-
tion of observables used, and the quality and selection of heat flow records. Using different subsets of heat 
flow values can modify the resulting map, e.g., without the distance to volcano observable (Figures S14a 
and S14b), without the Moho depth and LAB depth observables (Figures S14c and S14d), and excluding 
all measurements deeper than 250 m, which yields lower calculated values in the Thwaites region (Fig-
ures S14e and S14f).

5.3.  Discussion of Uncertainties

We aim to communicate the uncertainties inherent in Aq1 in a way that is informative of the different 
mechanisms through which uncertainty arises. For example, mapped uncertainty measures often fail to 
contain the progression of uncertainty from assumptions (e.g., Pérez-Díaz et al., 2020). Our first uncertainty 
metric is the standard deviation of reference heat flow records weighted with similarly (Figure 4a). This 
distribution does not account for the total range of choices made when including observables, acceptance 
ranges for similarity and weighting, or absent observables as heat production and sediment cover. There-
fore, we also provide maps of total number of similarities, and information entropy (Shannon, 1948). The 
number of similarities map (Figure 4b), indicates how well the tectonic setting is represented in the heat 
flow catalog, and how much data are available in Antarctica. In this map, e.g., the Gamburtsev Subglacial 
Mountains stand out as a region with few similarities elsewhere. Figure 4c shows how much information is 
captured by the similarity process. A few areas, such as the northern Antarctic Peninsula, Ellsworth Land 
and west of Miller Range are shown to be very robust in our model. We believe that the inclusion of infor-
mation entropy as a proxy for uncertainty is a useful tool in geophysical and geological studies, particularly 
in multivariate and multidimensional models (e.g., Wellmann & Regenauer-Lieb, 2012). In our map, the 
information entropy metric also captures multi modal distributions, and a low entropy value can enable the 
reduction of apparently large uncertainty to a few discrete possibilities.

5.4.  Interpretation

Aq1 improves the information available to the geological community by supplying a heat flow map that is of 
higher resolution than previous studies. The exact resolution is difficult to quantify, as each observable con-
tributes different levels of detail. The resolution of the datasets used in previous studies (An et al., 2015b; 
Martos et  al.,  2017) is improved upon somewhat, in Aq1, through the addition of constraints from the 
higher resolution elevation model and airborne Bouguer anomalies. It also provides a quantified means 
of incorporating information through the match between reference and target observables that inform the 
contribution to heat flow from the probable subglacial geology. Aq1 agrees with previous studies in sug-
gesting generally higher heat flow in West Antarctica, and lower in East Antarctica. This is also in accord-
ance with our understanding of the tectonic development of the continent (e.g., Artemieva & Thybo, 2020; 
Boger, 2011; Harley et al., 2013; Jordan et al., 2020), and large-scale geophysics (e.g., Haeger et al., 2019). 
Our map adds detail to this relationship by suggesting a few pronounced hot spots in East Antarctica, and 
also areas with moderate heat flow in parts of West Antarctica (Figure 6). The highest values are computed 
for the interior of Thwaites Glacier and Pine Island Glacier. The region is categorized by thin crust (e.g., 
Damiani et al., 2014), steep geothermal gradient (e.g., O'Donnell et al., 2019), and a complex tectonic setting 
that is under current discussion (Artemieva & Thybo, 2020; Ferraccioli et al., 2007; Jordan et al., 2020). Our 
values are locally higher than previous continental scale heat flow studies (Figure 5), and in accordance 
with observations from radar sounding of the ice-bedrock interface (Schroeder et al., 2014) and field meas-
urements (e.g., Clow et al., 2014), however, the uncertainties remain large. Aside from Thwaites Glacier 
region, the Aq1 model does not show any extended regions of heat flow over 100 mW m−2 (Figures S20d).

We note that Aq1 is most similar to Shen et al. (2020), and we take this similarity as a strong evidence to 
support the validity of both 2020 studies, as they are effectively independent studies. Shen et al. (2020) is 
not derived from the datasets used for Aq1, and a different methodology is used. In particular, there is a 
convincing similarity between the two models in the overall pattern in West Antarctica (Figure 5e), however 
Aq1 assigns higher values in the Thwaites region and northern Siple Coast (Figure 5e).
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Elevated heat, over 70 mW m−2, is detected in East Antarctica, for example, in interior Queen Mary Land, 
near the Gaussberg Volcano (Figure 6). Due to the lack of geophysical data, the Gaussberg volcano is still 
poorly understood, but its recent volcanism has potential clues to the heat flow of an extended region. How-
ever, we note that even if distance to volcanoes observable is excluded (Figure S14a and 14b), the model still 
renders an elevated heat flow in the Gaussberg region. The low heat flow values from the Wilkes Subglacial 
Basin and inland from Wilkes Land, and to some extent Aurora Subglacial Basin and Vincennes Subglacial 
Basin might be a result of sediments with low thermal conductivity (Jessop & Majorowicz, 1994), or low 
heat production in underlying cratonic crystalline basement (Stål et al., 2020).

Aq1 suggests a relatively moderate heat flow in central Siple Coast. Values based on direct measurements 
in the region gives a large range of heat flow values. This variance is likely caused by a number of local 
subglacial processes such as hydrothermal circulation and potentially volcanism with a very large impact 
the measured heat (Begeman et al., 2017; Engelhardt, 2004; Siegert et al., 2016; Tulaczyk et al., 2001). Such 
high values are not captured at this scale given the resolution of the available observables, and we don't 
expect to see extremely high values when averaged over a 400  km2 grid cell. Sedimentary basins might 
also hamper the heat flow due to the lower thermal conductivity and groundwater circulation (Jessop & 
Majorowicz, 1994).

Due to the low number of heat flow measurements in Antarctica, the high variability of heat flow, and the 
assumptions involved (discussed by e.g., Burton-Johnson et al., 2020; Mony et al., 2020), we suggest that a 
direct comparison is not meaningful for a continental scale map. However, Aq1 still agrees well with the 
existing measurements compiled by Burton-Johnson et al. (2020) (Figure S21).

5.5.  Future Directions

The Aq1 model, released as the central product in this contribution, is a suitable input to ice sheet models 
and other interdisciplinary studies of interacting Earth systems in Antarctica. However, some parts of the 
model show large uncertainties that should be reduced in future work. Additional datasets and data prod-
ucts for possible inclusion in updates include those from recent seismic studies (Lloyd et al., 2020; Shen 
et al., 2018). With additional magnetic data, further derivatives could be included to assist in higher reso-
lution tectonic association, as has been achieved in regional studies (e.g., Ferraccioli et al., 2001; Goodge & 
Finn, 2010; Ruppel et al., 2018).

Comparison with heat flow models based on solid Earth data potentially provide further constraints on the 
nature of the subglacial environment. Additional constraints from observed geology, and thickness and na-
ture of subglacial sediments are further datasets of potential utility that could be included in a probabilistic 
framework, in the absence of well-distributed direct observations. For the next generation of Antarctic heat 
flow models, it may be appropriate to include data from the ice sheet community in a truly interdisciplinary 
initiative. The existence of subglacial melt, hydrological information, and insights from the dynamics of the 
ice sheet are candidate datasets for inclusion.

For some regions, the model could be refined with a topographic correction (e.g., Beardsmore & Cull, 2001; 
Lees, 1910), which would require additional consideration for interpolation of the roughness of subglacial 
topography data (Graham et al., 2017). Related to considerations of topography, the exhumation and erosion 
history of Antarctica has a considerable impact on subglacial heat flow and merits inclusion in future work. 
Our understanding of such processes has developed over the past decade (e.g., Paxman et al., 2019; Tooze 
et al., 2020; Wilson et al., 2012). A recent marine seismic interpretation (Sauermilch et al., 2019) shows large 
volumes of offshore sediments. Considering those results may enable better constrained models of regional 
erosion and exhumation, with further impact on heat flow.

We hope that Aq1 will be used to provide clues on subglacial tectonic settings, and also used by the inter-
disciplinary community working on interactions and feedbacks of the cryosphere and solid-Earth systems. 
We anticipate that ice sheet evolution models will continue to be refined in response to updated heat flow 
maps. Adopting updatable models, such as Aq1, will readily enable the improvement of results that make 
use of heat flow as a model input.
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6.  Conclusion
The new geothermal heat flow model, Aq1, is based on a new approach to the estimation of subglacial heat 
flow for Antarctica. We use a multivariate analysis, modified to take account of the strengths and limita-
tions of currently available geophysical and geological datasets for Antarctica. This analysis complements 
the univariate techniques that underpin alternative heat flow maps for the continent. The resulting maps 
depend on a robust number of observables and enable constraints to be included from comparative records 
of heat flow and tectonic setting, elsewhere in the world. The Aq1 model is supplied together with an open 
computational framework to facilitate future refinements as new datasets become available. In agreement 
with models constrained by univariate approaches, Aq1 shows elevated heat flow in West Antarctica, low 
heat flow values in East Antarctica, and refined heat flow estimates throughout. Highest values are shown 
in Thwaites Glacier. Moderate heat flow is suggested for Siple Coast and Ellsworth Land, West Antarctica. 
Elevated heat values are modeled for some areas of East Antarctica, for example, the region near Gaussberg 
in Kaiser Wilhelm II Land, Queen Mary Land, and northern Victoria Land. Aq1 provides higher resolution 
compared with previous models, and robust uncertainty metrics.

Data Availability Statement
The Aq1 model is available in interoperable formats (geoTIFF, netCDF, and comma-separated values (CSV) 
text file) in 20 and 50  km resolution grids from PANGAEA data library (https://doi.org/10.1594/PAN-
GAEA.924857) (Stål et al., 2020). Python code used to generate the maps in this study is available from on-
line repositories (latest version at https://github.com/TobbeTripitaka/Aq1, archived at https://zenodo.org/
record/4014430). Details regarding data and code download are provided with the Supporting Information. 
The software and data framework is described in detail by Stål and Reading (2020) and Stål et al. (2020).
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