
1. Introduction
The Western Pacific is featured by its many island arc chains and marginal sea basins tectonically posi-
tioned between the Eurasia, Pacific, and India-Australian plates. These sea basins (e.g., South China, Banda, 
Molucca, Celebes, Sulu) are mostly developed in the Cenozoic, especially since the Middle Eocene when 

Abstract The Cenozoic Sulu Sea arc-basin system is situated in the tectonic junction between the 
South China Sea (SCS), northern Borneo, Palawan Continental Terrane, Philippine Mobile Belt, and 
Celebes Sea. We compare new/published geochronological and geochemical data from across the circum-
Sulu Sea region, and summarize seven major magmatic phases from the Middle Eocene to Pleistocene. 
The Middle Eocene (42.65 Ma) Sabah ophiolite and Eocene-Oligocene (34-33 Ma) Central Palawan 
ophiolite have MORB-IAT-transitional features, representing an intraoceanic subduction setting in the 
Paleogene northern Borneo and central-southern Palawan. After the SCS opening (∼32 Ma) and ridge 
jump (∼25 Ma), late-stage Proto-SCS subduction (24-21 Ma) may have formed the Panay arc andesite 
and the BABB magmatism in SW Zamboanga peninsula. Starting of final convergence between the 
Palawan Continental Terrane and northern Borneo-SW Philippines (∼21 Ma) likely caused regional uplift/
thrusting, forming the Top Crocker Unconformity and triggering the NW-dipping Celebes Sea subduction. 
The subduction may have formed arc magmatism (21-18 Ma) in the Cagayan ridge and its continuation in 
Panay and NE Sabah, and opened the NW Sulu Sea back-arc basin through continental crust attenuation. 
Subduction rollback likely occurred in 17-14 Ma and 13-9 Ma, shifting arc magmatism southeast to the 
Sulu ridge and opening the SE Sulu Sea back-arc basin. NW-dipping Celebes Sea subduction largely 
ceased after ∼9 Ma, followed by extension-related uplift/exhumation and 4-0.2 Ma intraplate volcanism 
in northern Borneo. SE-dipping Sulu Sea subduction likely occurred along the Negros-Sulu trenches, and 
produced arc volcanism from ∼4 Ma.

Plain Language Summary The Sulu Sea and the adjacent sea basins (e.g., Celebes and SCS) 
are situated at the junction between the Eurasian, Philippine Sea, and Indo-Australian plates. The opening 
and closure (when Australia-Eurasia eventually collide) of these basins represent the final tectonic 
episode of the Neo-Tethys, an ocean that separates the northern and southern continents. When and how 
these sea basins were created are long disputed. Here we present a regional tectonic reconstruction model 
by compiling new/published radiometric age and chemical data of major igneous suites from across the 
circum-Sulu Sea region. Our model suggests that the Sulu Sea was formed by the NW-dipping Celebes Sea 
subduction at ∼21 Ma, in response to the collision between the South China-derived Palawan Continental 
Terrane and northern Borneo-SW Philippines. The Sulu Sea basin may have continued to expand till 
∼9 Ma, when NW-dipping subduction of the Celebes Sea stopped. Afterward, to the west of the Sulu Sea, 
within-plate extension in northern Borneo occurred and continues to the present-day; whereas to the 
east, subduction of the Sulu Sea may have occurred along the Negros-Sulu trenches, and produced arc 
volcanism from ∼4 Ma.
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India-Asia collided and Australia pressed north toward Sundaland, representing the final phase of the 
Neo-Tethys closure (Advokaat et al., 2018; Hall, 2002, 2012; Pubellier & Morley, 2014; Zaw et al., 2014). How-
ever, knowledge about the age and evolution of these basins, and how they interacted with the surrounding 
geological terranes, remains inadequate. For the Sulu Sea, its formation is variably linked to the subduction 
of the Proto-South China Sea (SCS) (after Hall and Breitfeld [2017]'s definition), SCS, and/or Celebes Sea, 
or represents a marginal basin similar to the SCS (Hutchison, 2004; Liu et al., 2014; Rangin, 1989; Rangin 
& Silver, 1990). Constraining the evolution timeline of the Sulu Sea is dependent on those of the surround-
ing terranes and sea basins, which are equally enigmatic. For instance, the NW Borneo-Palawan troughs 
were long regarded to be a still-active or relatively young subduction trench (e.g., Hamilton, 1979; Hesse 
et al., 2009; Hutchison, 2010; Simons et al., 2007), yet more-recent studies suggest that they were formed by 
gravity-driven flexure of the sediment wedge (e.g., Hall, 2013; Hall & Breitfeld, 2017). Timing of the (Pro-
to)-SCS seafloor spreading and subduction remains unclear (e.g., Advokaat et al., 2018; Briais et al., 1993; 
Pubellier & Morley, 2014; Sibuet et al., 2016), and so is the collision of the Palawan Continental Terrane (in-
cluding northern Palawan, western Mindoro(-Tablas), NW Panay, Reed Bank-Dangerous Grounds) with the 
Philippine Mobile Belt and northern Borneo. Suggested ages of the collision range widely from late Early 
Miocene (∼20 Ma) (Yumul, Dimalanta, et al., 2009) to Late Miocene (∼10 Ma) (Fan & Zhao, 2018). Differ-
ent hypotheses on the timing of ocean basin opening/subduction and terrane collision are not necessarily 
mutual exclusive, as such events can be diachronous, particularly across such a vast region. This, however, 
highlights the importance to elucidate the tectonic timeline through compiling and comparing geological 
data from across the region.

In this study, we present zircon U-Pb-Hf isotope and whole-rock geochemical data on the newly identified 
Middle Eocene and early Late Miocene magmatism from northern Borneo. New and published geochron-
ological/geochemical data of various magmatic suites from the circum-Sulu Sea region, including the Sulu 
Sea basin and Sulu-Cagayan arcs (northern Borneo, Sulu-Cagayan ridges, Panay, Negros, SW Zamboanga 
peninsula) (Figure 1), were compared to reveal any magmatic evolution trends and to synthesize a regional 
tectonic reconstruction model (Figure 11). In the model, the geological terrane definition is based on the 
GPlate tectonic model (EarthByte Group) (Matthews et al., 2016; Müller et al., 2018), while the paleolati-
tudes of geological terranes follow Hall (2012), which are in turn based on paleomagnetic evidence (e.g., 
Hall, Ali, et al., 1995; Hall, Fuller, et al., 1995). Timing of the key tectonic events in the model, for exam-
ple, starting/cessation of Sulu Sea back-arc basin opening, is based on our age compilation and geological 
interpretations.

2. Tectonic Subdivisions of the Sulu Arc-Basin System
2.1. Sulu Sea

The Sulu and Celebes Seas are bounded by Borneo to the west, Sulawesi to the south, Philippine Mobile Belt 
to the east, and Palawan Continental Terrane to the north. The two sea basins are separated along the Sulu 
ridge, and the Sulu Sea is further subdivided along the ENE-trending Cagayan ridge into the NW and SE 
Sulu Sea basins (Figure 1) (Hutchison, 1992; Rangin & Silver, 1990; Rangin et al., 1990).

Seismic survey revealed thicker crust in the NW Sulu Sea (>10 km) than the SE Sulu Sea (∼6 km), and the 
former is also considerably shallower (1,000–1,800 m deep) than the latter (greatest depth: 4,500–5,000 m) 
(Murauchi et al., 1973; Rangin & Silver, 1990). Interpreted paleomagnetic anomalies of the SE Sulu Sea 
basement range from C7 (23.96 Ma) in the northwest to C5 (9.79 Ma) in the southeast (Gradstein et al., 2012; 
Roeser, 1991; Shyu et al., 1991). The Ocean Drilling Program (ODP Leg 124) has drilled one hole in the SE 
Sulu Sea (Site 768), which penetrated ∼1,046 m of sedimentary and pyroclastic rocks, and ∼222 m of base-
ment rocks (pillow/massive basalts, dolerite, and micro-gabbros) (Figures 1 and 2). The oldest sediments 
overlying the basement are late Early Miocene claystone with thin turbidite interbeds (Scherer, 1991). The 
claystone is overlain by thick (∼197 m) volcaniclastics, comprising mainly dacitic-rhyolitic tuff and lapil-
listone interpreted to have erupted in a shallow marine-subaerial environment. The overlying brown clay-
stone contains late Early to early Middle Miocene radiolarian and has low carbonate contents, suggesting 
sub-CCD (carbonate compensation depth) deposition and hence regional subsidence. After the Miocene, 
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pelagic carbonates first appeared at ∼2.4 Ma and gradually dominated at ∼1.9 Ma (paleomagnetic age), sug-
gesting rapid CCD deepening (e.g., Nichols et al., 1990; Pouclet et al., 1991; Silver & Rangin, 1991).

2.2. SW Sulu Arc (Northern Borneo)

The northern Borneo in this study encompasses the Seruyung-Jelai area (North Kalimantan, Indonesia), 
together with the Tongod-Telupid area and Dent and Semporna peninsulas (Sabah, East Malaysia), all 
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Figure 1. Google Earth topographic image of the circum-Sulu Sea region, showing new/published magmatic ages and major structures.
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located east of the West Baram Line (Figure 1). NE North Kalimantan is extensively covered by tropical 
rain forest and swamp, and the Seruyung Au deposit (from which samples S1–S8 were collected; Figures 1 
and 2) represents one of the rare outcrops in the region. Seruyung lies on the ENE-trending Sembakung 
lineament, which controls the local fault development and (basaltic-)andesite lava/tuff emplacement. The 
Seruyung (basaltic-)andesite was loosely attributed to Miocene by stratigraphic correlation (JRN, person-
al communication 2018). The Jelai volcanics are exposed ∼50 km south of Seruyung. Like Seruyung, the 
Jelai lavas/pyroclastics are mainly basaltic-andesitic, but as to be described later these two nearby volcanic 
suites have rather different ages and geochemistry. The Jelai volcanics lie unconformably above the Upper 
Eocene-Middle Miocene Sebakung Formation (Fm.) shallow-marine clastics and reef limestone, and are 
overlain unconformably by the Langap Fm. lacustrine clastics (Baharuddin, 2011; Heryanto et al., 1995; 
Sulistyawan et al., 2013).

The Sabah basement rocks comprise various Triassic-Jurassic (250.7-178.6 Ma) granites and metamorphic 
units in Segama valley (Burton-Johnson et al., 2020; Dhonau & Hutchison, 1966; Graves et al., 2000; Le-
ong, 1977, 1998). Mafic-ultramafic rocks in central-northern Sabah were long interpreted to be ophiolitic 
(Omang, 1995, 1996; Omang & Barber, 1996; Omang et al., 1994), but Imai and Ozawa (1991) and Tsik-
ouras et  al.  (2021) argued that while some do have a typical ophiolitic assemblage (serpentinized peri-
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Figure 2. (a) Stratigraphic comparison from different parts of the Sulu arc-basin system (modified after Hall, 2013; Spadea et al., 1991a; Yumul et al., 2004); 
(b)–(e) Photos/microphotographs of: (b) Plagioclase-pyric basaltic-andesite core sample (Seruyung); (c) Plagioclase phenocrysts in devitrified groundmass 
(Seruyung; crossed-polar); (d) Eocene gabbro block in Miocene mélange (Tongod-Telupid); (e) Gabbro with cumulate texture (Tongod-Telupid; crossed-polar).
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dotites, amphibolite schist/gneiss, gabbro, sheeted dykes, pillow basalts), others may have a continental 
origin. These ophiolitic rocks are commonly in faulted contact with the “Chert-Spilite Formation” (Jasin 
et al., 1985; Leong, 1977), a term not adopted in some subsequent studies because these lithologies may have 
different origins (Jasin, 1992; Jasin & Tongkul, 2013). The radiolarian cherts in Darvel bay/Telupid yielded 
Early Cretaceous (Valanginian-Barremian: 139.8-126.3 Ma) ages, while those in Baliojong valley and Ku-
dat peninsula yielded Early Late Cretaceous (Barremian-Cenomanian) ages (Jasin, 1992). The Upper Eo-
cene-Oligocene Crocker and Trusmadi Formations (eqv. Labang Formation in central-eastern Sabah) com-
prise deep pelagic sediments, and are overlain by the Lower Miocene Kudat Fm. clastic sediments across 
the Top-Crocker Unconformity (TCU). Although the TCU is sometimes used interchangeably with the term 
Base Miocene Unconformity, the unconformity does not always located in the base Miocene, for example, 
sediments below the TCU were dated to be post-24.3 Ma (fossil age) or 20 Ma (Rb-Sr age) (Lunt, 2019; Wade 
et al., 2011, and references therein). Formation of the TCU is interpreted to signify either the collision be-
tween the Palawan Continental Terrane and northern Borneo-SW Philippines (Hall et al., 2008; Van Hattum 
et al., 2013) or the SCS spreading-ridge jump (Lunt & Madon, 2017), although how the latter generated the 
TCU was not specified.

In northernmost Sabah, the highly sandy Kudat Formation contains heavy mineral (including kyanite and 
garnet)-bearing sediments that are absent in the Crocker/Labang Fm. flysch over most of Sabah, and is 
probably sourced from north of Borneo, for example, kyanite-bearing garnet amphibolite in the pre-Middle 
Eocene Central Palawan ophiolite (Encarnación et al., 1995; Van Hattum et al., 2006, 2013). Sediment depo-
sition is disputed to be before (e.g., Van Hattum et al., 2013) or after (Lunt, 2019) the TCU formation. Above 
the TCU, another prominent unconformity in Sabah-southern Palawan is the Deep Regional Unconform-
ity (DRU; 14-12 Ma), which was originally associated with the end SCS spreading (Hutchison, 2004; Lev-
ell, 1987), but later also attributed to a Mid-Miocene pause in regional compression (Sabah Orogeny) (Lunt 
& Madon, 2017, and references therein). The Middle Miocene Unconformity (MMU) was occasionally used 
interchangeably with the DRU. While the MMU is clearly defined in offshore Sarawak, its referred ages 
differ (16-12 Ma) at different places in Sabah and SW Philippines (Lunt, 2019; Steuer et al., 2014). Another 
regional unconformity, termed the Shallow Regional Unconformity (SRU), may have developed at 11-10 Ma 
by a regional extension event (Hall, 2013). In eastern Sabah, volcanics in the Dent and Semporna peninsu-
las were feldspar K-Ar dated to be 18.8-17.9 and 18.2-14.4 Ma, respectively (Bergman et al., 2000). A much 
younger, dominantly basaltic volcanism at Tawau and Kunak-Mostyn was dated at Pliocene (whole-rock 
K-Ar age: 3.11-2.79 Ma) (Rangin et al., 1990) to Pleistocene (zircon U-Pb age: ∼0.5 Ma) (Hsin et al., 2017).

2.3. Central Sulu Arc (Sulu-Cagayan Ridges)

The Sulu ridge is geographically divided into the western (Sibutu and Tawi-Tawi islands), central (Jolo 
and Marungas islands), and eastern (Basilan island and SW Zamboanga peninsula) segments (e.g., Castillo 
et al., 2007). Little is known about the western segment, except that the Tawi-Tawi islands contain possible 
dismembered ophiolites and some Ni mining projects. Volcanics in the central segment consist mainly of 
aphyric to olivine-/plagioclase-phyric basalts and (basaltic-)andesites. Volcanics in the eastern segment vary 
from basaltic to rhyolitic, and include aphyric or olivine-phyric basalt, andesite, and porphyritic dacite/rhy-
olite with plagioclase and amphibole phenocrysts (Castillo et al., 2007; Sajona et al., 1996, 1997). The Sulu 
trench lies offshore of the NE Sulu ridge, and south of the NNW-trending Negros trench. A seismic-inter-
preted accretionary complex is present on the NW-flank of the Sulu ridge (Rangin & Silver, 1991; Schlüter 
et al., 1996), albeit few geological data of this complex are available. There is no report of its on-shore occur-
rence in SE Sabah or SW Zamboanga peninsula.

Around 250  km northwest of the Sulu ridge lies the submerged Cagayan ridge remnant arc (Figure  1). 
Two holes (ODP Site 769 and 771) were drilled on the SE flank of the ridge. The oldest rocks recovered are 
basaltic-andesitic lapillistone and tuff, probably erupted in a subaerial/shallow marine environment with 
minimal sediment reworking. These volcaniclastics were constrained to be Early Miocene by the overlying 
early Middle Miocene (foram and radiolarian age) claystone, coeval with the SE Sulu Sea volcaniclastics 
(Site 768) (Kudrass et al., 1990; Nichols et al., 1990; Spadea et al., 1991b).
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2.4. NE Sulu Arc (Panay Island-SW Zamboanga Peninsula) and Palawan Continental Terrane

The Buruanga peninsula in NW Panay is considered as part of the Palawan Continental Terrane, while 
the rest of Panay is likely part of the NE Sulu arc and Philippine Mobile Belt (Figure 1) (Gabo et al., 2009; 
Yumul, Dimalanta, et al., 2009). At Buruanga, pre-Cenozoic stratigraphy includes Middle Jurassic pelagic 
chert (Unidos Fm.) and limestone (Gibon Fm.), and the Mid-/Upper-Jurassic Saboncogon Fm. siliceous 
mudstone-sandstone (Zamoras et al., 2008). The Gibon Fm. limestone is intruded by the Patria quartz dior-
ite, which yielded consistent Early Miocene whole rock/biotite K-Ar (20.9-19.5 Ma) (Bellon & Rangin, 1991) 
and zircon U-Pb (18.3 ± 0.2 Ma) (Walia et al., 2013) ages. Across the Nabas thrust fault in the southern 
Antique Range, the Cretaceous-Early Eocene Antique Ophiolite comprises tectonic slices of serpentinized 
peridotites, layered/isotropic gabbros, (rare) sheeted-dikes, pillow/sheet-flow basalts, and chert (Tamayo 
et al., 2001; Yumul et al., 2013). The ophiolite is unconformably overlain by the Miocene Lagdo Fm. andesit-
ic breccias and clastics. The northern Antique range is dominated by Miocene volcaniclastics, basaltic flows, 
and deep marine clastics. These Miocene rocks are overlain by Pliocene-recent shallow marine to terrestrial 
clastics (Rangin et al., 1989; Walia et al., 2013; Zamoras et al., 2008).

The SW Zamboanga peninsula borders with the Philippine Mobile Belt along the Siayan-Sindangan su-
ture zone (SSSZ) (aka. Sindangan-Cotabato-Daguma lineament), an ancient suture zone and still-active 
sinistral fault (Figure 1). The peninsula is suggested to contain a continental basement that becomes more 
ophiolitic toward the northeast (Tamayo et al., 2000). Close to the SSSZ, the basement comprises a mélange 
with metaultramafic clasts. Above that lies the metagreywackes, quartz-(chlorite)-sericite schists and epi-
dote-amphibolite of the Mt. Dansalan Metamorphics. The Metamorphics and the Lower to Middle Miocene 
Camanga Sediments (sandstone-siltstone interbeds and limestone) are overlain by the Miocene-Pliocene 
Ipil (porphyritic-)andesite and tuffaceous sandstone (Yumul et al., 2004, and reference therein).

Away from the SSSZ in the SW Zamboanga peninsula, the basement comprises the Tungauan schist and 
Baugiao mélange. The Baugiao mélange contains clasts of metavolcanics/sediments, marble, metamorphic 
rocks (slate, phyllite, low-grade schist), and harzburgite in a serpentinite matrix. The mélange is uncon-
formably overlain by the Anungan Formation, which contains a lower sedimentary member with Early-/
Mid-Miocene nanofossils, a middle volcanic member with andesitic-dacitic pyroclastic-lava interbeds 
(whole-rock K-Ar age: 18.2–12.7 Ma), and an upper crystalline/fossiliferous limestone member attributed 
also to be Early to Middle Miocene. The Anungan Formation is unconformably overlain by the Curuan 
Fm. clastics and andesites (Yumul et al., 2004, and reference therein). These sequences are unconformably 
overlain by the Mt. Maria andesitic-dacitic flows and tuffs (whole-rock K-Ar age: 3.88-0.34 Ma) (Sajona 
et al., 1996, 1997) (Figure 2).

3. Samples and Methods
3.1. Sample Descriptions

In this study, eight (basaltic-)andesite samples were collected from Seruyung (3.653547°N, 116.716511°E; 
North Kalimantan), together with three cumulate gabbro-dolerite from Tongod-Tulupid (5.420056°N, 
116.975442°E; Sabah), and two andesite-dacite from Ruwai (1.534479S, 111.301324°E) and Beruang Kenan 
(0.616667°N; 113.416667°E) (Central Kalimantan). As to be explained later, both Central Kalimantan sam-
ples yielded Devonian ages and may represent deeper crustal rocks in northern Borneo, from which the 
Devonian inherited zircons in the Eocene Tongod-Tulupid gabbros were derived. The Seruyung samples are 
plagioclase-phyric (basaltic-)andesite, with 50%–60% plagioclase and 10%–15% pyroxene phenocrysts in a 
glassy groundmass (10%–30%). Minor (<5% each) glass shards and Fe-Ti oxides are also present. The Ton-
god-Tulupid layered gabbro samples were collected from boulders in the predominantly Miocene ophiolite 
(Lai, 2020). The samples are medium-grained, and have 50% plagioclase, 35% clinopyroxene, 10% horn-
blende, and accessory (<5%) Fe-Ti oxides. The Ruwai and Beruang Kenan andesitic-dacitic volcanics were 
intruded by Cretaceous and Miocene granitoids (Lai et al., 2020). The rocks contain phenocrysts of feldspars 
(50%–60%), quartz (10%), and minor (<5%) volcanic lithics, pyroxene, and hornblende set in a devitrified 
groundmass (20%–30%).
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3.2. LA-ICP-MS Zircon U-Pb Dating

Separated by conventional density and magnetic separation technique, zircons from 11 samples (Seru-
yung = 8, Tongod-Tulupid = 1, Central Kalimantan = 2) were U-Pb dated with a Resonetics RESOlution 
S-155 laser ablation (LA) system coupled with an Agilent 7900 ICP-MS, at the Guangzhou Institute of Ge-
ochemistry, Chinese Academy of Sciences (GIGCAS). Each analysis (29 μm spot-size) comprises a 20–30 s 
laser-off background signal acquisition, followed by a 50 s laser-on sample data acquisition. Helium was 
used as the carrier gas, and NIST 610 standard for external calibration and Si as an internal standard. The 
primary 91500 (Wiedenbeck et  al.,  1995) and secondary Plesovice (Sláma et  al.,  2008) zircon standards 
were analyzed between every five unknowns. For the Plesovice zircon, the concordia age (346.1 ± 2.9 Ma) 
yielded in our analyses is consistent (<3% error) with the recommended value (ID-TIMS: 337.13 ± 0.37 Ma) 
(Sláma et al., 2008). Analytical precision is commonly ∼4%. Off-line selection and integration of the back-
ground and analyte signals, together with time-drift correction and quantitative calibration, were done with 
ICPMSDataCal. Only zircon spots with concordant or nearly concordant ages (<15% discordance) were 
considered. Detailed analytical conditions and procedures for both U-Pb and Hf isotope analyses are as 
described in Xu et al. (2019, and references therein).

3.3. LA-MC-ICP-MS Zircon Hf Isotope Analysis

The analysis was performed with a Resonetics RESOlution M-50 193 nm LA system coupled with a Ther-
mo Scientific Neptune Plus multicollector (MC)-ICP-MS at the GIGCAS. Zircon Hf isotope analysis spots 
from all the 11 dated samples were selected close to the U-Pb spot in the same age domain (no inherited 
core or growth rim found in CL imaging). Analytical conditions include 45 μm beam size, 4 J cm−2 energy 
density, 6 Hz repetition rate, and helium as the carrier gas. Each analysis consists of 400 cycles (integration 
time = 0.131 s/cycle), and comprises 28 s laser-off gas blank background measurement, followed by 30 s 
laser-on sample signal collection. The 180Hf gas blank was below 0.2 mv during our analysis, and 173Yb and 
175Lu were used to correct the isobaric interference of 176Yb and 176Lu on 176Hf. Natural 176Yb/173Yb (0.79381) 
and 176Lu/175Lu (0.02656) ratios were used in the correction (Segal et al., 2003). The mass bias factor of Yb 
was calculated from the measured 173Yb/171Yb and the natural ratio (1.13268), while those of Lu and Yb 
are assumed to be the same. The 176Hf/177Hf mass bias was normalized to 179Hf/177Hf (0.7325) with an ex-
ponential law. Analyses of the Plešovice zircon (n = 40, measured between every five unknowns) yielded a 
weighted mean 176Hf/177Hf of 0.282484 ± 0.000011 (2 SD), consistent (within errors) with the recommended 
value (0.282482 ± 0.000013; 2 SD) (Sláma et al., 2008).

3.4. Whole-Rock Geochemical Analysis

The analysis was conducted at the Bureau Veritas Laboratory in Vancouver, Canada. The Seruyung (n = 8) 
and Tongod-Tulupid (n = 3) samples were crushed and pulverized to 200 mesh. The powdered samples were 
digested by Li-borate fusion. Concentrations of major element oxides and trace elements (including REEs) 
were measured with ICP-ES and ICP-MS, respectively. Detailed analytical procedures followed the AA Litho 
Package. The ioGAS™—REFLEX program was used for data analysis and visualization.

4. Results
4.1. Zircon U-Pb-Hf Isotopes

Zircons from the Seruyung (basaltic-)andesite (S1–S8) are mostly short prismatic and euhedral. Euhedral 
grains are 50–200 μm long and 40–100 μm wide. The zircons have oscillatory/sector zoning but lack inher-
ited core. They (from all eight samples) have 206Pb/238U ages of 8.5–11.1 Ma (no inherited zircons), yielding 
similar weighted average ages of 8.90–10.15 Ma (Figure 3). The samples yielded largely positive εHf(t) (1.07–
8.47), and have predominantly Mesoproterozoic-Neoproterozoic (0.55–1.69, mostly 0.70–1.18 Ga) two-stage 
model ages (TDM2), which assume that the parental magma was produced from the average continental 
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crust (176Lu/177Hf = 0.015) sourced from the depleted mantle (Spencer et al., 2020, and references therein) 
(Lai, 2020).

Zircons from the Sabah gabbro (SB128) are prismatic/elongated (100–200 μm long and 20–50 μm wide), 
but many are broken grains. Oscillatory/sector zoning is uncommon, and inherited core is absent. Other 
than two inherited zircons (392.4 and 395.5 Ma), most zircons (18 out of 20) yielded Eocene 206Pb/238U ages 
(40.0–44.8 Ma) and a weighted average age of 42.65 ± 0.51 Ma (MSWD = 1.2) (Figure 3). Most zircons 
have εHf(t) =  -3.84 to 6.69, and Mesoproterozoic-Neoproterozoic TDM2 (0.69–1.66, mostly 0.69–1.27 Ga). 
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Figure 3. Zircon U-Pb concordia diagrams and representative CL images of the Seruyung basaltic-andesite (S1–S8), Central Kalimantan andesitic-dacitic 
volcanics (S9 and S10), and Tongod-Tulupid gabbro (SB128).
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Zircons from the two Central Kalimantan samples (S9–S10) are mostly anhedral or broken fragments (up 
to 100 μm long). Oscillatory/sector zoning is present but uncommon. The main zircon cluster from the 
Beruang Kanan (S9) and Ruwai (S10) samples yielded similar weighted average ages of 408.6 ± 7.1 Ma 
(MSWD = 2.1; n = 14) and 403.0 ± 11.0 Ma (MSWD = 2.2; n = 9), respectively (Figure 3). Sample S9 has 
five younger zircons (9.5, 9.7, 101.1, 133.4, and 133.8), which are coeval with the intruding granitic dykes/
veins and may have brought into the sample by the veins. Sample S10 contains one Proterozoic inherited 
zircon (1782.3 Ma). As for Hf isotopes, Sample S9 has εHf(t) = −4.16 to 7.62 and TDM2 = 0.80–1.66 Ga, while 
sample S10 has εHf(t) = −8.65 to 6.69 and most TDM2 = 1.07–1.56 Ga (Lai, 2020).

4.2. Whole-Rock Geochemistry

The Seruyung (basaltic)-andesites have medium MgO and low-medium SiO2 and TiO2 contents. Positive 
correlations of SiO2 with many incompatible elements (Th, La, Zr, Nb), and negative correlations with MgO, 
CaO, TiO2, P2O5, and Sr indicate fractionation of pyroxene, plagioclase, apatite, and Fe-Ti oxides. The Ton-
god-Telupid gabbros have lower SiO2 and certain incompatible trace element (e.g., La, Zr, and Nb) contents 
than the Seruyung (basaltic)-andesite, and are also less fractionated (lower La/Yb) and alkali (lower K2O 
and Nb/Y) (Figure 4; Lai, 2020). More trace element compositional features are to be described in Section 5.

5. Magmatic Phases in the Cenozoic Sulu Arc-Basin System
Very few geochronological studies were conducted on the Sulu arc-basin system in the past two decades. 
Published ages are mainly whole-rock or mineral K-Ar (some Ar-Ar) ages, and we have supplemented that 
with our new LA-ICP-MS zircon U-Pb ages. Although K-Ar isotope systematics is susceptible to resettling by 
postmagmatic thermal (alteration/metamorphism) events and weathering, we suggest that the published 
K-Ar ages are reasonably reliable because they are as follows: 1) consistent in different studies and across 
different parts of the Sulu arc-basin system; 2) supported by our new zircon U-Pb ages and published (ra-
diolarian, magnetic-anomaly, zircon U-Pb) ages; 3) unlikely to be modified by postmagmatic alteration/
metamorphism. For instance, the early Late Miocene and Plio-Pleistocene K-Ar ages are clearly separated 
by a 4–11 Myr gap, instead of connected by a scattered age spectrum typical of (partial) age resetting. The 
same logic applies to the other magmatic phases, which are with clear and consistent age gaps (and/or geo-
chemical distinction) across the circum-Sulu Sea region. The new/published age (n = 127) and geochemical 
(n = 230) data compilation has distinguished seven major magmatic phases in the (I-II) pre-Middle Oligo-
cene (43 Ma and 34-33 Ma), (III) Late Oligocene-early Early Miocene (24-21 Ma), (IV) mid Early Miocene 
(21-18 Ma), (V) late Early Miocene-Middle Miocene (17-14 Ma), (VI) early Late Miocene (13-9 Ma), and 
(VII) Pliocene-Pleistocene (4-0.2 Ma) (Figures 5–9).

5.1. Phase I–II: Pre-Middle Oligocene (pre-33 Ma)

The Middle Eocene (42.65 ± 0.51 Ma) Tongod-Telupid (Sabah) cumulate gabbro blocks in this study (Fig-
ures 1 and 2) were situated in a mélange dominated by ophiolitic mafic-ultramafic rocks of Late Miocene 
age (Lai, 2020). In other places of Eastern Sabah, the ophiolitic mélange contains also clasts of Cretaceous 
radiolarian cherts (Aitchison, 1994; Asis & Jasin, 2012; Jasin, 2000) in a mudstone matrix (Jasin et al., 1995). 
The ∼42.65 Ma age is broadly coeval with the recently reported Telupid gabbros (47 ± 2–42.5 ± 0.3 Ma) 
(Chien et al., 2019) and the Central Palawan granite (42 ± 0.5 Ma) (Suggate et al., 2014). The Tongod-Telu-
pid gabbro is largely MORB-island arc tholeiite (IAT)-transitional, resembling the nearby Darvel bay (Group 
II) basalts of Omang (1996) (Figure 6). Although without reliable radiometric age, these Darvel bay basalts 
occur as clasts in Eocene sediments with Cretaceous radiolarian chert (Rangin et al., 1990), implying pos-
sible early Cenozoic formation. Different from the reported Telupid gabbros that have high and positive 
εHf(t) (22-16 Ma) (Chien et al., 2019), our Tongod-Telupid gabbro has considerably lower εHf(t) (mostly -3.5 
to +6.3), which altogether suggest a mantle-derived depleted source with various degrees of crustal input. 
Crustal input is also supported by the presence of Devonian (395.5-392.4 Ma) inherited zircons in the gab-
bro, which are coeval with our newly discovered andesitic-dacitic volcanics in Central Kalimantan. These 
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Devonian volcanics represent the oldest reported magmatism in the whole of Borneo, and could represent 
a source for the Devonian inherited zircons. Devonian rocks were also reported in the Lower Devonian cor-
al and stromatoporoid-bearing limestone blocks in SW Borneo (Rutten, 1940; Sugiaman & Andria, 1999). 
Consequently, instead of a MOR setting (Chien et al., 2019), we prefer a back-arc basin (BAB) setting for the 
Middle Eocene magmatism, which agrees with its MORB-IAT character (Figure 6). The Sandakan andesitic 
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Figure 4. Harker-type diagrams for the Seruyung basaltic-andesite and Tongod-Tulupid gabbro samples.
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tuff (33.9 ± 7.7 Ma; Swauger et al., 1995) is largely coeval with the ophiolites in Mindoro (Amnay; zircon 
U-Pb age: 34.3-33.4 Ma) (Yu et al., 2020; Yumul, Dimalanta, et al., 2020) and central Palawan (zircon U-Pb 
age: 34.1 Ma) (Keenan et al., 2016; Yumul, Jumawan, et al., 2009). Although no published geochemical data 
are available for the Sandakan andesitic tuff, the MORB(-IAT) and E-MORB-like signature of the Amnay 
and Central Palawan ophiolites are suggestive of a BAB setting (Jumawan, 1999; Keenan et al., 2016; Perez 
et al., 2013).

5.2. Phase III: Early Miocene (24-21 Ma)

Major Cenozoic magmatism in the circum-Sulu Sea region began with the latest Oligocene Mt. Dansalan 
amphibolite (interpreted gabbro protolith) in the Zamboanga peninsula (amphibole K-Ar age: 24.6-
21.2 Ma) (Tamayo et al., 2000). These ages are likely robust because broadly coeval ages were also reported 
in the adjacent Panay, notably the Iloilo basalt-andesite basement rocks (K-Ar age: 26.2-21.5 Ma) (Bellon 
& Rangin, 1991) and the Lagdo Fm. andesitic tuff (zircon U-Pb age: ∼23.2 Ma) (Walia et al., 2013). In the 
Th/Yb versus Nb/Yb diagram, the Mt. Dansalan metagabbros (Tamayo et al., 2000; Yumul et al., 2004) fall 
between the mantle array (MORB-end) and oceanic arc field (Figure 7; Pearce, 2014). The rocks have dis-
tinct arc-type negative Nb, Zr, and Ti anomalies. Subduction features, including enrichments of large ion 
lithophile elements (LILEs) over high-field strength elements (HFSEs), positive Pb-Sr anomalies (albeit can 
also be seafloor metasomatism related), and negative Nb-Ta and Ti anomalies, are also present in the Lagdo 
Fm. andesitic tuff (Walia et al., 2013) (Figure 7), and the Iloilo basalt-andesite are largely arc calc-alkaline 
(Bellon & Rangin, 1991). No Phase III magmatic rocks are reported in northern Borneo. We suggest that this 
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Figure 5. Box-plot of magmatic ages from across the circum-Sulu Sea region. Timeline of interpreted regional tectonic events is shown in the far-right column. 
Data source as in Figure 1.
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Figure 6. Geochemical diagrams for Phase I–II (>33 Ma) magmatism: (a) Zr/Ti versus Nb/Y (Pearce, 1996); (b) Th/Yb versus Nb/Yb (Pearce, 2014); (c) Ternary 
Zr-Nb-Y (Meschede, 1986); (d) Ternary La-Nb-Y (Cabanis & Lecolle, 1989); (e) Chondrite-normalized REE patterns; (f) Primitive-mantle (PM)-normalized 
multielement patterns. Chondrite-/PM-normalizing values are from Sun and McDonough (1989). Data source for Figures 6–10 are given in the text and 
Lai, 2020.

Figure 7. Geochemical diagrams for Phase III (24-21 Ma) and Phase IV (21-18 Ma) magmatism: (a) Zr/Ti versus Nb/Y; (b) Th/Yb versus Nb/Yb; (c) Zr-Nb-Y; 
(d) La-Nb-Y; (e) Chondrite-normalized REE patterns; (f) PM-normalized multielement patterns.
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Figure 8. Geochemical diagrams for Phase V (17-14 Ma) and Phase VI (13-9 Ma) magmatism: (a) Zr/Ti versus Nb/Y; (b) Th/Yb versus Nb/Yb; (c) Zr-Nb-Y; (d) 
La-Nb-Y; (e) Chondrite-normalized REE patterns; (f) PM-normalized multielement patterns.

Figure 9. Geochemical diagrams for Phase VII (4-0.2 Ma) magmatism: (a) Zr/Ti versus Nb/Y; (b) Th/Yb versus Nb/Yb; (c) Zr-Nb-Y; (d) Sr/Y versus SiO2 
(Richards et al., 2012); (e) Chondrite-normalized REE patterns; (f) PM-normalized multielement patterns. Data from Hainan plume basalt are also shown for 
comparison.
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Phase III magmatic gap in northern Borneo is likely genuine, since no 24-21 Ma inherited zircons are found 
in younger rocks analyzed in this study or in Tsikouras et al. (2021) (Figure 3; Lai, 2020).

5.3. Phase IV: Mid-Early Miocene (21-18 Ma)

There is no (or narrow <1 Myr) age gap between Phase III and IV, yet Phase IV magmatism is different from 
Phase III in terms of its much wider spatial distribution (covering also northern Borneo-Cagayan ridge) 
and its dominantly calc-alkaline intermediate compositions. The oldest Phase IV rocks are the Cagayan 
ridge (basaltic-)andesite (Site 769: 20.83-19.48 Ma; Site 771: 20.90 and 18.78 Ma) (Figures 1 and 5) (Bellon 
& Rangin, 1991). In its northern continuation in Panay, similar ages were reported from the Fragante Fm. 
tuffaceous sandstone (∼19.1 Ma) and Patria quartz diorite (∼18.3 Ma). Phase IV arc andesite was reported 
in SW Zamboanga peninsula (∼18.95 Ma) (Sajona et al., 1997), which is coeval (within error) with the old-
est Anungan Fm. volcanics (∼18.2 Ma) (Yumul et al., 2004). In northern Borneo, andesitic-dacitic lavas/
tuffs from the Dent (∼18.8  Ma) and Semporna (∼18.2  Ma) peninsulas have also similar ages (Bergman 
et al., 2000).

Geochemically, all the Early Miocene (Phase IV–V) Sulu Sea basalts are MORB-like tholeiitic. The rocks 
have mostly low Th/Yb and Nb/Yb ratios, and fall on/near the mantle array near the N-MORB (including 
BABB) end (Figure 7). These rocks also show N-MORB-like total (Σ) REE contents with nearly unfraction-
ated patterns. In the primitive-mantle (PM)-normalized multielement diagrams (Sun & McDonough, 1989), 
the basalts are similar to BAB (IAT-MORB-transitional), notably in their elevated Rb and Th contents, posi-
tive Sr anomalies and negative Nb and Ti anomalies. The rocks show no discernible Eu anomalies. In north-
ern Borneo, the Tungku andesite (Bergman et al., 2000) is geochemically similar to many coeval Cagayan 
ridge (basaltic-)andesites (Spadea et al., 1996). These rocks are featured by LREE and LILE enrichments 
between E-MORB and OIB, and HREE and HFSE contents around/below average OIB. The rocks have dis-
tinct negative Nb and Ti anomalies, and fall mainly into the continental arc field. Some other Cagayan ridge 
(basaltic-)andesite samples are E-MORB or N-MORB-like, with the latter mimicking the Sulu Sea BABB. 
The two Phase-IV Panay diorite samples reported by Walia et al. (2013) show similar arc-type affinity, in-
cluding very high LREE/HREE and LILE/HFSE enrichments, positive Pb(-Sr) anomalies and negative Nb 
and Ti anomalies (Figure 7).

5.4. Phase V: Late Early Miocene-Middle Miocene (17-14 Ma)

Our age compilation suggests a short (∼1 Myr) magmatic hiatus at 18-17 Ma, consistent with the paucity of 
volcanic materials in the late-Early Miocene clastics from the Cagayan ridge (Pouclet et al., 1991). (Basal-
tic-)andesite volcanism likely resumed at Jelai (feldspar K-Ar age: 16.13-14.72 Ma) (Baharuddin, 2011) and 
Tawau (16.3 and 14.4 Ma) (Bergman et al., 2000) in northern Borneo (Figure 1). Concurrently, the Anun-
gan Fm. volcanics (17.1, 15.9-15.4, 14.8-14.1 Ma) (Yumul et al., 2004) and other volcanics in the central 
(∼16.89 Ma) and SW (∼14.94 Ma) parts of the Zamboanga peninsula (Sajona et al., 1997) were also erupted. 
Slightly younger volcanism was also reported in the Cagayan ridge Site 769 (15.07 and 14.25 Ma) and Site 
771 (14.23 and 13.84 Ma) (Bellon & Rangin, 1991), but the volcanism there (and in Panay, except for the 
Valderrama unit) largely ceased after ∼14 Ma (Bellon & Rangin, 1991), and took no part in Phase VI and 
VII (Figures 1 and 5).

Similar to their Phase IV counterparts, most Phase V (basaltic-)andesites in northern Borneo are featured by 
continental-arc-type high Th/Yb and Nb/Yb ratios (Figure 8). However, some Jelai basaltic-andesites (Su-
listyawan et al., 2013) are distinctly less evolved (lower Zr/Ti), more alkali (higher Nb/Y), and have higher 
Nb contents, showing affinity transitional between typical calc-alkaline arc basalts (IAB) and alkali OIB. 
In the Th/Yb versus Nb/Yb diagram, these samples fall close to the mantle array between average E-MORB 
and OIB (Figure 8).

5.5. Phase VI: Early Late Miocene (13-9 Ma)

After another short magmatic gap in 14-13 Ma, andesite-dacite magmatism resumed at Kunak (Tungku Fm.: 
∼12.92 Ma) and Membatu (12.58 and 11.50 Ma) in northern Borneo, and probably intensified at 12-9 Ma, 
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with coeval volcanics widely documented at Kunak (∼11.8 Ma), Membatu (∼11.69 Ma), and Tawau (11.61 
and 9.01 Ma) in SE Sabah (Bergman et al., 2000; Rangin et al., 1990). Similar ages are recorded further in-
land in the Sabah ophiolite at Tongod (9.22 Ma) and Telupid (9.11 Ma) (Lai, 2020) (Tsikouras et al., 2021), 
and arc (basaltic-)andesite in Seruyung 10.15-8.90 Ma (this study). In the SW Zamboanga peninsula, the 
youngest Anungan Fm. volcanics at La Paz were dated at ∼12.7 Ma, and the unconformably overlying Curu-
an Fm. volcanics at 10.6-9.0 Ma. Although coeval magmatism likely occurred also along the Sulu ridge that 
connects northern Borneo and Zamboanga peninsula, the few age data published (predominantly from the 
central-northeastern part) are all Plio-Pleistocene, which can be caused by insufficient sampling (Figures 1 
and 5).

Phase VI (basaltic-)andesite in northern Borneo have elevated Th/Yb and Nb/Yb ratios, resembling typical 
continental arc rocks. These rocks have also E-MORB- to OIB-like LREE and LILE enrichments and HREE 
and HFSE depletions, and negative Nb-Ta, Zr, Ti, and Eu anomalies (Figure 8). For the Seruyung (basaltic-)
andesite (this study) and Miocene Sabah ophiolite (Tsikouras et al., 2021), their zircon εHf(t) values are 
largely positive (Lai, 2020). This suggests a predominantly mantle-derived depleted source, which is sup-
ported by the lack of inherited zircons in these rocks. The high-Nb, IAB-OIB-transitional basaltic-andesites 
in Phase V are absent in Phase VI.

5.6. Phase VII: Pliocene-Pleistocene (4-0.2 Ma)

Phase VI magmatism was likely followed by a long magmatic quiescence till the late Pliocene (∼4 Ma), as 
indicated also by the lack of volcaniclastic input in the Dent Gp. sediments (Lunt & Madon, 2017). In north-
ern Borneo, the Kunak-Mostyn basalt was dated at 3.11-2.79 Ma (Bergman et al., 2000; Rangin et al., 1990), 
and much younger zircon U-Pb (∼0.5 Ma) and C-14 (carbonized tree fossils in volcanics: 27-24 ka) ages 
were reported in SE Sabah (Hsin et al., 2017; Kirk, 1968). This suggests that regional volcanism persisted 
till at least late Pleistocene. In the SW Zamboanga peninsula, the Mt. Maria volcanics yielded K-Ar ages of 
3.88-3.55, 1.71-1.08, 0.90, and 0.34 Ma (Sajona et al., 1997; Yumul et al., 2004). Volcanics in the NE Sulu 
ridge (Basilan island) were dated at ∼1.98 Ma (Sajona et al., 1997), while those in the nearby Negros yielded 
1.97-0.52 Ma (Sajona et al., 2000) (Figure 1).

Phase VII volcanics in northern Borneo and Sulu ridge are largely alkaline/marginally alkaline basalts 
(Nb/Y > 0.5). These rocks are similarly LREE- and LILE-enriched (many OIB-like), and they have more-de-
pleted HREEs and HFSEs than OIB or MORB. They are featured by high-Nb content, and absence of neg-
ative Nb-Ta or Eu anomalies. In the Th/Yb versus Nb/Yb diagram, these (marginally )alkaline basalts fall 
on/close to the mantle array between the average E-MORB and OIB, and in the within-plate basalt (WPB) 
field in tectonic discrimination diagrams (James et al., 2019; Macpherson et al., 2010; Sajona et al., 1997) 
(Figure 9). In SW Philippines (Zamboanga peninsula and Negros), although some Phase VII samples show 
similar WPB features to their northern Borneo counterparts, most samples are more evolved and less al-
kaline (Nb/Y < 0.5). They show arc calc-alkaline (e.g., negative Nb and Ti anomalies) or adakite-like (e.g., 
high Sr/Y, low Y) characters (Richards et al., 2012; Sajona et al., 1996, 1997; Solidum et al., 2003), and fall 
inside/near the continental arc field (Figure 9). Compilation of published Sr-Nd-Pb isotope data suggests 
that the northern Borneo basalts have lower 143Nd/144Nd, but higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb and 
208Pb/204Pb ratios than coeval volcanics in SW Philippines. The northern Borneo isotope data trend toward 
EMII, whereas the SW Philippines data trend toward the Indian-MORB-like Sulu Sea basalts (Figure 10) 
(Castillo et al., 2007; Macpherson et al., 2010; Spadea et al., 1996).

6. Tectonomagmatic Evolution of Sulu Sea Arc-Basin System
6.1. Intra-Pacific Oceanic Arc Magmatism (Pre-40 Ma)

The Sulu Sea evolution may have had its root in the Proto-SCS subduction, which brought the Palawan Con-
tinental Terrane from SE South China to form the northwestern boundary of the Sulu Sea basin (Almasco 
et al., 2000). The Proto-SCS is believed to be a Mesozoic ocean largely eliminated by subduction (Hall & Bre-
itfeld, 2017; Hinz et al., 1991). Zahirovic et al. (2014, and references therein) suggested that the Proto-SCS 
was a BAB opened at ∼65 Ma by the Paleo-Pacific (Izanagi) slab-rollback, yet detrital zircon U-Pb age and 
mineral assemblage suggest a common Cretaceous-Eocene provenance between the Palawan Continental 
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Terrane and SE South China Block (Shao et al., 2017). The Palawan Continental Terrane is variably placed 
in the north (Hall, 2002) or south side (Morley, 2012; Zahirovic et al., 2014) of the Proto-SCS. Based on the 
Palawan Continental Terrane-South China provenance link, we consider the former configuration is more 
likely (Figure 11).

In northern Borneo, our Tongod-Telupid gabbro (42.65 Ma) is broadly coeval with the BAB-type ophiolite 
(whole-rock K-Ar age: 43.8 ± 2.2) (Fuller et al., 1991; Keenan et al., 2016) and granite (∼42 Ma) (Suggate 
et al., 2014) in central Palawan (Figure 5). As afore-discussed, the wide-range (mainly positive) zircon εHf(t) 
values and the Devonian inherited zircons in the Tongod-Telupid gabbro indicate a depleted mantle source 
with crustal input, which together with the central Palawan BABB and arc granite suggest an intraoceanic 
subduction setting in the Cretaceous-Eocene central Palawan-northern Borneo.

6.2. Continental Margin Rifting of South China and SCS Opening (36-33 Ma)

Timing of the SCS predrift extension and seafloor spreading remains enigmatic. Apatite fission track and 
(U-Th-Sm)/He dating suggests an Eocene (53-36 Ma) extension in SE South China, although it may have 
started as early as 66 Ma (Cao et al., 2020; Franke et al., 2011; Sales et al., 1997; Suggate et al., 2014) or 
61.5 Ma (Su et al., 1989). Huang et al. (2013) reported ∼35.5 Ma (Ar-Ar age) mantle upwelling-related ba-
saltic magmatism in eastern Guangdong. The onset of SCS spreading is marked by widespread breakup-un-
conformity in northeastern SCS, for example, 37-30 Ma (near Taiwan), 33-32 Ma, and 28-27 Ma (eastern 
and western Pearl River estuary basin, respectively), 33-32 Ma (Reed Bank-Palawan), and ∼28 Ma (Reed 
Bank) (Franke, 2012). Barckhausen et al. (2014) suggested a ∼32 Ma spreading-onset in the central SCS, 
followed by a ridge jump at ∼25 Ma. Similarly, deep-tow magnetic anomalies and core analyses by C. F. 
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Figure 10. (a) Zircon εHf(t) versus U-Pb age plot for Phase I and VI volcanics from northern Borneo. Data of Devonian Central Kalimantan volcanics (this 
study) and Miocene Sabah ophiolites (Lai, 2020) (Tsikouras et al., 2021) are shown for comparison; plots of (b) 87Sr/86Sr versus 143Nd/144Nd, (c) 207Pb/204Pb versus 
206Pb/204Pb, and (d) 208Pb/204Pb versus 206Pb/204Pb for the Plio-Pleistocene volcanics in the circum-Sulu Sea region. Data from Late Cenozoic WPB units in South 
China-mainland SE Asia are also shown for comparison.
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Li et al.  (2014) suggested a ∼33 Ma spreading-onset in the northeastern SCS, albeit with 1–2 Myr varia-
tion along the continent-ocean boundary. We consider that the SCS opening (especially toward the later 
stage) was at least partly driven by the Proto-SCS subduction. The subduction may have generated a Late 
Eocene magmatic arc in northern Borneo, but is largely eroded/recycled by the Palawan Continental Ter-
rane collision-related uplift save the Sandakan andesitic tuff (∼33.9 Ma; Swauger et al., 1995). Onset of the 
SCS spreading (34-32  Ma) coincides temporally with the Oligocene decoupling of Palawan Continental 
Terrane-South China detrital provenance (Shao et al., 2017), and signifies the southward drift of Palawan 
Continental Terrane toward the present location (Figure 11).

6.3. Final Proto-SCS Subduction and Palawan Continental Terrane Accretion (25-21 Ma)

The SCS spreading likely terminated when the Palawan Continental Terrane collided with northern Bor-
neo-SW Philippines, yet when that actually happened is still unclear. Some magnetic anomaly studies 
placed the spreading cessation at ∼20.5 Ma (Barckhausen et al., 2014) or ∼15.5 Ma (Briais et al., 1993), yet 
Sibuet et al. (2016) argued that the masking of spreading fabric by postspreading magmatism (10-3.5 Ma) 
can affect the anomalies (Tu et al., 1992; Zhao et al., 2018). The Palawan Continental Terrane accretion is 
variably suggested to be end-Eocene to Miocene: Steuer et al. (2013) and Aurelio et al. (2014) constrained 
the Palawan ophiolite emplacement to be end-Eocene to ∼23 Ma, based on the thrust-related metamor-
phism of Eocene turbidites and the sealing of thrust by the Lower Miocene Pagasa Formation, respectively. 
A tectonic wedge was then formed by underthrusting of the Upper Oligocene-Lower Miocene Nido lime-
stone beneath the Burdigalian syn-thrust sediments. Termination of the wedge formation, and thus the ac-
cretion-related compression in central-southern Palawan, is constrained by the MMU (Aurelio et al., 2014), 
whose age is not well-constrained in SW Philippines as afore-mentioned. Meanwhile, Walia et al. (2013) 
proposed a much later start (15-14 Ma) for the collision based on zircon and apatite fission track dating 
from NW Panay. The authors interpreted the ∼18.3 Ma diorite from NW Panay to be subduction-related, yet 
similar-age (∼19.5 Ma) quartz diorite (also from NW Panay) was interpreted to be syn-collisional by some 
earlier studies (Bellon & Rangin, 1991; Yumul, Dimalanta, et al., 2009).

Based on the least-disputed geological facts that: (1) SCS ridge jump occurred after ∼23.6 Ma, which likely 
brought the seafloor spreading closer (and probably more orthogonal) to northern Borneo-SW Philippines; 
(2) Final convergence between Palawan Continental Terrane and northern Borneo-SW Philippines started 
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Figure 11. Tectonic reconstruction diagram for the circum-Sulu Sea region (modified after Hall, 2013; Matthews et al., 2016; Müller et al., 2018; Witts 
et al., 2012).



Tectonics

after ∼25 Ma, which caused major uplift/thrusting, and the formation of TCU and the Kudat Formation 
(Lunt, 2019, and references therein); (3) Arc-type andesitic magmatism (Lagdo Fm. ∼23.2 Ma) occurred in 
NW Panay (Walia et al., 2013), and BAB-type magmatism (Mt. Dansalan: 24.6-21.2 Ma) in SW Zamboanga 
peninsula (Tamayo et al., 2000), we suggest that (1) the SCS ridge jump and the consequent SE-directed 
compression may have subducted the remaining Proto-SCS beneath SW Philippines, forming the Lagdo Fm. 
andesites and Mt. Dansalan BAB-type mafic rocks. The ∼10° counterclockwise rotation (∼23 Ma) modeled 
by Advokaat et al. (2018) may have also caused by the convergence, and/or by the collision of the Sula Spur 
(SE Sulawesi) with Sundaland (Advokaat et al., 2014); (2) the Palawan Continental Terrane accretion may 
have started in the Early Miocene (∼21 Ma), soon after the above-mentioned arc-/BAB-type magmatism 
had ceased. The accretion may have been slightly diachronous at different parts of the Palawan Continental 
Terrane, causing the age variation in metamorphism, syn-/postcollisional magmatism and ophiolite em-
placement at different parts of the region (Yumul, Dimalanta, et al., 2009); (3) convergent (late-subduction 
and collision) tectonics likely started in central Palawan, and produced the uplift that formed the TCU and 
shed sediments (including heavy metamorphic minerals) south for the Kudat Fm. sandstones (Figure 11). 
Exact timing of the collision is difficult to pinpoint as crustal shortening/uplift can also be subduction-re-
lated, for example, orogenesis of the Andes (Oncken et al., 2006; Schepers et al., 2017) and Tibet (Kapp & 
DeCelles, 2019; S. Li et al., 2020), and time-lag between the collision onset and upper-crustal shortening has 
been reported (S. Li et al., 2020). In northern Borneo, the NE-SW-directed compression in northern-central 
Sabah and its southward weakening also support a SW-ward propagated convergence (Lunt, 2019; Lunt 
& Madon, 2017; Tongkul, 1997). We argue that the upcoming Phase IV (21-18 Ma) and Phase V–VI (17-
9 Ma) arc magmatism was formed by the initial Celebes Sea subduction and its subsequent slab-rollback, 
respectively.

6.4. Celebes Sea Subduction and Initial Opening of Sulu Sea (21-18 Ma)

After the collision, regional stress gradually changed from N-S directed to NW-SE directed (Lunt & Ma-
don, 2017; Tongkul, 1997), which we consider to have initiated the NW-dipping Celebes Sea subduction. 
Whether the Sulu arc was formed by south-dipping Sulu Sea subduction (Bellon & Rangin, 1991; Rangin & 
Silver, 1991; Schlüter et al., 2001) or north-dipping Celebes Sea subduction (Hall, 1996, 2002, 2012, 2013) is 
long disputed. Main support for the former comes from the seismic-interpreted occurrence of accretionary 
prism at the NW-flank of the Sulu ridge, yet as aforementioned (Section 2) there is little geological evidence 
for its actual existence. The suggested Miocene south-dipping subduction, which eliminated the south-
ern half of the SE Sulu Sea basin, would have generated back-arc extension SE of the Sulu arc, together 
with major transform faults along the NE- and SW-margin of the Sulu Sea to accommodate the subduc-
tion tectonics. However, neither is apparent in regional topographic/bathymetric images or was previously 
reported (Hall, 2018; Hall & Spakman, 2015), except for some local transform faults in the Balabac Strait 
(Cullen,  2010). The Miocene south-dipping model cannot explain also the Late Miocene back-arc basin 
opening represented by the Tongod-Telupid ophiolite (Lai, 2020), or the Phase V–VI arc magmatism in Jelai 
and Seruyung, which is located far from the Sulu Sea basin or any reported ophiolite occurrence in northern 
Borneo (Figure 1).

These abovementioned phenomena, nevertheless, can be explained by a north-dipping subduction model. 
Although no published seismic data is available to decipher whether a fossilized accretionary prism exists 
at the SE-flank of the Sulu arc, the Mid-Miocene uplifting and sedimentary transition (from open-sea to 
clastic deltaic) in the western Tarakan basin resemble more a forearc-accretionary compressional tecton-
ics than a back-arc extension one (Noda, 2016; Satyana et al., 1999). We do not dispute the occurrence of 
SE-ward subduction of the Sulu Sea, but consider that to have occurred much later (Plio-Pleistocene) and 
confined only to the south-eastern SE Sulu Sea basin along the Negros-Sulu trenches. The young and im-
mature subduction system can explain the absence of back-arc spreading southeast of the Sulu ridge, the 
Plio-Pleistocene Negros-SW Zamboanga arc magmatism, and the absence of a regional dextral fault along 
the SW Sulu Sea margin.

For the timing of the Sulu Sea opening, magnetics modeling by Roeser (1991) suggested that predrift exten-
sion may have started in 35-30 Ma (early Oligocene; 0.6 cm/yr half-spreading rate). According to the mod-
el, the oldest oceanic crust occurs in the northwestern SE Sulu Sea, equivalent to anomaly C7 (23.96 Ma; 
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Gradstein et al., 2012). By using inverted Moho and Curie-point depths, Liu et al. (2014) further pushed 
forward the basin-opening onset and cessation to Late Eocene-Early Oligocene and Middle Miocene, re-
spectively. However, drilling at Site 769 (within the interpreted oldest part of the basin) did not recover any 
oceanic basement rocks, which casts doubt on the reliability of magnetic anomaly interpretations. Besides, 
no rocks older than ∼21 Ma (radiometric or fossil age) were reported in the Sulu Sea basin (Figure 1; Lai, 
2020) (Rangin & Silver, 1991; Roeser, 1991; Scherer, 1991).

Based on our magmatic age compilation, we postulate that the Sulu Sea seafloor spreading occurred at 
21-9 Ma (Figures 5 and 11). Early subduction and premagmatic (pre-21 Ma) extension may have opened the 
NW Sulu Sea BAB, as supported by the highly attenuated continental crust (Kudrass et al., 1990; Smith, 1991; 
Spadea et al., 1991a, 1996) and Early- to Middle Miocene pelagic sediment cover (Lunt & Madon, 2017 and 
references therein). Opening of the SE Sulu Sea likely started later, possibly at ∼18.8 Ma (paleomagneto-bi-
ostratigraphic age) (Nichols et al., 1990) or ∼18 Ma (calcareous nannofossils) (Shyu et al., 1991). Early Cel-
ebes Sea subduction may have formed Stage IV (21-18 Ma) arc andesitic-dacitic volcanics and diorite along 
the Panay-Cagayan ridge-NE Sabah line. The Cagayan arc was likely exposed or shallow-submerged due to 
the Early Miocene regional uplift, as indicated by the strong subaerial weathering (reddening) and lack of 
sediment reworking in some pyroclastics from Sites 769 and 771 (Nichols et al., 1990). Interpreted forearc 
high-Mg basalts from SW Panay may have also been part of this arc assemblage, although no age data are 
available (Cruz et al., 1989).

6.5. Subduction Rollback and Main-Stage Sulu Sea Opening (17-9 Ma)

There appears to be a magmatic younging trend (albeit not without age overlap) from NW to SE in the cir-
cum-Sulu Sea region (Figures 1 and 5), which likely reflects rollback of the subducting Celebes Sea slab, as 
first proposed by Hall (2013). We suggest that the NW Sulu Sea basin opening was gradually terminated by 
the post-18 Ma subduction rollback, while the SE Sulu Sea opening likely continued well into the Tortonian 
(till ∼9 Ma), as indicated by Phase VI Sulu arc magmatism. The shorter opening lifespan of the NW Sulu 
Sea basin can explain why the basin is smaller and shallower than its south-eastern counterpart, and why it 
is not floored by oceanic crust like in mature back-arc basins.

The Sabah Orogeny may have extended well into the Middle Miocene, possibly driven by late-stage SCS 
rifting (e.g., at Bunguran trough), and formed the Pagasa tectonic wedge (16-12 Ma) in offshore SW Palawan 
(Aurelio et al., 2014; C. F. Li et al., 2014; Lunt, 2019). The compression likely lasted till the formation of 
DRU (14-12 Ma), when the region underwent major subsidence and NW-dipping listric fault development 
(Aurelio et al., 2014). In northern Palawan, the termination of compression is evidenced by the emplace-
ment of postcollisional Capoas granite (13.8-13.5 Ma) (Suggate et al., 2014). Such compression-to-extension 
transition may have jointly contributed by postorogenic gravitational collapse after the Palawan Continental 
Terrane accretion, gravity-driven flexural response of the sediment wedge (resembling the present-day NW 
Borneo-Palawan troughs; Hall, 2013), as well as rollback of the subducting Celebes Sea slab. The SE-retreat 
of subduction front may have cut off magmatism in the Panay-Cagayan ridge after ∼14 Ma, shifted arc 
magmatism to the SW Zamboanga peninsular-Sulu ridge-SE Sabah line, and further enlarged the SW Sulu 
Sea basin. Arc magmatism may have extended further SE locally to North Kalimantan in 16-14 Ma (Jelai), 
and again in 10-9 Ma (Seruyung). The rollback and back-arc rifting may have also extended into central 
Sabah, forming the Late Miocene Tongod-Telupid BAB-type ophiolite. The IAB-OIB-transitional Jelai basal-
tic-andesites likely reflects possible near-trench entrainment of deeper and more-enriched mantle during 
the slab rollback, or slab-tearing/fracturing similar to the northernmost Miocene Ryukyu arc (Kiminami 
et al., 2017).

It is noteworthy that Lunt and Madon (2017, and references therein) had identified a 14-13 Ma subsid-
ence (or transgressive) event in eastern Sabah, based on fossil evidence from the reefal limestone and its 
overlying claystone beds. The proposed subsidence/transgression is coeval with the magmatic gap, which 
we suggest to be linked to the second rollback episode. The Cagayan ridge may have gradually submerged 
through the multiphase regional subsidence. Our age compilation suggests that arc magmatism, and thus 
the NW-dipping Celebes Sea subduction, largely ceased after ∼9 Ma (Figures 1 and 5). The ∼9 Ma arc mag-
matic cessation correlates well with the youngest back-arc spreading (C5, 9.79 Ma) recorded in the southern 
SE Sulu Sea basin (Roeser, 1991). Although the exact cause remains unclear, the NW-dipping subduction 
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termination is broadly coeval with the starting of south-dipping subduction beneath Sulawesi along the 
North Sulawesi trench, as indicated by the intermediate-felsic arc magmatism in the North Arm (from 
∼9 Ma) (Advokaat et al., 2017, 2014; Hall, 2018; Rudyawan et al., 2014). The Celebes Sea may have also 
subducted eastward beneath the Cotabato trench (Hall, 2018; Yumul, Armada, et al., 2020). We consider 
that the south- and east-dipping subduction of the Celebes Sea may have changed the regional stress field 
and halted its NW-dipping subduction (Figure 11).

6.6. Regional Extension and OIB Magmatism (8 Ma–Present)

Borneo has likely undergone major extension after ∼10 Ma, as evidenced by the development of SRU and 
low-angle detachments (Hall, 2013), and the almost-synchronous (thus rapid) emplacement (zircon U-Pb 
age: 7.85-7.22 Ma) and cooling (40Ar/39Ar biotite age: 7.63-7.32 Ma) of the Mt. Kinabalu pluton (Cottam 
et al., 2010, 2013). Intraplate volcanism likely extended southwest to Kelian (East Kalimantan; K-Ar age: 
0.97 ± 0.02 Ma) (Abidin, 1996; Davies et al., 2008) and west to the Usun Apau plateau (Sarawak; Ar-Ar age: 
4.1-3.9 Ma and 2.1 Ma) (Cullen et al., 2013). The Mt. Kinabalu pluton was likely emplaced under a NW-SE 
extensional regime (Burton-Johnson et al., 2017, 2019), and the Late Miocene-recent extension in the up-
per part of the NW Borneo Shelf is balanced by NW-directed thrusting in the deep marine section (Hesse 
et al., 2009), which altogether suggest a predominantly SCS-directed orogenic collapse. On the opposite 
side of the Sulu Sea, the SW Zamboanga peninsula may have collided with the Philippine Mobile Belt at 
∼5 Ma (Pubellier et al., 1991), and the subduction along the Philippine trench started propagating south 
from ∼8 Ma, reaching Leyte at ∼3.5 Ma (Ozawa et al., 2004). The consequent postcollisional tectonics and 
subduction pull may have brought the region around Zamboanga peninsula under extension.

Magmatism resumed after ∼4 Ma in the region, especially along the Zamboanga peninsula-Sulu ridge-SE 
Sabah (Castillo et al., 2007; James et al., 2019; Macpherson et al., 2010; Sajona et al., 1997) and Negros (Sa-
jona et al., 2000; Solidum et al., 2003). As afore-discussed, Plio-Pleistocene volcanics in the SW Philippines 
have more subduction-related geochemical and Sr-Nd-Pb isotope features than those in northern Borneo 
(Figure 10). The Sulu Sea basin is suggested by some authors to have subducted along the Negros-Sulu 
trenches in the latest Miocene to Pliocene (Holloway, 1981; Sajona et al., 2000). If subduction did occur, 
our age compilation suggests that it likely started at ∼4 Ma. The subduction is also evidenced by the first 
appearance (∼2.4 Ma) of pelagic carbonates from Site 768, which suggests basin subsidence around it (Nich-
ols et al., 1990). The SE-dipping subduction may have subjected eastern Sabah (overriding plate) to further 
extension, triggering the intraplate OIB-type volcanism there (Figure 11).

Late Cenozoic OIB-type intraplate magmatism is also widely distributed in South China-SCS-mainland 
SE Asia (e.g., northern SCS margin, Reed Bank, Scarborough, Indochina), and is often interpreted to be 
linked to the Hainan plume activity (Hoang et al., 2018; Yan et al., 2018; Zhang et al., 2020, and references 
therein). Apart from the OIB-type geochemical signature, many of these OIB-type magmatic units have also 
very similar Sr-Nd-Pb isotope compositions to the Plio-Pleistocene basalts in northern Borneo, and formed 
a trend toward EMII (Figure 10). Whether the Hainan plume has any genetic link with the Plio-Pleistocene 
magmatism in northern Borneo would require further investigation.

7. Conclusions
Through magmatic age and geochemical data comparison across the circum-Sulu Sea region, we suggest that 
the Sulu Sea opening had commenced at ∼21 Ma, when the Celebes Sea subducted northwest in response 
to the final convergence between Palawan Continental Terrane and northern Borneo-SW Philippines. Ear-
ly subduction may have formed the NW Sulu Sea basin, followed by subduction rollback that formed the 
SE Sulu Sea basin. The subduction rollback is accompanied by the SE-retreat of magmatic front from the 
Panay-Cagayan ridge-NE Sabah line to the SW Zamboanga peninsular-Sulu ridge-SE Sabah/North Kalim-
antan line. NW-dipping Celebes Sea subduction largely ceased after ∼9 Ma, and was immediately followed 
by rapid uplifting in Borneo, causing the Mt. Kinabalu pluton emplacement/exhumation and intraplate 
volcanism in eastern and northern Borneo. Subduction of the SE Sulu Sea along the Negros-Sulu trenches 
may have started in ∼4 Ma, forming the Plio-Pleistocene arc and adakitic volcanism in SW Philippines.
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