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Abstract 35 

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 36 

system provides a groundbreaking genetic technology that allows scientists to modify genes by 37 

targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas 38 

system, it has been extensively applied in human genetic research as well as in agricultural 39 

applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system 40 

largely depends on the efficiency of introducing the system into cells or tissues, an efficient and 41 

specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some 42 

hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the 43 

approaches used for the delivery of the CRISPR/Cas system in mammals, plants and aquaculture. We 44 

further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas 45 

translatability.  46 

 47 
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1. Introduction 49 

The innovation of gene editing has enabled the precise modification of specific genomic regions in a 50 

wide variety of organisms. Gene editing is mainly accomplished by using programmable nucleases 51 

that are highly specific. These nucleases create double-strand breaks (DSBs) in regions of interest of 52 

the genome. These DSBs are then repaired by nonhomologous end-joining (NHEJ), which is error-53 

prone, or homology-directed repair (HDR), which is error-free; specific changes, such as insertions or 54 

deletions (indels), are thus introduced into desired regions of the genome [1-3]. By introducing HDR 55 

repair template, the defects in genes may be corrected, thus providing hope for correcting inherent 56 

errors in DNA.  57 

Gene expression can be regulated by blocking messenger RNA through RNA interference 58 

(RNAi), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), or by homologous 59 

recombination [4,5]. A recent new programmable nuclease technology, clustered regularly interspaced 60 

short palindromic repeats (CRISPR)/CRISPR-associated (Cas)-type RNA-guided nucleases system 61 

[6], has revolutionized the scientific field of gene editing. Although the versatility and ease of 62 

construction and target design make CRISPR/Cas extremely attractive for breakthrough gene therapy 63 

achievements and crop improvement, there are still important limitations to consider [7,8]. One of the 64 

obstacles is the immune response in animal systems; since the components of the CRISPR/Cas system 65 

are bacterially derived, this system is expected to trigger host immune responses. Another obstacle is 66 

the size of the components in the system, which are all macromolecules; thus, they are unable to 67 

spontaneously enter the cytosol and then the nucleus [8], which are essential for successful gene 68 

modification [9]. In addition, the large size of the CRISPR/Cas system may also make it difficult to 69 

package into delivery vehicles such as viral vectors. Another aspect of difficulty for delivery of the 70 

CRISPR/Cas system in mammals is its stability. The CRISPR/Cas system requires to be highly stable 71 

and functional; otherwise, it will be degraded or eliminated during circulation in the targeted organs 72 

or tissues. Efficient delivery is one of the last major hurdles to overcome in CRISPR/Cas-mediated 73 

gene editing. As such, developing stable and effective delivery approaches is critical for its application. 74 

In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in 75 

different biological systems, including mammals, aquacultures and plants (Figure 1). We also 76 

discussed the aspects of delivery that can be improved to elevate the potential translatability the 77 

CRISPR/Cas system. 78 

 79 

2. CRISPR/Cas gene editing system 80 
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The CRISPR/Cas system was first identified as a prokaryotic adaptive immune system. It was the first 81 

programmable nuclease system that was found to function as ribonucleoprotein particles that utilized 82 

base pairing to recognize its targets [10]. This system for gene editing has been widely adopted since 83 

it is relatively easy to redesign to produce target specificity. Scientists have engineered and modified 84 

this system to allow CRISPR/Cas to act as a successful gene editing tool [6]. 85 

 There are three key components in the CRISPR/Cas9 system: the tracrRNA, Cas9 protein, and 86 

pre-crRNA. The tracrRNA forms a complex with pre-crRNA after transcription. The Cas9 protein 87 

stabilizes the complex, and the pre-crRNA is then processed by RNase III to generate crRNA [11]. 88 

The Cas9/gRNA (made up of crRNA and tracrRNA) complex recognizes the protospacer adjacent 89 

motif (PAM), which is a short motif that is located adjacent to the target DNA sequence [12]. Then, 90 

the complex unwinds the target DNA beginning at the seed region (10-12 nucleotides) [13]. When the 91 

DNA sequence corresponds to the gRNA, two nuclease domains of Cas9 cleave target strands [14-16]. 92 

The Cas9/gRNA complex can tolerate single or sometimes multiple mismatches, with mismatches 93 

downstream of the seed region typically being more frequently tolerated [15,17]. 94 

 There are six types of CRISPR/Cas systems (type I-VI) that are further classified into two 95 

classes: the class 1 CRISPR/Cas system and the class 2 CRISPR/Cas system [18,19]. The main feature 96 

of the class 1 CRISPR/Cas system, which is subclassified into types I, III, and IV, is that they have 97 

multisubunits of effector nuclease complexes. The class 2 CRISPR/Cas system differs from class 1 98 

because it requires only a single effector nuclease; class 2 is subclassified into types II, V, and VI. 99 

Their programmable single effector nucleases enable nucleic acid detection and genome engineering 100 

[20,21,3,22,23]. Types II, V, and VI are based on Cas9, Cas12, and Cas13 effectors [24-26]. Among 101 

them, the CRISPR/Cas9 system is the most commonly used system to date. 102 

 103 

3. Application of the CRISPR/Cas system for gene editing 104 

3.1 Strategies based on Cas nuclease activity 105 

Based on the nuclease activity of CRISPR/Cas, there are various gene editing strategies that have been 106 

developed for DNA (gene disruption, precise repair, targeted insertion, large-scale DNA editing) and 107 

RNA modification (Supplementary Table S1; Figure 2a and 2b). 108 

 109 

3.1.1 DNA editing 110 

For gene disruption, NHEJ ligates DSBs introduced by Cas endonuclease, and this break and repair 111 

pattern takes place repeatedly until the target sequence is altered and an indel occurs [27]. An indel 112 

can cause frameshifting or exon skipping and subsequent gene disruption. Gene disruption can also 113 
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silence dominant negative mutations by disrupting the mutant allele while preserving the normal allele. 114 

In addition, HDR inserts donor template, which has homology arms to match target locus, to the 115 

genome and cause a deletion [28].  116 

For precise repair, HDR uses a donor template that has the desired insertion or modification. 117 

This donor template has homology arms that enable it to match the target locus and insert the desired 118 

genetic material or modify the genome with high precision [27]. 119 

For targeted insertion, HDR allows precise insertion of exogenous DNA sequences into the 120 

genomes of dividing cells, while homology-independent targeted integration (HITI) allows insertion 121 

of exogenous DNA sequences into the genomes of nondividing cells using an NHEJ-based homology-122 

independent strategy [29].  123 

For large-scale DNA editing (editing a size of up to several megabase pairs [Mbp]), DNA 124 

fragments can be deleted by introducing the CRISPR/Cas system with two guide RNAs that target 125 

different sites. In addition, allelic exchange can correct recessive compound heterozygous mutations. 126 

This is achieved by generating homologous DNA breaks in both chromosomes, and the allelic 127 

exchange between mutated alleles can rescue the disease phenotype [30]. 128 

 129 

3.1.2 RNA editing  130 

The CRISPR/Cas system acts not only on DNA but also RNA. Previous studies have identified an 131 

RNA-targeting CRISPR/Cas effector complex, termed the psiRNA-Cmr protein complex, which 132 

comprise prokaryotic silencing (psi)RNAs and Cmr Cas proteins. This complex cleaves target RNAs 133 

at a predetermined site, indicating that prokaryotes have their own unique RNA silencing system [31]. 134 

Cas endonuclease has also been shown to bind to and cleave ssRNA targets [32]. Strutt et al. showed 135 

that type II-A and II-C Cas9 endonucleases are capable of recognizing and cleaving ssRNA without a 136 

PAM. [33]. Recently, scientists have discovered the RNA-editing Cas13 family. The Cas13 family has 137 

been shown to be a programmable RNA-editing CRISPR/Cas system. Compared to other RNA 138 

targeting approaches, this system is more specific and efficient [34-36]. Recently, Konermann et al. 139 

discovered a Cas13d in Ruminococcus flavefaciens XPD3002 (CasRx), and it possesses high activity 140 

in human cells. CasRx is small, consisting of 930 amino acids, and it can be flexibly packaged into an 141 

Adeno-associated virus (AAV), making it suitable for delivery by AAV vectors. In addition to the 142 

knockdown activity, catalytically inactivated CasRx can be utilized to regulate pre-mRNA splicing by 143 

acting as a splice effector [37]. 144 

 145 

3.2 Strategies based on Cas-effector fusion protein activity 146 
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Since CRISPR/Cas possess DNA-binding properties, it may play a crucial role in important 147 

applications other than site-specific gene editing. A catalytically dead Cas9 enzyme (dCas9) has been 148 

developed to control gene expression [38]. dCas9, like Cas9, is capable of recognizing and binding to 149 

a target DNA sequence. However, instead of cleaving the target DNA sequence, dCas9 has been used 150 

for transcriptional inactivation, transcriptional activation, introducing epigenetic modifications or base 151 

editing. These functions are achieved by fusing dCas9 to gene activators, repressors, acetyltransferases 152 

or adenosine deaminases. Since dCas9 is in a catalytic inactive form, it is used here for precise targeting 153 

instead of its catalytic activity (Supplementary Table S2; Figure 2c and 2d). 154 

 155 

3.2.1 Transcriptional regulation 156 

As dCas9 can be fused with transcriptional repressors or activators to target the promoter region of 157 

gene interest and result in transcriptional repression (CRISPR interference) or activation (CRISPR 158 

activation) without changing the genome; this activity has been demonstrated in Escherichia coli as 159 

well as in plant and mammalian cells [39,38,40]. In addition, studies have shown that a modifying 160 

sgRNA can also enhance the specificity of transcriptional regulation. For example, using the Cas9-161 

VP64 transcriptional activator together with an sgRNA that has two MS2 RNA aptamer hairpin 162 

sequences added to it can successfully induce sequence-specific transcriptional activation [41]. 163 

The CRISPR/Cas system can also be utilized for epigenetic modification. Hilton et al. fused 164 

dCas9 with acetyltransferase that catalyze the acetylation of histone H3 at lysine 27. This modulation 165 

has been shown to strongly activate specific gene expression. Not only acetylation but also methylation 166 

may be accomplished using this approach [42]. 167 

 168 

3.2.2 Base and prime editing  169 

CRISPR/dCas has been utilized for precise DNA and RNA editing. The CRISPR/nickase Cas9 170 

(nCas9)-based base editor was first developed by Komor et al. and was used to convert a targeted C-171 

G base pair to T-A by a DNA cytosine deaminase [43]. Gaudelli et al. subsequently developed a 172 

transfer RNA adenosine deaminase that, when fused to nCas9, can convert A-T base pairs to G-C base 173 

pairs [44]. This kind of CRISPR/Cas-mediated editing is powerful since single point mutations are 174 

accounted for a large category of genetic diseases. 175 

Recently, a more powerful and versatile gene-editing method, prime editing, was discovered 176 

as a way to introduce indels and enable base conversions in both transitions and transversions [45]. 177 

The editor used in prime editing is termed prime editor. The prime editor is composed of nCas9 fused 178 

with reverse transcriptase. The prime editor is guided by a prime editing gRNA (pegRNA). After 179 
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nCas9 nicks the target site, the pegRNA binds to a single strand DNA (ssDNA) and initiates reverse 180 

transcription. The reverse transcribed pegRNA is then incorporated into the target site. 181 

 182 

4. Current approaches for delivering the CRISPR/Cas system in mammals 183 

CRISPR/Cas can be delivered using different modalities, including DNA, mRNA and protein. When 184 

it is delivered in a DNA mode, Cas and gRNA are delivered as a single plasmid. For the mRNA mode, 185 

Cas mRNA is delivered with a separate gRNA. For the protein mode, Cas protein is delivered with 186 

gRNA as a ribonucleoprotein complex (RNP). Each mode exhibits overall effectiveness but also 187 

includes some limitations. Packaging Cas9 and gRNA in the same plasmid makes the delivered cargo 188 

more stable than that of other methods; however, the large size of the plasmid increases the difficulty 189 

of delivery, and the integration of plasmids into the host genome and prolonged expression are 190 

potential limitations of this delivery method. Delivery of Cas mRNA enables faster gene editing; 191 

however, RNA is fragile, and the degradation of gRNA may initiate before Cas9 mRNA is successfully 192 

translated. The RNP is the most direct and fastest mode for gene editing. However, compared to 193 

plasmids or mRNAs, it is much more challenging to obtain a pure protein. In addition, the sudden 194 

introduction of bacterial proteins may induce an immune response in the host. 195 

The delivery vehicles can be separated into two groups: viral and nonviral vectors. For in vivo 196 

delivery of CRISPR/Cas, viral vectors are the preferred vehicle. To date, nonviral vector delivery has 197 

not been as commonly used as viral-based delivery. However, nonviral vectors are comparable to viral 198 

vectors and are a topic of intense research. The delivery vehicles for the in vivo CRISPR/Cas system 199 

discussed below are summarized in Figure 3 and Table 1. 200 

 201 

4.1 Viral-based CRISPR/Cas gene editing and delivery 202 

Viral vectors are commonly used vehicles for introducing gene editing materials such as DNA. 203 

Lentivirus, adenovirus, and adeno-associated virus (AAV) are three major types of viral vectors widely 204 

used for the gene delivery of CRISPR/Cas system. Though viral delivery has high efficiency in vivo, 205 

there are some disadvantages, including safety issues. These viruses work by releasing the viral 206 

genome into host cells after infection. This means that the interactions between the virus and host cells 207 

must be strong; thus, viral delivery methods are more complicated than most of the nonviral methods 208 

under in vivo conditions. 209 

 210 

4.1.1 Lentivirus 211 
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Lentiviruses are RNA viruses with the capability to integrating into dividing and nondividing cells. 212 

Lentiviruses are an excellent delivery vehicle for cells that are hard to transfect by chemical 213 

methods. Furthermore, it has a large packaging capacity of ~10.7 kb [46]. This property allows it to 214 

carry multiple sgRNA sequences that can induce multiple gene editing at once [47]. Due to these 215 

advantages, lentiviruses have been used in many initial gene editing studies. Mouse models of 216 

myeloid malignancy [48] and lung cancer [49] have been generated using lentivirus delivery. 217 

However, there are some disadvantages of using lentivirus, including the integration of the viral 218 

genome, which may cause cancer via insertional activation of proto-oncogene [50].	 219 

To overcome these issues, lentiviral vectors have been further developed into integration-220 

deficient lentiviral vectors (IDLVs) to reduce the undesired integration of the viral genome into the 221 

host cell genome [51,52]. IDLVs retain the property of being able to edit genes in hard-to-transfect 222 

cells [53,54]. Although IDLVs have been found to cause unwanted gene modifications, the study also 223 

showed that IDLVs have effective site-specific gene repair activity due to their active recruitment of 224 

host HDR proteins [55]. Therefore, pairing IDLVs with safer endonucleases such as SpCas9-HF or 225 

eSpCas9 may improve its application [56,57]. 226 

 227 

4.1.2 Adenovirus 228 

Adenoviruses are double-stranded DNA (dsDNA) viruses. Similar to a lentivirus, an adenovirus can 229 

infect both dividing and nondividing cells. However, since they do not generally induce genome 230 

integration in the host DNA, adenoviruses do not cause a potential off-target effects the way a 231 

lentivirus does. It has been shown that adenovirus-based delivery of the CRISPR/Cas system can result 232 

in the efficient editing of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) and Pten genes in 233 

adult mouse liver [58,59]. Moreover, adenovirus-based delivery also has been successfully used to 234 

induce specific chromosomal rearrangements to generate echinoderm microtubule-associated protein 235 

like 4-anaplastic lymphoma kinase (EML4-ALK)-driven lung cancer in vivo [60]. However, 236 

adenoviruses can elicit a significant immune response. Adenoviruses are also costly and difficult to 237 

produce in high volumes. These shortcomings set a limit for the applications of adenovirus-mediated 238 

delivery in clinical gene therapy [58]. 239 

 240 

4.1.3 Adeno-Associated Virus 241 

AAVs are small ssDNA viruses. Compared to lentivirus- and adenovirus-based delivery, AAV-based 242 

delivery is safe and efficient since it results in only minor cytotoxicity and immune responses [61,62]. 243 

Since AAVs have a wide range of serotypes, which helps to achieve a broad range of tissue tropisms 244 
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and used for efficient gene editing [63]. For example, Swiech et al. reported a first successful AAV-245 

based CRISPR/Cas9 gene editing in the mouse brain [64]. A similar approach was used by Hung et al. 246 

for retinal gene editing and achieved high editing effects in the adult mouse retina [65]. Studies have 247 

also demonstrated successful AAV-based CRISPR/Cas9 gene editing in the retina of retinal 248 

degeneration mouse model [66,67]. AAV-based delivery of CRISPR/Cas components has also been 249 

used to knockdown IGF in the central nervous system [68]. In addition, studies have also demonstrated 250 

that muscle tissue-specific delivery of CRISPR/Cas components using AAV vectors can correct the 251 

mutated dystrophin gene in Duchenne muscular dystrophy (DMD), and functional recovery was 252 

observed in vivo [69,70,63,71]. Zhang et al. recently demonstrated improved CRISPR-Cas9–mediated 253 

gene editing efficiency in DMD mouse model using self-complementary AAV (scAAV) system [72]. 254 

AAV-based delivery of CRISPR/Cas9 has also been used to achieve effective gene correction in 255 

metabolic liver disease in newborn mice [73,74] . Moreover, delivery of sgRNAs using AAVs in a 256 

tissue-specific SpCas9 transgenic mouse can be employed to generate the disease animal model such 257 

as cardiomyopathy [75] and lung adenocarcinoma [76]. Also, Murlidharan et al. uses AAV chimeric 258 

(AAV2g9) to deliver gRNAs targeting the schizophrenia risk gene MIR137 into the brain of 259 

CRISPR/Cas9 knock-in mouse model to achieve brain-specific gene deletion [77]. Furthermore, 260 

delivery of sgRNAs using AAVs into CRISPR/Cas9 knock-in mice can be used to perform high-261 

throughput mutagenesis to generate autochthonous mouse model of cancer [78,79]. Despite progress 262 

in using AAVs for CRISPR/Cas-based gene editing, the small cargo capacity (<4.7 kb) of AAVs can 263 

limit its application. Thus, when combining conventional SpCas9, which has a size of 4.2 kb, with the 264 

addition of sgRNA, another vector system is usually required. Later on, several smaller Cas9 orthologs 265 

(such as Staphylococcus aureus (SaCas9) [80], Campylobacter jejuni (CjCas9) [81], Streptococcus 266 

thermophilus (StCas9) [82] and Neisseria meningitidis (NmCas9) [81]) were developed by scientists 267 

to enable the in vivo gene editing by a single AAV vector. 268 

 269 

4.2 Nonviral-based CRISPR/Cas gene editing and delivery 270 

4.2.1 DNA-based delivery  271 

DNA-based delivery is commonly used for introducing the CRISPR/Cas system into cells because it 272 

is more stable than mRNA. CRISPR/Cas-encoding DNA facilitates greater gene editing efficiency 273 

than other methods [83-85]. For example, the CRISPR/Cas9 components were delivered in the form 274 

of DNA by tail-vein hydrodynamic injection to a mouse model of tyrosinemia and achieved >6% gene 275 

correction in the liver cells after a single application [86]. Furthermore, Zhen et al also reported that 276 

hydrodynamic injection of CRISPR/Cas9-encoding DNA can effectively disable the hepatitis B virus 277 

replication by creating mutations in virus DNA [87]. Apart from systemic administration, subretinal 278 
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injection of CRISPR/Cas components in a plasmid form in combination with electroporation has also 279 

been reported to enable an allele-specific gene editing in the retina of a rat model of retinitis 280 

pigmentosa [88]. A similar effect also found by Latella et al. in a mouse model of retinitis pigmentosa, 281 

which significantly reduced mutated protein levels and prevented major visual dysfunction [89]. In 282 

addition, Li et al.  demonstrated an allele-specific gene editing in the retinas of Rho-P23H knock-in 283 

mice which selectively targeting the P23H allele that has a single-nucleotide mutation [90]. Moreover, 284 

Shinmyo et al. introduced a plasmid containing CRISPR/Cas components into the mouse brain using 285 

in utero electroporation for effective brain-specific gene editing in vivo [91]. These works 286 

demonstrated the applicability of DNA-based delivery of CRISPR/Cas9 in vivo. 287 

 288 

4.2.2 mRNA-based delivery  289 

mRNA-based delivery methods largely decrease the risk of host genome integration. However, the 290 

effective time of mRNA-based delivery methods is relatively fast, and there are some additional 291 

shortcomings of such delivery methods. For example, the stability of mRNA, and the need to deliver 292 

the components (Cas mRNA and sgRNA) separately are the two main concerns of this method. Yin et 293 

al. demonstrated a delivery method that utilized different vehicles for introduction of the 294 

CRISPR/Cas9 components, lipid nanoparticles delivered the Cas9 mRNA, and an AAV delivered the 295 

sgRNA/HDR template. By utilized this strategy, they showed an efficient correction of the Fah 296 

(fumarylacetoacetate hydrolase) gene in a mouse model of hereditary tyrosinemia [92]. However, it is 297 

important to note that this combination approach still requires viral codelivery to achieve certain 298 

efficacy, and compared to DNA and protein, RNA is unstable. Moreover, the degradation of sgRNA 299 

may significantly affect editing efficiency. Future research into increasing sgRNA stability is required 300 

to improve the efficiency of these methods. Studies have showed that modifying sgRNA has beneficial 301 

effects on the stability of sgRNA. Yin et al. modified sgRNA by switching the 2’OH group of RNA 302 

to 2’OMe and 2’F and added phosphorothioate bonds [93]. This study reported that a single injection 303 

induced more than 80% efficiency in editing Pcsk9 in the livers of mice, demonstrating a potential 304 

modified method for improving the stability of mRNA in order to overcome the obstacles of mRNA-305 

based delivery. In addition, other researchers reported a similar study in which modified sgRNA and 306 

Cas9-encoding mRNA were packaged into a lipid nanoparticle vehicle. With a single administration, 307 

a more than 97% reduction in the mouse transthyretin (Ttr) gene was shown in the serum protein levels 308 

of the liver. This study demonstrated efficient gene editing that could persist for at least 1 year [94]. 309 

Another study has also demonstrated a high editing efficacy (~80%) by unitizing a lipid nanoparticle 310 

with disulfide bonds (BAMEA-O16B) to deliver Cas9 mRNA and sgRNA in vivo [95]. 311 

 312 
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4.2.3 Protein-based delivery 313 

Delivering Cas protein with gRNA as a Cas9 RNP is the fastest and most direct pathway for gene 314 

editing, and it is suitable for in vivo therapeutic applications. To facilitate the delivery of Cas9 RNPs 315 

into target cells, a fusion protein of Cas9 and negatively supercharged proteins was created to enable 316 

the delivery by cationic lipid formulated transfection reagents such as RNAiMAX [96]. Delivery of 317 

the Cas9 RNP/RNAiMAX complex via injection into the cochlea of transgenic Atoh1 (Atonal BHLH 318 

Transcription Factor 1)-GFP mice caused a 13% reduction in GFP in the ears of the transgenic mice. 319 

Mangeot et al. designed a vector based on murine leukemia virus (MLV), termed nanoblades, to 320 

deliver Cas9 RNPs for in vivo gene editing [97]. Moreover, an amphiphilic nanocomplex has also been 321 

developed to deliver Cas9 RNPs in vivo and showed effective gene editing in the brain of the mouse 322 

model of Alzheimer’s disease [98]. Furthermore, to enhance endosomal escape, PEI polymers or 323 

combined PEI polymers with liposomes was used for Cas9 RNP delivery in vivo. Sun et al. coated a 324 

DNA nanoclew with PEI polymers to deliver Cas9 RNPs into the nuclei of human cells. By using this 325 

vehicle, target gene disruption can be achieved with negatively impacting cell viability [99]. The study 326 

also noted that the modification of DNA nanoclew to partially complementary with the sgRNA can 327 

further enhance the editing efficacy. In addition, the modification of Cas9 protein can also improve 328 

the efficacy of direct cytoplasmic/nuclear delivery of Cas9 RNP. Mout et al. developed the Cas9En 329 

protein, in which the N-terminus of Cas9 protein has an attached oligo glutamic acid tag that is 330 

negatively charged [100]. Cas9En RNPs were delivered using arginine-functionalized gold 331 

nanoparticles (Arg-AuNPs), which are positively charged. With the NLS attached, Cas9 RNPs were 332 

delivered directly to the cytosol, accumulated in the nucleus and provided ~30% editing efficiency. 333 

Recently, this nano-assembled platform has been used for Cas9 RNP delivery in vivo and achieved >8% 334 

gene editing efficiency [101].  335 

AuNPs have also been used to deliver Cas9 RNPs in vivo for gene editing and correction in the 336 

disease models. AuNPs can be conjugated with donor DNA, Cas9 RNPs and the endosomal disruptive 337 

polymer PAsp (diethylenetriamine, DET) to form a vehicle termed CRISPR-Gold. Lee et al. reported 338 

that CRISPR-Gold-based Cas9 RNPs delivery can achieve 5.4% correction of the dystrophin gene in 339 

the muscle tissue of DMD mice [102]. Another study also showed that intracranial injection of 340 

CRISPR-Gold in the brain rescued mice from abnormal behaviors caused by fragile X syndrome [103]. 341 

CRISPR-Gold may offer the opportunity in the development of therapeutic approaches targeting the 342 

muscle and brain diseases, while effective endosomal escape is still required for higher delivery 343 

efficiency. 344 

Overall, protein-based delivery offers reduced off-target effects and a low immune response 345 

compared to DNA and mRNA-based delivery [104]. Cas9 RNPs increase efficacy by avoiding the 346 
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degradation of sgRNA. However, transport of Cas9 RNPs into the cytosol or the nucleus is critical for 347 

therapeutic effects. Thus, endosomal entrapment is still a crucial obstacle to overcome [105]. 348 

 349 

5. Current approach of delivering the CRISPR/Cas system in aquaculture 350 

Genomes of several aquaculture species, including Salmonidae, Nile tilapia, gilthead seabream, 351 

Siluridae, Cyprinidae, Northern Chinese Lamprey and Pacific oyster, have been successfully 352 

modified with the CRISPR/Cas system (Table 2). CRISPR/Cas protocols developed in model 353 

species such as zebrafish have been followed for gene editing in aquaculture species [106]. The 354 

standard gene transfer method used in aquaculture species is microinjection. Microinjection is 355 

performed using special equipment to inject the CRISPR/Cas complex into newly fertilized eggs; 356 

this method has high gene editing efficiency [107]. In most cases, NHEJ was used to induce 357 

mutations, while HDR has been successfully used in Rohu carp [108]. However, if gene editing 358 

continues at different stages of embryonic development, mosaicism could occur. These concerns are 359 

the focus of current research, which aim to enable more widespread adoption of CRISPR/Cas 360 

techniques in aquaculture. CRISPR/Cas techniques have been used to address characteristics such as 361 

sterility, growth and disease resistance of aquaculture species. The reason for inducing sterility in 362 

fish is to preserve the domesticated strains by preventing gene flow. For example, CRISPR/Cas 363 

techniques have been used to induce sterility in Atlantic salmon [109]. Several papers have 364 

demonstrated gene editing of the myostatin gene using the CRISPR/Cas approach to enhance the 365 

growth of fish, including channel catfish and common carp [110,111]. The CRISPR/Cas approach 366 

has also been used to investigate immunity and disease resistance in channel catfish, Rohu carp and 367 

grass carp [112,108,113]. Disruption of the TLR22 gene in Rohu carp resulted in a model for 368 

studying immunology, demonstrating the capability of CRISPR/Cas to aid in the development of 369 

effective treatments for aquaculture. By understanding the underlying pathways of transcription and 370 

translation through CRISPR/Cas-based mechanisms, it is possible to strengthen disease resistance, 371 

decrease disease incidence, and improve species resilience in aquaculture. Aquaculture is highly 372 

suited for the application of CRISPR/Cas gene editing for numerous reasons. Sample sizes can be 373 

large without generating cumbersome costs; thousands of externally fertilized embryos enable 374 

microinjection by hand. The large sample size is impartial and useful for comparisons of successfully 375 

edited samples with controls and for the assessment of pathogen resistance. Furthermore, a large 376 

sample size enables the development of well-developed disease challenge models since extensive 377 

phenotypes are practical. With the technology becoming mature in aquaculture species, it is 378 
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becoming easier to study gene function, improve disease resistance, and generate new strains with 379 

selected characteristics that can improve economic value. 380 

 381 

6. Current approach of delivering the CRISPR/Cas system in plants 382 

As shown above, the CRISPR/Cas system is highly adept at modifying animal genomes. Studies have 383 

also demonstrated its ability to modify plant genomes. Conventionally, mixed dual promoter system 384 

is used to express CRISPR/Cas system in plants. In mixed dual promoter system, RNA polymerase II 385 

promoters are used to express Cas protein and RNA polymerase III promoters specifically expressed 386 

in plants, such as AtU6 for Arabidopsis or tomato, TaU6 for wheat, and OsU6 or OsU3 for rice, are 387 

used to express gRNA [114-117]. However, to utilize CRISPR/Cas9 technology in creating new traits 388 

in plants, efficient delivery of the CRISPR/Cas system into cells is essential. The two delivery methods 389 

utilized in plants are indirect and direct methods. Indirect methods (such as agroinfiltration, 390 

agroinfection, and viral infection/agroinfection) use plant bacteria or viruses to mediate the 391 

introduction of DNA constructs into target plant cells. By contrast, no biological organisms are used 392 

as mediators for direct delivery. Protoplast transfection and biolistic particle delivery are the most 393 

commonly used direct methods. Agroinfiltration is usually used as a transient assay and has been 394 

widely used for its versatility and simplicity [118-122]. Agroinfection, biolistic particle delivery and 395 

viral infection are usually used for stable editing. Protoplast transfection can be used for both transient 396 

and stable editing. The delivery methods used in plant gene editing (Figure 4 and Table 3) will be 397 

summarized in the following sections. 398 

 399 

6.1 Transient events 400 

6.1.1 Indirect method  401 

Agroinfiltration. Agrobacterium spp. are plant pathogens. When infecting plants, Agrobacterium 402 

tumefaciens causes tumor-like growth on aerial parts of the plant (crown gall), while Agrobacterium 403 

rhizogenes induces root tumors. Agrobacteria contain a large plasmid (exceeding 200 kb), which is 404 

named Ti in the case of A. tumefaciens or Ri in the case of A. rhizogenes, and it can transfer a specific 405 

DNA segment (transfer DNA or T-DNA) into the infected plant cells, enabling the T-DNA to integrate 406 

into the host genome. These two strains of agrobacterium have been modified to contain a disarmed 407 

Ti/Ri plasmid where tumor-inducing genes have been deleted. The essential parts of the T-DNA, 408 

border repeats (25 bp), are needed for plant transformation and are used to generate transgenic plants. 409 
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Agroinfiltration is a transient assay in which an A. tumefaciens culture containing modified T-DNA is 410 

directly injected into plant leaves (Figure 4a) [123-125]. For root hair transformation, A. rhizogenes 411 

is specifically used to evaluate editing efficiency in plant root hairs, and this method has mainly been 412 

used in legume species such as Medicago and soybean [126-128]. 413 

 414 

6.1.2 Direct method 415 

Protoplast transfection. A method for transfection and transient assays is protoplast transfection. This 416 

method enzymatically digests the cell walls of plant tissues and uses PEG for transfection or 417 

electroporation for delivery (Figure 4b). The same protoplasts can deliver several DNA constructs. 418 

Protoplast transfection has been proven to successfully deliver the CRISPR/Cas system and result in 419 

gene editing in Arabidopsis thaliana, Nicotiana benthamiana, rice, wheat, and maize, among others 420 

[129-131,115,132-134]. 421 

 422 

6.2 Stable events 423 

6.2.1 Indirect method  424 

Agroinfection. Agrobacterium-mediated DNA delivery is the most commonly used method for almost 425 

all model plant species, main crop species, vegetable and fruit crops and forest crops. Similar to 426 

agroinfiltration, Agrobacterium can also create transgenic plants by genome integration in the plant 427 

nuclear DNA [135] (Figure 4c). 428 

Viral infection. The first viral vector used in plants was tobacco mosaic virus (TMV). Researchers 429 

used TMV to silence a gene in N. benthamiana [136]. The majority of plant viruses are RNA viruses 430 

whose genomes are ssRNAs, they can be synthesized in vitro and used to inoculate plants, or they can 431 

be synthesized in vivo as DNA viruses from a plasmid introduced directly to plants by mechanical 432 

means for gene delivery [137]. To accelerate the delivery process, the viral genome can be inserted as 433 

a cDNA fragment into a binary vector and then can be used for agroinfection-mediated delivery into a 434 

plant cell (Figure 4d). 435 

Tobacco rattle virus (TRV) is an ssRNA virus that has two genome components, TRV1 (or 436 

RNA1) and TRV2 (or RNA2). Both genome components are required for inoculation. Plants edited 437 

using RNA viruses do not exhibit germline transmission of edits. For instance, Ali et al. used 438 

agroinfection to deliver the RNA1 genomic component of TRV and a vector derived from TRV RNA2 439 

containing targeting gRNA into the leaves of N. benthamiana overexpressing Cas9 for gene editing in 440 

plant cells [138].  441 
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Geminiviruses, unlike TRV, do not require in vitro transcription prior to inoculation. 442 

Geminiviruses have a circular ssDNA genome [139]. Geminiviruses do not have a gene encoding DNA 443 

polymerase; therefore, their ssDNA genomes are converted into dsDNA genomes by host DNA 444 

polymerases in the nucleus. The dsDNA genome is then used as a template for virus transcription and 445 

rolling circle replication. Replication initiator protein (Rep) is essential for the initiation of rolling-446 

circle replication. Rolling circle replication can either convert ssDNA genomes into dsDNA genomes 447 

or package ssDNA genomes into virions. Plant plasmodesmata pathways facilitate the transport of 448 

virions to adjacent cells [140,141]. Bean yellow dwarf virus (BeYDV), which is a geminivirus, has 449 

been used to deliver the CRISPR/Cas system [140]. Studies have demonstrated gene editing using 450 

BeYDV in tomato (anthocyanin mutant 1 gene, ANT1), and a modified cabbage leaf curl virus 451 

(CaLCuV) has been used in tobacco [129,142]. Such approaches have also been applied in wheat, and 452 

researchers have enhanced the efficiency of this method by developing an optimized wheat dwarf virus 453 

(WDV) system [143]. 454 

 455 

6.2.2 Direct method 456 

Protoplast transfection. Unlike the transient method of protoplast transfection, the stable 457 

transformation method generated targeted genome modifications in whole plants that were regenerated 458 

from genome-edited protoplasts [132,133]. Two advantages of protoplast transfection are the ability 459 

to deliver multiple components and to do so at a high quantity. This method is highly suitable for gene 460 

editing using donor template repair. A high quantity of transfected cells can promote the recovery of 461 

gene editing via donor template repair. However, a disadvantage of protoplast transfection is the rate 462 

of plant regeneration in monocot plants. Protoplast transfection has been used for gene editing in potato 463 

[144], tobacco, and lettuce [133]. 464 

Biolistic particle delivery. Biolistic particle delivery is accomplished by transfecting cells via 465 

bombardment. Gene guns can penetrate the cell wall of plant cells with physical force to deliver DNA 466 

(Figure 4e). This method is common in transforming plants due to its efficiency and its ability to 467 

deliver multiple DNA constructs simultaneously [145]. Most importantly, there is no plant species 468 

restriction to biolistic particle-based delivery. The main disadvantage of this method is that by 469 

introducing multiple copies of the DNA in the target plants, undesired effects such as gene suppression 470 

might occur in the recovered transgenic plants. Biolistic particle delivery has been used for gene 471 

editing in rice and wheat, soybean and maize using the CRISPR/Cas system [146-148]. In addition, 472 

this method is also used for efficient gene editing using CRISPR/Cas9 RNPs in crops, such as 473 

hexaploid wheat and maize [149,150]. 474 

 475 
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7. Future prospects in CRISPR/Cas delivery 476 

The CRISPR/Cas system is simple but versatile. The CRISPR/Cas system has great potential for gene 477 

editing, but the delivery of CRISPR/Cas into cells dramatically impacts editing efficiency. There are 478 

still some aspects of delivery that can be improved to elevate the potential for translatability.  479 

 480 

7.1 Immunity to the CRISPR/Cas system and its delivery vehicle 481 

It is known that the Cas gene must be delivered into cells to express the Cas protein, and the long-term 482 

and robust expression of bacterially derived protein is expected to activate the host immune system. 483 

One solution to this problem is to use a protein-based delivery of the CRISPR/Cas system, which may 484 

have less immunogenicity, as the Cas protein would only be present in the target cell for a short period 485 

of time [100]. When combined with immunogenic effects caused by certain delivery vehicles, the level 486 

of immunogenicity might make negligible the efficiency of the CRISPR/Cas system. It has been 487 

reported that exogenous RNA delivered by lipid nanoparticles might activate Toll-like receptors and 488 

subsequent immune responses [151]. Therefore, the type of delivery vector should be carefully chosen. 489 

Moreover, it is especially important to consider the side effects of viral vectors. When compared to 490 

lentiviruses, AAVs and adenoviruses can avoid the risk of undesired DNA integration into the host 491 

genome. Producing viral DNA or protein within the cells of host can generate a risk of for clinical 492 

applications [152,153].  493 

 494 

7.2 Engineered biomaterials in improving the delivery efficiency  495 

Among the delivery vectors, the most suitable vectors for in vivo delivery may be nonviral vectors 496 

rather than viral vectors. Nonviral delivery, compared with viral delivery, exhibits potential advantages. 497 

It reduces the risk of off-target effects by decreasing the expression period of nuclease and enables 498 

better control of dosing duration [92]. The emergence and development of nanotechnology and 499 

material sciences have produced versatile applications in gene editing. It has been shown that gold-500 

based nanoparticles enable effective delivery of RNP both in vitro and in vivo [102]. In addition, 501 

polymeric-based and lipid-based nanoparticles exhibit low immunogenicity, especially in their ability 502 

to encapsulate large cargos [154]. Additionally, it has been demonstrated recently that PEI-magnetic 503 

nanoparticles can improve the delivery of CRISPR/Cas9 constructs in vitro with low cell toxicity and 504 

have been shown to be a promising delivery system that can improve the safety and utility of gene 505 

editing [155,156]. Moreover, researchers have demonstrated the delivery of the Cas9 RNP complex 506 

directly into cells using the nanoneedle array system and showed approximately 32% and 16% gene 507 

disruption efficiencies in HeLa cells and mouse breast cancer cells, respectively. Although the 508 
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efficiency needs to be improved, researchers were able to successfully demonstrate gene editing by 509 

the direct delivery of Cas9/sgRNA using a nanoneedle array, and this method of delivery may be 510 

applied to gene knock-in via HDR [157]. Recently, Chen et al. demonstrated a platform comprised of 511 

vertically aligned silicon nanotube (VA-SiNT) arrays for gene editing. They successfully delivered 512 

Cas9 RNP to the target gene and demonstrated more than 80% efficiency of SiNT-facilitated biocargo 513 

internalization. This indicated that the NT-facilitated molecular delivery platform has great potential 514 

to propel gene editing technologies [158]. However, nanoparticle-mediated protein delivery still has 515 

challenges, including the difficult process of packaging into small particles and the prevention of RNP 516 

degradation before it enters the nucleus. Therefore, biocompatible, well-tolerated, high capability and 517 

nonimmunogenic delivery vehicles are required to deliver cargos to the nucleus for effective gene 518 

editing, and these characteristics are essential when designing any nonviral delivery material. 519 

 520 

7.3 Spatial and temporal regulation of Cas9 activity  521 

As previously discussed, the unintended off-target effect of the CRISPR/Cas system is a major concern. 522 

Regulating delivery of the components of the CRISPR/Cas system to specific target sites before Cas9 523 

is turned on and delivery of certain factors that switch on this machinery at a specific time point is 524 

critical. A number of teams have identified Cas9 endonuclease inhibitors. These anti-CRISPR (Acr) 525 

proteins, such as AcrIIA4, can shut off Cas9 activity [159,160]. Moreover, anti-CRISPRs could be 526 

used to limit editing activity to particular cells and tissues in the body. Researchers designed miRNA-527 

responsive Acr switches, and delivery of this machinery with Cas9 or dCas9 enabled tissue-specific 528 

editing [161]. In a recent study, researchers generated Cas9 variants called ProCas9s that enabled the 529 

CRISPR/Cas9 system to be turned on only in target cells [162]. ProCas9 senses the type of cell it is in 530 

based on proteases. This machinery enables the safer translational application of CRISPR/Cas9 gene 531 

editing, and this technology could be used to help plants defend against viral pathogens.  532 

Several strategies to control the activity or expression of Cas9 have also been demonstrated 533 

(Table 4). It has been reported that Cas9 can be expressed in a split [163-166] or inactive form 534 

[167,168]. In addition, an inducible system enabled Cas9 to be activated only when stimulated by a 535 

chemical inducer [169-173] or by exposure to certain types of light [166]. Studies have engineered a 536 

split-Cas9 system in which the activity of Cas9 is induced only when the two domains, recognition 537 

domain and nuclease domain, are assembled [174]. This split-Cas9 system is also utilized for gene 538 

editing using inteins. Inteins are protein introns that excise themselves out of host polypeptides to 539 

generate a functional protein [175]. The intein-based split-Cas9 system is composed of the split Cas9 540 

domains, each of which is fused to intein sequences. Upon dimerization, these intein sequences will 541 

be spliced out, and fully active Cas9 can be generated [163]. Truong et al. demonstrated that Cas9 542 
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domains can be delivered by AAV vectors separately and retain comparable editing efficiencies as 543 

full-length Cas9 [163]. Cas9 can also be chemically inducible by exposure to rapamycin, which 544 

induces FK506-binding protein (FKBP)-FKBP Rapamycin binding (FRB) dimerization [176]. 545 

Rapamycin-inducible split-Cas9 is composed of split Cas9 fragments each fused with FRB and FKBP 546 

fragments. In the presence of rapamycin, a fully active Cas9 is formed. Researchers have also 547 

demonstrated a photoactivatable Cas9 (paCas9) system that utilized photoinducible dimerizing protein 548 

domains termed Magnets [166]. This optically controlled split-Cas9 system was generated by fusing 549 

each Cas9 fragment with Magnet fragments (pMagnet and nMagnet) and triggering Magnet 550 

dimerization upon blue light treatment [177]. Several other optically controlled systems have also been 551 

reported to enable CRISPR/Cas-based transcriptional activation and gene editing [178,177,179,180]. 552 

Nihongaki et al. developed a light-inducible system. They fused integrin binding protein 1 (CIB1) with 553 

dCas9 and fused cryptochrome 2 (CRY2) with a transcriptional activator domain, and then they used 554 

blue light to trigger dimerization of CIB1 and CRY2, resulting in subsequent expression of 555 

downstream targets [177]. Shao et al. developed a optogenetic far-red light (FRL)-activated 556 

CRISPR/dCas9 effector (FACE) system based on dCas9 [181-183] and the bacterial phytochrome 557 

BphS [184] that induced transcription of target genes in the presence of FRL [180]. 558 

Other strategies can also enable tunable regulation of CRISPR/Cas9 systems. Wandless and 559 

colleagues used small cell-permeable molecules to regulate protein stability. This chemical-genetic 560 

approach allowed rapid and tunable expression of a specific protein by fusing the molecules to a 561 

destabilizing domain [185]. The destabilizing domain acts as a degron that directs the fusion protein 562 

to proteasome-dependent degradation without the presence of a small molecule ligand, which allows 563 

tunable control of protein function. Ligand binding to the destabilizing domain protects the fusion 564 

protein from degradation and allows the protein of interest to function normally. Thus far, several 565 

ligand-destabilizing domain pairs have been discovered, including Shield-1 with mutant K506-binding 566 

protein (FKBP) 12 (FKBP[DD]), trimethoprim with mutant DHFR (DHFR[DD]), and CMP8 with the 567 

4-OHT-estrogen receptor destabilized domain (ER50[DD]) [185-187]. This concept can be utilized 568 

for switchable gene editing and activation [188-190]. FKBP[DD], DHFR[DD] and ER50[DD] were 569 

fused to Cas9 for drug inducible gene editing [189,190]. DHFR[DD] or ER50[DD] were fused to PP7-570 

activation domain  [181], and DHFR[DD] can be fused directly to dCas9 activator [188] for drug 571 

inducible gene activation. Multidimensional control can be achieved by pairing different ligand-572 

destabilizing domain pairs with different aptamers [189]. Another platform utilizes the hepatitis C 573 

virus (HCV) nonstructural protein 3 (NS3) protease domain and its various inhibitors and has also 574 

been used to regulate CRISPR/Cas activity [191]. Tague et al. integrated the NS3 protease domain and 575 

its inhibitor into dCas9-VPR to form a ligand-inducible platform [191,192]. The NS3 protease domain 576 
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was inserted between the DNA binding scaffold and the C-terminal region, which is where NLS and 577 

VPR are located, to form a dCas9-NS3-NLS-VPR complex. NS3 protease, a self-cleaving proteinase, 578 

can separate VPR from dCas9 and subsequently inhibit transcriptional activation, while in the presence 579 

of protease inhibitor, transcriptional activation is achieved. Recently, Cas9 has been fused with small 580 

molecule-assisted shut-off tag (SMASh), which consists of the HCV NS3 and nonstructural protein 4a 581 

(NS4A, acting as a degron). Cas9 stability can be controlled by SMASh via asunaprevir, an HCV 582 

protease inhibitor. Cas9 protein is degraded when NS3-NS4A is inhibited in the presence of 583 

asunaprevir, while in the absence of asunaprevir, the gene editing activity of Cas9 was restored [193]. 584 

Unfortunately, there are still some obstacles to progressing with the application of the 585 

regulatory approach to the CRISPR/Cas system. Chemical inducers may elicit cytotoxicity, which 586 

would make application of this approach in vivo more difficult. Additionally, light-induced systems 587 

may be limited to in vitro studies since activating such a system with light in vivo would be invasive, 588 

and penetration of light into tissue may cause other problems. Further investigation, optimization and 589 

development are needed to overcome these challenges to advance the clinical translation of the 590 

CRISPR/Cas system. 591 

 592 

8. Conclusion 593 

The discovery and application of the CRISPR/Cas system offers great hope for the human disease 594 

treatment as well as revolutionize plant breeding. Although research on the CRISPR/Cas system in the 595 

life sciences community is well underway, there are still substantial barriers to efficient delivery that 596 

need to be overcome to achieve effective gene editing. Factors related to specificity, efficacy and 597 

regulatable expression are important to consider when selecting an approach. The development of new 598 

delivery methods has overcome many disadvantages that severely impede the translatability of the 599 

CRISPR/Cas system. With the rapid development of delivery methods, the successful translation of 600 

CRISPR/Cas technology into medical and agricultural applications is imperative and major 601 

improvements can be anticipated.   602 
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Figure captions 1432 

Fig. 1 Schematic Diagrams of in vivo CRISPR/Cas delivery modes and vehicles in the different 1433 

biological system. Systems used for delivery of CRISPR/Cas components (a) can be separated into 1434 

two major categories, CRISPR/Cas delivery mode (b) and delivery vehicle (c). Three CRISPR/Cas 1435 

delivery models including DNA (plasmid encoding both the Cas protein and the gRNA), mRNA (RNA 1436 

for Cas protein translation and a separate gRNA) and protein (Cas protein with gRNA as a 1437 

ribonucleoprotein complex, RNP) can be delivered in to mammalians, aquacultures or plants via 1438 

bacterial or viral vectors, non-viral carriers and physically direct delivery (d) 1439 

 1440 

Fig. 2 CRISPR/Cas-mediated gene editing strategies. The versatile CRISPR/Cas system is a powerful 1441 

tool for DNA, RNA editing, gene modulation and base, prime editing by leveraging different 1442 

approaches (a) to achieve numerous gene editing outcomes (b) 1443 

 1444 

Fig. 3 Representation of different delivery methods of the CRISPR/Cas system to target organs in the 1445 

rodent. Delivery methods including virus-based (lentivirus, adenovirus and adeno-associated virus) 1446 

and non-virus-based (Plasmid-, RNA- or Protein-based) delivery have been used to deliver 1447 

CRISPR/Cas system to different organs in the rodent 1448 

 1449 

Fig. 4 Schematic representation of main methods used to modify plant genome by CRISPR/Cas system. 1450 

The schematic diagram showing major steps involved in the generation of gene edited plants using 1451 

direct and indirect methods including agroinfiltration (a), protoplast transfection (b), agroinfection (c), 1452 

and virus infection (d) and biolistic particle delivery (e) 1453 

  1454 
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Tables 1455 
Table 1 Delivery methods for CRISPR/Cas system in mammals 1456 

Model- Target tissue 
(disease) Delivery methods Editing gene Reference 

 Viral delivery 
system   

No viral delivery 
system    

Mouse – Blood  
(Myeloid malignancy) Lentivirus  

Tet2, Runx1, Dnmt3a, 
Ezh2, Nf1, Smc3, p53 

and Asxl1 
[48] 

Mouse – Lung 
(Lung Cancer) Lentivirus  Pten, Nkx2-1 [49] 

Mouse – Liver  
(NASH) Adenovirus  Pten [58] 
 

Mouse – Liver  
(Cardiovascular disease) 

Adenovirus  Pcsk9 [59] 

 

Mouse – Lung  
(Lung Cancer) 

Adenovirus  Eml4, Alk [60] 

Mouse – Brain Adeno-associated 
virus  Mecp2, Dnmt1, 

Dnmt3a and Dnmt3b 
[64] 

Mouse – Eye 
(LCA)  

Adeno-associated 
virus  Yfp [65] 

 

Mouse – Muscle  
(DMD) 

Adeno-associated 
virus  Dmd [70] [71] 

 

Mouse – Lung  
(Lung Cancer) 

Adeno-associated 
virus  Kras, p53, and Lkb1 [76] 

 

Mouse – Liver  
(OTC deficiency) 

Adeno-associated 
virus  Otc [74] 

 
 

 
Mouse – Liver  

 
Adeno-associated 

virus 
 

 
 

Pcsk9 

 
 

[80] 



 40 

(Cardiovascular disease) 

 

Mouse – Brain 
(Huntington disease) 

Adeno-associated 
virus   Htt [194] 

 

Mouse – Brain 
(GBM) 

Adeno-associated 
virus  Trp53, Nf1, or Rb1 [78] 

Mouse – Brain Adeno-associated 
virus  Camk2a, Erk2, Actb [195] 

Mouse – Muscle 
(DMD) 

Adeno-associated 
virus  Dmd [69] 

Mouse – Muscle 
(MDC1A) 

Adeno-associated 
virus   Lama2 [196] 

 

Mouse – Eye 
(Retinal degeneration) 

Adeno-associated 
virus  Nrl [66] 

 

Mouse – Spleen, lungs, heart, colon, and 
brain 
(HIV/AIDS) 

Adeno-associated 
virus  HIV-1 DNA [197] 

 

Mouse – Liver 
(Hemophilia B) 

Adeno-associated 
virus   F9  [198] 

 

Mouse – Liver 
(Cancer) 

Adeno-associated 
virus  Tsgs [79] 

 

Mouse – Liver  
Adeno-associated 

virus  HBV cccDNA [199] 
 

Mouse – Eye 
(X-Linked Retinitis Pigmentosa) 

Adeno-associated 
virus  Rpgr [67] 

 
 
Mouse – Liver  
(Tyrosinemia) 

 
Adeno-associated 

virus 
 

 
 

Fah 

 
 

[200] 
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Mouse – Liver  
(OTC deficiency) 

Adeno-associated 
virus  Otc  [73] 

 

Mouse – Muscle  
(DMD) 

Adeno-associated 
virus  Dmd [72] 

 

Mouse – Brain  
(Schizophrenia) 

Adeno-associated 
virus  Mir137 [77] 

 

Mouse – Muscle  
(ALS) 

Adeno-associated 
virus  Igf1  [68] 

Mouse – Liver  
(Tyrosinemia)  Plasmid – based  Fah [86] 
 

Mouse – Liver   Plasmid – based  HBsAg [87] 
 

Rat – Eye  
Retinitis pigmentosa) 

 Plasmid – based (Rho(S334)) [88] 

 

Mouse – Eye  
(Retinitis pigmentosa) 

 Plasmid – based Rho  [89] 

 

Mouse – Brain  
(MB and GBM) 

 Plasmid – based Trp53, Pten, Nf1 [201] 

 

Mouse – Brain   Plasmid – based Satbs [91] 
 

Mouse – Eye 
(IRDs) 

 Plasmid- based  (Rho)-P23H [90] 

Mouse – Liver  
(Tyrosinemia)  mRNA-based Fah [92] 
 

 
Mouse – Liver 
(Cardiovascular disease) 

 

 
 

mRNA-based 
 

 
 

Pcsk9 

 
 

[93] [95] 
 

Mouse – Liver   mRNA-based Ttr [94] 
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(Tyrosinemia) 

Mouse – Liver, Kidney, Lung  mRNA-based floxed tdTomato [202] 

Mouse – Ear  Protein – based  Egfp [96] 

Mouse – Muscle 
(DMD)  Protein – based Dmd [102] 
 

Mouse – Brain 
(FXS) 

 Protein – based Grm5 [103] 

 

Mouse – Brain  
(Alzheimer’s disease) 

 Protein – based Th, Bace1  [98] 

Mouse – Liver and spleen   Protein – based Pten [101] 

Mouse – Liver and spleen  
(HT1)  Protein – based Hpd  [97] 

ALS, Amyotrophic lateral sclerosis; DMD, Duchenne muscular dystrophy; FXS, Fragile X syndrome; GBM, Glioblastoma; HIV/AIDS, Human immunodeficiency 1457 
virus/acquired immunodeficiency syndrome; HT1, Hereditary tyrosinemia type I; IRDs, Inherited retinal degenerations; LCA, Leber congenital amaurosis; MB, 1458 
Medulloblastoma; MDC1A, congenital muscular dystrophy type 1A; NASH, Non-alcoholic steatohepatitis; OTC, Ornithine transcarbamylase 1459 

   1460 
  1461 



 43 

Table 2 Delivery methods for CRISPR/Cas system in aquacultures 1462 
 1463 
Species Applications References 

Zebrafish Gene editing of multiple genes  [106] 

Rohu carp Gene editing of Tlr22 gene  [108] 

Atlantic salmon 

Gene editing of Dnd gene  [109] 

Gene editing of Tyr and Slc45a2 genes  [203] 

Gene editing of Elovl2 gene [204] 

Channel catfish 
Gene editing of Mstn gene [110] 

Gene editing of Ticam and Rbl gene [112] 

Common carp Gene editing of Sp7 and Mstn genes [111] 

Grass carp Gene editing of Gcjam-a gene [37] 

Tilapia 

Gene editing of Nanos2, Nanos3, Dmrt1 and Foxl2 genes  [205] 

Gene editing of Gsdf gene [206] 

Gene editing of Aldh1a2 and Cyp26a1 genes [207] 

Gene editing of Sf-1 gene [208] 

Gene editing of Dmrt6 gene [209] 

Gene editing of Amhy gene [210] 

Gene editing of Wt1a and Wt1b genes [211] 
Southern catfish Gene editing of Aldh1a2 gene [212] 

Sea bream Gene editing of Mstn gene [213] 
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Rainbow trout Gene editing of Igfbp2b1 and Igfbp2b2 genes [214] 

Pacific Oyster Gene editing of Mstn and Twist genes [215] 

Northern Chinese lamprey Gene editing of multiple gene [216] 
 1464 
  1465 
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Table 3 Delivery methods for CRISPR/Cas system in plants 1466 
 1467 
Species Delivery methods Edited gene References  

Stable Transient 
  

Arabidopsis thaliana 
 

Protoplast, 
Agroinfiltration 

Pds3, Fls2, Rack1b and Rack1c  [124] 

Arabidopsis thaliana 
 

Agroinfiltration Gfp [217] 

Arabidopsis thaliana Agrobacterium 
 

Gfp [218] 

Arabidopsis thaliana Agrobacterium Protoplast Bri1, Jaz1, Gai and Yfp  [124] 

Arabidopsis thaliana Agrobacterium 
 

Bri1, Jaz1, Gai, Chli, Ap1, Tt4 and 
Guus  

[219] 

Arabidopsis thaliana Agrobacterium Protoplast Chl1, Chl2 and Tt4i  [220] 

Arabidopsis thaliana Agrobacterium 
 

Adh1 [221,222] 

Arabidopsis thaliana Agrobacterium 
 

Try, Cpc and Etc2  [223] 

Arabidopsis thaliana Agrobacterium 
 

5g55580  [147] 

Arabidopsis thaliana Agrobacterium 
 

Adh1, Tt4, Rtel1 and Guus  [224] 

Arabidopsis thaliana Agrobacterium 
 

Etc2, Try and Cpc  [225] 

Arabidopsis thaliana Agrobacterium 
 

Bri1  [226] 

Arabidopsis thaliana Agrobacterium  Als  [227] 

Arabidopsis thaliana Agrobacterium  Etc2, Try, Cpc and Chli1/2  [228] 

Arabidopsis thaliana Agrobacterium  Ft and SplA4  [229] 

Arabidopsis thaliana Agrobacterium  Ap1, Tt4 and Gl2  [230] 

Arabidopsis thaliana Agrobacterium  Pds3, Ag, Duo1 and Adh1  [231] 
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Arabidopsis thaliana Agrobacterium  At3g04220  [232] 

Nicotiana benthamiana 
 

Protoplast, 
Agroinfiltration 

Pds3  [124] 

Nicotiana benthamiana 
 

Agroinfiltration Pds  [123] 

Nicotiana benthamiana Agrobacterium Agroinfiltration Pds  [123] 

Nicotiana benthamiana 
 

Agroinfiltration of Pds  [233] 

Nicotiana benthamiana 
 

Agroinfiltration Edll and Srdx  [125] 

Nicotiana benthamiana Virus 
 

Pcna and Pds  [138] 

Nicotiana benthamiana 
 

Agroinfiltration Gfp  [217] 

Nicotiana benthamiana Virus 
 

Pds, Isph and Fsgus  [142] 

Nicotiana tabacum  Protoplast Pds and Pdr6  [234] 

Nicotiana tabacum Virus  SurA and SurB  [140] 

Nicotiana tabacum  Protoplast Pds  [134] 

Nicotiana tabacum Agrobacterium  Pds and Stf1  [235] 

Nicotiana tabacum  Protoplast Aoc genes [236] 

Populus Agrobacterium  Pds  [237] 

Oryza sativa Agrobacterium  Roc5, Spp and Ysa  [124] 

Oryza sativa  Protoplast Sweet11, Sweet14 and Dsred  [217] 

Oryza sativa  Agroinfiltration Pds  [123] 

Oryza sativa Biolistic Protoplast Pds-sp1, Badh2, 02g23823 and 
Mpk2  

[146] 

Oryza sativa Agrobacterium Protoplast Myb1  [220] 
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Oryza sativa  Protoplast Mpk5 gene [238] 

Oryza sativa Agrobacterium  Cao and Lazy1  [239] 

Oryza sativa Agrobacterium  Ptg1, Ptg2, Ptg3, Ptg4, Ptg5, Ptg6, 
Ptg7, Ptg8 and Ptg9  

[238] 

Oryza sativa Agrobacterium  Bel  [240] 

Oryza sativa Agrobacterium  Ftl, Gstu, Mrp15 and Anp waxy  [147] 

Oryza sativa Agrobacterium Protoplast Sweet1a, Sweet1b, Sweet 11, 
Sweet13 and P450  

[241] 

Oryza sativa Agrobacterium  Pds, Pms3, Epsps, Derf1, Msh1, 
Myb5, Myb1, Roc5, Spp and Ysa  

[242] 

Oryza sativa Agrobacterium  Dmc1a  [243] 

Oryza sativa  Protoplast Pds, Dep1, Roc5 and miR159b  [244] 

Oryza sativa Agrobacterium  Dl and Als  [235] 

Oryza sativa  Protoplast Epsps, Hct and Pds  [34] 

Triticum aestivum  Protoplast Mlo  [146] 

Triticum aestivum Biolistic Protoplast Gw2  [149] 

Triticum aestivum  Agroinfiltration Inox and Pds [233] 

Zea mays  Protoplast Ipk  [130] 

Zea mays Agrobacterium Protoplast Hkt1  [223] 

Zea mays Biolistic  Lig1, Ms26, Ms45, Als1 and Als2  [148] 

Zea mays Biolistic  Lig, Ms26, Ms45 and Als2  [150] 

Zea mays Biolistic  Argos8 [245] 
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Glycine max Agrobacterium  Gfp, 07g14530, 01gDDM1, 
11gDDM1, Met1-04g, Met1-06g, 
miR1514 and miR1509  

[246] 

Glycine max Biolistic  Dd20, Dd43 and Als1  [247] 

Glycine max Agrobacterium  06g14180, 08g02290 and 
Glyma12g37050  

[248] 

Glycine max Agrobacterium  Bar, Fei, Fei2 and Shr  [247] 

Glycine max Agrobacterium  Pds11 and GlymaPds18  [249] 

Glycine max  Protoplast Fad2-1a and Fad2-1b  [236] 

Solanum tuberosum Agrobacterium  Iaa2  [225] 

Solanum tuberosum Agrobacterium  Als1  [250] 

Solanum tuberosum  Protoplast Gbss [144] 

Hordeum vulgare Agrobacterium  Pm19  [251] 

Liverwort Agrobacterium  Arf1  [252] 

Solanum lycopersicum Agrobacterium  Ago7  [253] 
Solanum lycopersicum Virus  Ant1 [129] 
Solanum lycopersicum Agrobacterium  Rin  [254] 

Brassica oleracea Agrobacterium  C.ga4.a  [251] 

Opium poppy  Agroinfiltration 4’Omt2  [255] 

Cucumis sativus Agrobacterium  EIf4e  [256] 

Citrus x sinensis  Agroinfiltration Pds  [257] 

Citrus x paradisi Agrobacterium Agroinfiltration Cspds [257] 
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Citrus x paradisi Agrobacterium Agroinfiltration Cslob1  [258] 

Vitis vinifera Agrobacterium  Idndh  [259] 

Vitis vinifera  Protoplast Mlo7  [260] 

Malus malus  Protoplast Dipm-1, Dipm-2 and Dipm-4  [260] 
 1468 
  1469 



 50 

Table 4 Summary of regulatory CRISPR/Cas systems 1470 
 1471 
Type of system Split-Cas9 Light-inducible Destabilizing domain NS3 domain 

 Intein-inducible Rapamycin-
inducible 

Photoactivatable    

In vivo studies [261] n/a n/a [180] [262] n/a 

Delivery vehicle Viral-based 
delivery: AAV 

n/a n/a DNA-based delivery: 
Electroporation 

DNA-based delivery:  
tail vein hydrodynamic 
injection 

n/a 

 1472 


