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Abstract: To cope with wind power uncertainty, balancing authorities are required to procure adequate ancillary services (ASs)
with the aim of maintaining the security of the power system operation. The transmission system operator (TSO) is responsible
for maintaining the balance between supply and demand in delivery hours. Besides the generating units, demand response
(DR) has the potential capabilities to be considered as a source of AS. The demand-side AS can be used both locally (by the
local entities in distribution networks) and system-wide (by the TSO). However, the optimal coordination between the local and
global beneficiaries is a challenging task. This study proposes a distributed DR market model, in which the DR is traded as a
public good among the providers and beneficiaries through the local DR markets. The local DR markets can be run in each load
bus to trade the DR provided by retail customers connected to that bus with the buyers. To include the interactions between the
energy/reserve market and the local DR markets, a bi-level programming model is proposed. The bi-level problem is translated
into a single-level mixed-integer linear programming problem using the duality theorem. The proposed model is verified by
simple and realistic case studies.

௑Nomenclature
A. Indices and numbers

n index of system buses, running from 1 to NB
i index of generating units, running from 1 to NU
j index of load buses, running from 1 to NL
d index of customers, running from 1 to ND
t index of time periods, running from 1 to NT
k index of DR supply blocks offered by DRPs, running from 1 to

Nk
h index of DR demand blocks bid by local DR buyers, running

from 1 to Nh
g index of customer groups, running from 1 to NGj
b index of local DR buyers, running from 1 to NBj
l index of DRPs, running from 1 to NAj
w index of wind power scenarios, running from 1 to Nw

B. Upper-level variables

Pit
S scheduled power of unit i in period t [MW]. Limited to

Pi
max and Pi

min as the upper and lower bounds,
respectively

Pt
WP scheduled wind power in period t [MW]. Limited to

Pt
WP, max and Pt

WP, min as the upper and lower bounds,
respectively

Rit reserve scheduled for unit i in period t [MW]
Rjt reserve scheduled for load j in period t [MW]
pitw

G power generation of unit i in period t and scenario w
[MW]

ptw
SP wind power spillage in period t and scenario w [MW]

ritw deployed reserve of unit i in period t and scenario w
[MW]

r jtw deployed DR reserve of load j in period t and scenario w
[MW]

ljtw power consumption of load j in period t and scenario w
[MW]

ljtw
sh load shedding at bus j in period t and scenario w [MW]

f tw(n, r) power flow through line (n, r) in period t and scenario w
[MW]. Limited to f

max(n, r)
uit 0/1 variable that is equal to 1 if unit i is scheduled to be

committed in period t
vitw 0/1 variable that is equal to 1 if unit i is scheduled to be

committed in period t and scenario w

C. Lower-level variables

Pjldt
DR DR supply scheduled for customer d of DRP l located at

bus j in period t [MW]. Limited to Pjldt
DR, max and Pjldt

DR, min

as the upper and lower bounds, respectively
Djbgt

DR DR demand scheduled for buyer b from customer group
g at bus j in period t [MW]

pjldwt
DR (k) DR supply deployed from the kth block of DR offered

by customer d of DRP l located at bus j in period t and
scenario w [MW]. Limited to pjldwt

DR, max(k)

d jbgwt
DR (h) DR demand supplied to the hth block of the benefit

function of buyer b from customer group g at bus j in
period t and scenario w [MW]. Limited to d jbgt

DR, max(h)

D. Constants

Ljt power consumption of jth load in period t [MW]
ptw

WP wind power generation in period t and scenario w [MW]
RD jld

max DR ramp rate limit for customer d of DRP l located at
bus j [MW]

πw probability of wind power scenario w
αjbgt

c DR capacity price offered by DR buyer b to customer
group g at bus j [$/MWh]

ajldt
c DR capacity price bid by customer d of DRP l located at

bus j in period t [MW]
αjbgt

d (h) price offered by the hth block of DR buyer b to customer
group g at bus j [$/MWh]

ajldt
d (k) price bid by the kth block of customer d of DRP l located

at bus j [$/MWh].
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E. Functions

CG( ⋅ ) generation-side energy cost function
RCG

c ( ⋅ ) generation-side reserve capacity cost function

RCD
c ( ⋅ ) demand-side reserve capacity cost function

RCG
d ( ⋅ ) generation-side reserve deployment cost function

RCD
d ( ⋅ ) demand-side reserve deployment cost function

CLS( ⋅ ) load shedding cost function
CSP( ⋅ ) wind power spillage cost function
hn( ⋅ ) function modelling power flow at node n
gi( ⋅ ) function describing constraints on generating unit i
hnw( ⋅ ) function modelling power flow at node n under scenario

w
giw( ⋅ ) function describing constraints on generating unit i

under scenario w
d jw( ⋅ ) Function describing constraints on load j under scenario

w.

 
Remark 1: Some of the abovementioned constants and variables

incorporate superscript U, D, NS when referring to the upward,
downward, or non-spinning reserve/DR, respectively.
 

Remark 2: A variable, function, or parameter written in bold
without one or more indices is a vector form representing the
corresponding quantities. For example, the symbol Pt

S represents
the vector of scheduled power of generating units during period t.

1௑Introduction
1.1 Motivation

Due to environmental and economic factors, the penetration level
of wind power in the electricity generation sector is increasing
worldwide. Across the global market in 2018, more than 590 GW
of wind power was installed, which now comprises more than 90
countries. In some countries such as Denmark, about 44% of the
total consumed energy is produced by wind [1].

Large-scale wind turbine installations introduce new challenges
to operation and planning of power systems. The intermittent
nature of the wind power makes its prediction very difficult.
Therefore, the power system faces with an extra source of
uncertainty. Moreover, the variation of the wind power output is
much higher than load variance. Thus, this high generation
variance in power systems, which are mostly designed to follow
the fluctuations in the demand, poses operational challenges that
need to be addressed. To cope with these problems, the power
system should become more flexible. In a power system with high
wind power integration, the balancing authorities are needed to
procure more ancillary services (ASs) for ensuring the security of
the system operation in real-time conditions.

In traditional power systems, the AS are provided by resources
connecting to the transmission network, such as thermal and hydro
power plants. Distributed energy resources (DERs), such as
photovoltaic and electrical vehicles are growing rapidly in
distribution networks. Technical advances of DER and utilisation
of automation and monitoring technologies make possible the
provision of AS by these resources. However, as the AS provided
by DER can be used both locally and system-wide, there are
obstacles towards integration of these resources into power systems
in terms of optimal coordination between its local and global
beneficiaries and market design. Researches are carried out in
multiple projects, such as evolvDSO [2] and ENTSO-e [3], to
address these obstacles. In the European context, the SmartNet
project [4] aims at providing market design and coordination
schemes for optimised interaction between transmission system
operator (TSO), as the global beneficiary, and distribution system
operators (DSOs), as one of the local beneficiaries, in managing
the exchange of AS provided by the DER.

Demand-side resources may also be considered as distributed
AS providers. Demand response (DR), due to its low cost and
potential capabilities, is recently taken into consideration as an

efficient flexibility resource to cope with wind power uncertainty
in power system operation [5–8]. The FERC Order 745 encourages
demand-side incorporation by allowing DR to participate in
wholesale energy markets [9].

1.2 Literature review

There are some researches dealing with managing the variable
generation of wind power producers in power systems using both
the generation- and demand-side resources. The utilisation of the
demand-side resources in a power system with wind generating
units is investigated in [10] via a deterministic approach. Due to
the stochastic nature of the wind power, deterministic models for
managing wind power deployment in power systems may not be
efficient. A two-stage stochastic programming for energy/reserve
market clearing is proposed in [11], in which DR is used to provide
reserve requirements for the wind power and load variations as
well as contingencies. In order to deal with large-scale scenario
representation of uncertainty, a robust scheduling model is
proposed in [12] to manage the wind power variability by
coordinating DR and energy storages. A stochastic multi-objective
multi-criteria decision-making problem has been proposed in [13],
which incorporates incentive-based DR to cope with uncertain and
variable characteristics of wind energy. In [7], the authors
introduced a joint energy and reserve scheduling and dispatch tool
incorporating demand-side resources. They used load serving
entities (LSEs) and industrial loads, as demand-side resources, to
provide load-following reserves required in a power system with
high wind power penetration. The DR and energy storage systems,
besides the traditional flexibility resources, are utilised in [8] to
manage the uncertainty of wind power generation. A multi-stage
robust unit-commitment formulation is applied in [14] to maximise
social welfare under the joint worst-case wind power output and
price-based DR uncertainty. In [15], a risk-averse energy/reserve
market clearing procedure incorporating demand-side resource is
proposed. The main aim of [15] is to investigate the behaviour of
energy and reserve scheduling for a risk-averse system operator in
a power system with significant penetration of wind power. The
use of DR programs in promoting wind power integration in power
systems is investigated in [16]. To make the best use of price-based
DR, the optimal time-of-use price level is determined. Moreover,
incentive-based DR is scheduled in a novel two-stage unit
commitment. An optimal residential management strategy based on
price-based DR and combined heat and power (CHP) units with
considering wind generation is investigated in [17]. The authors of
[18] proposed a chance constrained day-ahead generation
scheduling model for variable energy resources, which considers
hourly forecast errors of wind generation and price-based DR. A
systematic approach for the joint dispatch of energy and reserve
incorporating price-based DR is proposed in [19], in which a
dynamic scenario generation is utilised to model the wind
generation uncertainty. In [20], the authors proposed a novel
incentive-based DR with the aim of encouraging residential
customers to participate in DR programs. They showed that if the
proposed strategy is utilised in a day-ahead planning context, the
total operation cost will be reduced by 10%. The authors of [21]
investigated the effects of allowing large demand-side resources to
provide reserves in a power system with high wind power
penetration. They studied the potential of the large industrial
customers participating in DR programs in exercising market
power in an electricity market with wind power.

In all of the above-mentioned papers, the DR is scheduled and
allocated from the viewpoint of one DR beneficiary, i.e. the TSO,
while it may have other beneficiaries at the same time. Nguyen and
co-authors [22] showed that the DR provided by a customer can be
considered as a ‘public good’, which is a special type of resource
with each single quantity jointly used by multiple players and its
use by one player does not reduce the benefit of other players. One
MW of energy can be consumed by just one customer, while one
MW load reduction may provide benefit to several beneficiaries
(TSO, DSOs, retailers etc.) at the same time. For example, one-
megawatt load reduction by a customer at the peak hour can
provide reserve for the TSO to deal with uncertainties. At the same
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time, this load reduction by the customer connecting to the
distribution network can fix the reliability problems of the DSO
who operates that grid. Also, besides the mentioned uses the DR
can increase the profit of the retailer, who is in contract with the
customer providing the DR, by less energy procurement at the high
price of the peak hour. Hence, this one-megawatt DR is shared
between three players, i.e. the TSO, DSO and retailer, and its use
by each of these players does not reduce its availability to others.
Moreover, all the DR beneficiaries will be faced with the load
reduction and one of them cannot be excluded from its use. Since
the DR as a virtual resource is conceptually different from the
electricity, a DR exchange market, which clears separately from the
energy market, is introduced in [23] with the aim of exchanging the
DR between its providers and beneficiaries. While the provision of
the most of the existing public goods (e.g. national defence, street
lighting etc.) are usually under government control through the use
of taxation, the DR as a form of public goods is different. The DR
provision is not subject to government intervention. The DR can be
provided by any customer whenever they are paid to do so. Also,
the DR can be supplied to any buyers (i.e. retailers, TSO, DSOs)
whenever they are willing to pay. In this context, developing a
competitive market for trading the DR as public goods is both
feasible and necessary [23].

There is no comprehensive approach in the literature to consider
this characteristic of the DR in the operation of the power system.
Few studies such as [24–26] are carried out to consider the concept
of the DR exchange in power system operation. A DR market
clearing framework is proposed in [24], in which the DR market is
cleared after the clearance of the energy/reserve market. The
objective function and constraints of the DR market clearing model
are developed based on the outputs of the energy/reserve market.
However, the sequential clearance of these coupled markets, i.e. the
energy/reserve and DR markets, may not be efficient. In [25], a
model for joint clearing of the energy/reserve and DR markets is
proposed. The DR market is utilised to satisfy the system
requirement for reserve capacity, which is determined based on
deterministic criteria. However, in [25] scheduling of the DR in
real-time conditions is not addressed. Moreover, the proposed
model in [25] is a challenging optimisation problem due to its
complementarity constraints. The utilisation of the DR market in
the stochastic day-ahead energy/reserve market with variable
renewable generation is investigated in [26]. A two-step sequential
market framework is introduced to clear the energy/reserve and DR
market, separately.

The DR is a type of AS that is provided by the customers
connecting to the distribution networks which can be used locally
(by the local entities in distribution networks) and system-wide (by
the TSO). Recently, some researchers have tried to address the
coordination of TSO-DSO to achieve the full benefit of the AS
provided by distributed generations. In [27], towards coordination
of TSO and DSOs, an active–reactive power chart, which
characterises the flexibility capability of distribution grids in order
to provide AS to TSO. The authors in [28] showed that significant
cost reduction can be achieved if comprehensive coordination
between TSO and DSOs for trading AS is used. A distributed
economic dispatch model for optimal cooperation of TSO–DSO is
proposed in [29] through a hierarchical coordination mechanism.
However, the linkage between TSO and DSO is done by a
generalised bid function that comprises a set of parameters by
which the marginal cost of DER is approximated by the TSO. In
[30], active and reactive power flexibility areas at the TSO–DSO
interface are estimated. A review on different coordination
schemes between TSO and DSO is provided in [31]. In [32], the
TSO–DSO interactions are analysed through a game-theoretic
framework for three coordination schemes, including co-
optimisation of transmission/distribution resources as a benchmark,
non-cooperative game between TSO and DSOs and Stackelberg
game. It was shown that the highest efficiency can be achieved
from the first scheme and the Stackelberg game leads to more
social welfare that the non-cooperative game. To the best of our
knowledge, there is no work in the literature regarding the
coordination of the demand-side resources for providing AS at

transmission level considering the specific characteristic of the DR,
which it can be considered as a public good.

1.3 Contributions

The main aim of this paper is to address the problem of optimal
coordination of the resources connected to the distribution and
transmission networks to manage wind power uncertainty in power
system operation. Our focus in this paper is on the DR provided by
retail customers connecting to distribution grids, considering its
difference with the energy. For this purpose, first, a distributed DR
market model for local trading of the DR is proposed, in which the
DR is treated as a public good. The clearing rule of the DR markets
is different from the energy markets. The proposed local DR
market provides a competitive environment for DR transactions at
each load bus which faces the aggregators, as DR providers, with
DSOs, retailers, etc., as local DR buyers. On the other hand, the
TSO may also benefit from the AS provided by the demand-side
resources at each load bus. Beside the AS provided by the
resources connecting to the transmission network, the TSO can
utilise the demand-side AS provided from the distribution grids.
For optimal coordination of these resources, a bi-level model is
proposed, by which the TSO's problem (energy/reserve market
clearing) and the DR markets clearing problems are solved, jointly.
Through the upper-level of the proposed bi-level model, the DR
demand of the global DR buyer, i.e. the TSO, at each load bus is
determined, precisely. Then, considering the DR demands of the
global and local buyers, the DR markets at each load bus are
cleared in the lower-level problems. The aim of the proposed
framework is to manage the wind power uncertainty in system
operation. The uncertainty of the wind power and deployment of
DR in the plausible wind power scenarios are considered. The
duality theorem is used to translate the bi-level model into a single-
level mixed-integer linear programming (MILP) problem that can
be solved by commercially available solvers. The main
contributions of this paper are summarised below:

• Proposing a multi-period stochastic DR market clearing model
to manage the transactions of the DR provided by retail
customers at a load bus considering the DR as a public good.

• Optimal cooperation of the demand-side resources, which are
connected to the distribution network, and the resources in the
transmission grid through a bi-level programming model.

• Managing wind power uncertainty using the distributed DR
market model.

1.4 Organisation

The rest of this paper is organised as follows. Section 2 describes
the proposed local DR market model as well as wind power
uncertainty model. The formulations of the energy/reserve and DR
markets and the bi-level problem of joint clearance of these
markets are presented in Section 3. In Section 4, the results of the
implementation of the proposed model on an illustrative example
are reported. Section 5 provides the results from a realistic case
study. Finally, some relevant conclusions are provided in Section 6.

2௑Model description
The proposed scheme for managing the resources in transmission
and distribution levels is depicted in Fig. 1. In this paper, we focus
on DR as one of the resources connected to distribution networks
considering its specific characteristic which can be considered as a
public good. For this purpose, it is suggested that the DR is traded
through local DR markets which are run in each load bus,
separately from the energy/reserve market. To consider DR as a
public good in DR transactions, the settlement rules in DR markets
are designed differently from the energy markets. The motivations
for introducing the local DR markets are summarised below:

• The DR is conceptually different from the energy and can be
considered as a public good. To consider this characteristic of
the DR in the DR transactions, a separate market with specific
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settlement rules is utilised. This approach leads to fair allocation
of DR costs across all of its beneficiaries [23].

• The local DR markets can provide an appropriate opportunity
for retail customers to participate in the electricity markets,
effectively. This leads to more demand-side participation.

• Since the DR transactions at different load buses are
independent of each other, a distributed DR market model is
utilised.

Moreover, for the clearance of the local DR markets, besides the
energy/reserve market, a bi-level programming model is proposed.
Through the proposed bi-level model, the TSO’ demand for the DR
is determined precisely according to the technical and economic
constraints.

2.1 Local DR market

Fig. 2 depicts the proposed local DR market model and its relations
with DR buyers and sellers. The local DR market can be run in
each load bus (j = 1, …, NL). At load bus j, several DRPs (l = 1, …,
NAj) and local DR buyers (b = 1, …, NBj) may participate in local
DR market j.

2.1.1 Participants: 

• DR sellers: DR providers (DRPs) are the DR sellers who enrol
customers to participate in DR programs and offer the
aggregated responses into the DR market. It should be noted that
only the event-driven DR [33] is considered in our model. The
response of the customers is assumed perfectly reliable. Both the
upward DR (load reduction) and downward DR (load
increment) are considered. It is assumed that the DRP l at bus j
bids a step-wise cost function (price steps denoted by ajld in
Fig. 2) for providing the DR. In practice, the upward DR is
requested during peak hours while the downward DR is needed
in off-peak periods. Therefore, it is practically assumed that
DRPs offer for providing up- and downward DR in separate
periods.

• Local DR buyers: The local DR buyers of load bus j are those
market entities who are physically or financially under contract
with the customers providing the DR at that bus. Some market
participants, like retailers and DSOs, who act as mediums
between the retail customers and the wholesale market operator
may be the local DR buyers. Retailers are market entities who
purchase electricity from the wholesale market at spot prices and
resell it to retail customers at generally flat rates. A retailer can
reduce its financial risks during the horizons that the energy spot
prices are volatile by procuring DR from its contracted
customers. DSOs, who are the operators of distribution systems,
can benefit from DR by using it to enhance the security of their
networks, relieve voltage deviations, and defer new network
investments at the distribution level. In this paper, it is assumed
that the local DR buyer b of bus j offers for purchasing the DR
provided by the group g of customers connecting to bus j, which
the local DR buyer is under contract with them, via a step-wise
benefit function (price steps denoted by αjbg in Fig. 2).

• Global DR buyer: The global DR buyer is a player who may
request the DR at each load bus of the system. In this paper, the
energy/reserve market operator, called TSO, who may be the
beneficiary of the aggregated DR provided by the retail
customers located at a specific load bus is considered as global
DR buyer. The TSO is responsible for the secure operation of
the power system. The TSO's demand for the DR, which is
denoted by Rj in Fig. 2, is determined in the energy/reserve
market clearing problem.

2.1.2 Market operator: The trading of the DR between sellers and
buyers at each load bus j is coordinated and settled by a new
system operator, which is called DR market operator (DRMO)
[34]. It is assumed that all DR transactions are cleared at each load
bus by a dedicated computer playing the role of being a DRMO
[34]. An Internet-based communication system can be utilised to

collect the demand and supply from the participants, automatically.
Therefore, there is no need for creating a physical marketplace for
the local DR markets. The DRMO gathers the demand-side bids for
providing up- and downward DR as well as purchasing offers of
the local DR buyers and runs the market clearing problem to
determine the clearing prices. The DR clearing prices for the TSO
and local DR buyers are shown in Fig. 2 by γ j and λjbg,
respectively. It should be noted that the TSO and local DR buyers
are charged for their purchased DR at their corresponding prices.
The income gathered from the DR buyers must be paid to the
DRPs. Hence, the DRPs are paid for providing DR at a price that is
equal to the sum of the DR prices for the TSO and local DR buyers
[23]. Please note that the DR is a minor resource beside the
electricity, as the major resource. Therefore, if the DR at a load bus
is not requested by a buyer, the local DR market at that bus will not
be run.

2.1.3 Time horizon: The scheduling horizon for the local DR
markets is considered one day on an hourly basis. In this paper, we
have assumed that the DR transactions between DRPs and local
DR buyers at different load buses are independent of each other.
However, the global DR buyer, i.e. TSO, may request the DR from
multiple load buses. Hence, for optimal coordination of the local
and global DR buyers, the local DR markets and the energy/reserve
market (TSO's problem) are cleared, simultaneously.

2.2 Wind power uncertainty

In order to assess specifically the stochastic nature of wind
generation, only the wind power uncertainty is considered in our
model. Hence, uncertainties associated with demand and
equipment failures are not considered. For the sake of simplicity, it
is assumed that wind power is generated by a wind farm that is
located at a single bus of the considered power network [35]. To
model wind generation uncertainty, a set of scenarios representing
all plausible realisations of wind power is created. The hourly wind
power generation depends on hourly wind speed and wind turbine
power curve. Wind energy is a variable and uncertain resource that
depends on the effects of the natural and meteorological conditions.
Moreover, wind speed at a specific hour is related to previous
hours. Short-term forecast of the wind speed can be done using
time series models, such as ARMA [36, 37]. To generate wind
speed scenarios representing the future realisations of this
stochastic process, a normal distribution is applied to the wind
speed forecast error [38]. Then, the wind speed scenarios are
transformed into power by using the power curve of wind turbines.
Finally, the corresponding scenario sets of the wind farm power
output for each period of the scheduling horizon, i.e. ptw

WP, t = 1,…,
NT; w = 1,…, Nw, are obtained by aggregating the generation of the
available turbines in the wind farm.

Fig. 1௒ Managing the resources in transmission and distribution levels
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3௑Formulation
In this section, the mathematical formulation of the local DR
market clearing problem is presented. Since the TSO's demand for
the DR, which is used in the DR market clearing problem, is
determined in the energy/reserve market clearing problem, this
problem is first described. Moreover, the bi-level model for joint
clearance of the energy/reserve and local DR markets is presented
in Section 3.3.

3.1 Energy/reserve market with high wind power penetration

The TSO's demand for the DR is determined by running the TSO's
problem with the aim of managing the wind power uncertainty in
system operation. The stochastic multi-period energy/reserve
market clearing model for a wind integrated power system
introduced in [35] is used in this paper. The model proposed in [35]
makes use of a two-stage stochastic programming framework and
considers a network-constrained market-clearing procedure. In the
first-stage, the market is cleared before the realisation of any one of
the wind power scenarios. The first-stage variables that represent
the scheduled quantities in the market clearing process are shown
in uppercase letters. In the second-stage, the uncertainty associated
with wind power is realised. The second-stage variables that realise
the actual operation of the power system for the wind power
scenarios, i.e. ptw

WP, t = 1,…, NT; w = 1,…, Nw, are shown with
lowercase letters. The compact representation of the market
clearing model is as follows [35]:

Minimise J = CG(u, P
S) + RCG

c (RU, R
D, R

NS) + RCD
c (RU, R

D)

+ ∑
w = 1

Nw

πw RCG
d (vw, rw

U, rw
D, rw

NS) + RCD
d (rw

U, rw
D)

+CLS(lw
Sh) + CSP(pw

SP)

(1)

subject to:

hn(Pt
S, Pt

WP, Lt) = 0, n = 1, . . . , NB, t = 1, . . . , NT (2)

gi uit, Pit
S, Rit

U, Rit
D, Rit

NS, Pt
WP ≤ 0, i = 1, . . . , NU, t = 1, . . . ,

NT

(3)

hnw(Ptw
G , ptw

WP, Ltw, Ltw
Shed, ptw

SP) = 0, n = 1, . . . , NB, t = 1, . . . , NT,

w = 1, . . . , Nw

(4)

− f
max ≤ f ≤ f

max (5)

giw vitw, pitw
G , ritw

U , ritw
D , ritw

NS, Rit
U, Rit

D, Rit
NS, ptw

WP ≤ 0,

i = 1, . . . , NU, t = 1, . . . , NT, w = 1, . . . , Nw

(6)

d jw ljtw, ljtw
Sh , r jtw

U , r jtw
D , Rjt

U, Rjt
D ≤ 0,

j = 1, . . . , NL, t = 1, . . . , NT, w = 1, . . . , Nw

(7)

The objective function (1) to be minimised is the expected cost of
scheduling and deploying energy and reserves as well as the costs
of load shedding and wind power spillage. The objective function
is subjected to the set of equality and inequality constraints (2)–(7).
The power balance and generating units constraints for the
scheduled variables of the first-stage are expressed by (2) and (3),
respectively. The power balance constraints, line flow limits,
generation- and demand-side constraints in the second-stage that
realise the actual operation of the power system for the wind power
scenarios are enforced by (4)–(7), respectively. Please note that the
bold symbols denote the vector of all their corresponding variables.
The above energy/reserve market clearing problem is a MILP
problem. The detailed presentation of the above equations can be
found in [35]. The optimal values of the variables Rjt and r jtw,
obtained by running (1)–(7), are the TSO's demand for the DR at
load bus j during period t.

3.2 Local DR market

The multi-period stochastic clearing of the DR market j is
formulated below. Please note that to avoid complexity, the
formulation is stated only for the upward DR, whereas the
downward DR is also included in this model.

MaximiseJ j = ∑
t = 1

NT

∑
b = 1

NB j

∑
g = 1

NGb

αjbgt
cU Djbgt

DR, U − ∑
l = 1

NA j

∑
d = 1

ND

ajldt
cU Pjldt

DR, U

+ ∑
w = 1

Nw

πw ∑
b = 1

NB j

∑
g = 1

NGb

∑
h = 1

Nh

αjbgt
dU (h)d jbgwt

DR, U(h)

− ∑
l = 1

NA j

∑
d = 1

ND

∑
k = 1

Nk

ajldt
dU (k)pjldwt

DR, U(k)

(8)

subject to:

Fig. 2௒ Proposed local DR market model
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∑
l = 1

NA j

∑
d = 1

ND

Pjldt
DR, U − Rjt

U = 0:γ jt
cU, ∀t (9)

∑
l = 1

NA j

∑
d = 1

ND

cld
bg

Pjldt
DR, U − Djbgt

DR, U = 0:λjbgt
cU , ∀b, g, t (10)

∑
l = 1

NA j

∑
d = 1

ND

∑
k = 1

Nk

pjldwt
DR, U(k) − r jwt

U = 0:γ jwt
dU, ∀w, t (11)

∑
l = 1

NA j

∑
d = 1

ND

∑
k = 1

Nk

cld
bg

pjldwt
DR, U(k)

− ∑
h = 1

Nh

d jbgwt
DR, U(h) = 0:λjbgwt

dU , ∀b, g, w, t

(12)

Pjldt
DR, min ≤ Pjldt

DR, U ≤ Pjldt
DR, max: μ̄ jldt

U , μ jldt
U , ∀l, d, t (13)

Pjldt
DR, U − Pjld(t − 1)

DR, U ≤ RDjld
U, max:τ jldt

U , ∀l, d, t (14)

∑
k = 1

Nk

pjldwt
DR, U(k) − Pjldt

DR, U ≤ 0:ηjldwt
U , ∀l, d, w, t (15)

∑
h = 1

Nh

d jbgwt
DR, U(h) − Djbgt

DR, U ≤ 0:ξjbgwt
U , ∀b, g, w, t (16)

pjldwt
DR, U(k) ≤ pjldt

DR, max(k):θ jldwt
U (k), ∀l, d, w, t, k (17)

d jbgwt
DR, U(h) ≤ d jbgt

DR, max(h):δjbgwt
U (h), ∀b, g, w, t, h (18)

Djbgt
DR, U ≥ 0, ∀b, g, t (19)

Pjldt
DR, U ≥ 0, ∀l, d, t (20)

d jbgwt
DR, U(h) ≥ 0, ∀b, g, w, t, h (21)

pjldwt
DR, U(k) ≥ 0, ∀l, d, w, t, k (22)

The objective function (8) maximises the social welfare. In the first
line of (8), the DRPs’ bid for the DR capacity is subtracted from
the local DR buyers’ offer for purchasing the DR capacity. Flat
rates are assumed for the DR capacity selling and purchasing
offers. The second line of (8) presents the expected local DR
buyers’ benefit minus the expected DRPs’ cost. It is assumed that
each local DR buyer submits step-wise decreasing benefit
functions for the DR to the DR market. Each step of the step-wise
benefit function is identified by a quantity d jbgt

DR, max(h)  and price
αjbgt

dU (h) . On the other hand, each DRP offers step-wise increasing
cost functions for providing the DR. Similarly, each step of the
step-wise cost function is identified by a quantity pjldt

DR, max(k)  and
price ajldt

dU (k) . Determination of the DR benefit and cost functions
for the DR buyers and sellers is based on their profit maximisation
problems and is beyond the scope of this paper. The DR demand–
supply balance of the TSO for the DR capacity and deployment are
modelled through constraints (9) and (11), respectively. Please note
that the scheduled quantities are shown with uppercase letters and
the variables representing the realisation of the actual operation for
the considered scenarios are shown with lowercase letters. The
TSO's demand for the DR in (9) and (11), i.e. Rjt

U and r jwt
U , are

determined in the upper-level problem. Similarly, (10) and (12)
present the DR demand–supply balance of the local DR buyers for
the DR capacity and deployment, respectively. The binary
coefficients cld

bg in (10) and (12) represent a relational status of the
customer d of DRP l to the group g of the DR buyer b. The local
DR buyer b who is physically or financially under contract with

group g of customers can offer to local DR market j to purchase
DR provided by its contracted customers. For example, retailer b
may be under contract with group g of customers to sell electricity
to them at flat rates. These customers may also be under contract
with different DRPs to be able to offer their DR into the local DR
market. Clearly, just the DR provided by the group g of the
customers would be useful for retailer b (to help him manage his
financial risks caused by spot price volatility of energy). Therefore,
to show this relational status between the DR buyers and the
customers of each DRP, a binary coefficient is used. Constraints
(13) and (14) represent the DR provision and ramp rate limits of
the customers, respectively. Constraint (15) ensures that the
scheduled DR capacity of the customer d of DRP l at period t is
higher than or equal to its deployed DR in all of the scenarios.
Similarly, the relation between the purchased DR capacity and
deployment by the local DR buyers is modelled in (16). The upper
limits of each block of the offered step-wise cost function of DRPs
and the local DR buyers’ demand function are enforced by
constraints (17) and (18), respectively. Please note that the dual
variables associated with the lower-level problem constraints (9)–
(18) are provided after the corresponding constraints separated by a
colon.

In the DR market clearing formulation, constraints (9)–(12) are
the balancing equations that settle the DR as a public good [23].
Since customer d of DRP l supplies a common DR to the TSO,
retailers, DSOs and so on, the customer is included in different
balancing constraints associated with these DR buyers,
respectively. Therefore, its quantity Pjldt

DR, U  appears in the
corresponding balancing equations, constraint (9) for the TSO and
constraint (10) for other DR buyers (DSOs, retailers etc.). This
means the provided DR must be equal to the requested DR by the
TSO Rjt

U  as well as other DR buyers Djbgt
DR, U . This repetition

shows that DR from a customer can be considered public good,
which is a special type of resource with each single quantity jointly
used by multiple players [23].

3.3 Local/central markets cooperation

In this paper, the cooperation of the TSO's problem and the local
DR markets is modelled through a bi-level programming problem
(Fig. 3). In the proposed local DR market clearing model, it is
assumed that the local DR buyers offer for purchasing DR via their
submitted benefit functions. The TSO's demand for the DR is not
included in (8). The TSO's demand for the DR at each load bus
depends on the DR prices and technical/physical conditions of the
power system. Knowing the DR prices, the TSO's demand for the
DR can be determined by running the energy/reserve market
clearing problem (the optimal values of the variables Rjt and r jtw).
The price of DR capacity and deployment for the TSO at load bus
j, i.e. γ jt

c  and γ jtw
d , respectively, are determined in the jth local DR

market clearing problem (the dual variables associated with
constraints (9) and (11), respectively). The clearance of the local
DR market j depends on the TSO's demand for the DR at the load
bus j (the TSO's demand for the DR, Rjt and r jtw, is included in
constraints (9) and (11), respectively). The interactions between the

Fig. 3௒ Bi-level model for cooperation of local/central markets
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energy/reserve market and the local DR markets are depicted in
Fig. 3. To model these interactions, a bi-level programming
approach is proposed. In the bi-level problem, the upper-level
belongs to the energy/reserve market (1)–(7) and the local DR
markets (8)–(22), ∀ j considered as the lower-level problems. The
TSO's demand for the DR capacity and deployment is used in the
supply–demand equilibrium of the DR market (9) and (11),
respectively. The dual variables of constraints (9) and (11), which
are the clearing prices of the DR for the TSO, are used in the
objective function of the energy/reserve market model (1). The
terms related to the DR reserve cost in (1) can be rewritten as

RCD
c (RU, R

D) = ∑
j = 1

NL

∑
t = 1

NT

γ jt
cURjt

U + γ jt
cDRjt

D (23)

RCD
d (rU, rD) = ∑

j = 1

NL

∑
t = 1

NT γ jtw
dU

πw
r jtw

U +
γ jtw

dD

πw
r jtw

D (24)

Please note that γ jt
c  is the dual variable of the DR demand–supply

balance constraint of the TSO for DR capacity (9). The optimal
value of this dual variable is equivalent to the clearing price of the
DR capacity for the TSO (see Appendix 1). Also, the optimal value
of γ jtw

d , i.e. dual variable of (11), is the price of the DR deployed at
scenario w with the probability of πw. Therefore, the DR deployed
cost in (24) is calculated by multiplying the probability-removed
price of the DR, i.e. γ jtw

d /πw, and the deployed DR r jtw. The bi-level
problem for joint clearing of the energy/reserve and local DR
markets can be formed as

Minimise (1) (25)

subjectto: (2) − (7) (26)

where γ jt
cU, γ jt

cD∀ j, t; γ jtw
dD, γ jtw

dD, ∀ j, t, w ∈ arg

Maximise (8) (27)

subjectto: (9) − (22) ∀ j (28)

Please note that in the objective function of the bi-level problem
(25), the terms defining DR reserve cost, i.e. RCD

c  and RCD
d , in (1)

are replaced by (23) and (24), respectively. The solution approach
for the bi-level model (25)–(28) is provided in the Appendix 2.

4௑Illustrative example
To validate the proposed bi-level model, the three-bus test system
(Fig. 4) is used [35]. The data for generating units, load during the
scheduling horizon (4 h) and the assumed wind power scenarios for

wind power producer located at Bus 3 are extracted from [35].
Please note that three scenarios are considered for wind power
production: as predicted (Pre), highest production (High) and
lowest production (Low) with the probabilities 0.6, 0.2 and 0.2,
respectively. A DRP at Bus 3 bids for providing DR into the DR
market up to 10% of the hourly load. The bid price for DR capacity
is $10/MWh. A single-block supply function for DR deployment at
a price of $50/MWh is assumed. The capacity of the line
connecting Bus 2 to Bus 3 is assumed 25 MW while the capacity of
other lines is equal to 55 MW.

Three cases were analysed. In Case I, DR market is not
included. The DR market without involving local DR buyers is
considered in Case II. Finally, in Case III, two local DR buyers are
included. The local DR buyers in Case III submit capacity price of
$2/MWh and a deployment price of $10/MWh into the DR market.

Table 1 reports the results of the market clearing in Cases I and
II. The results obtained in Case II are shown in square brackets.
Congestion on the line connecting Bus 2 to Bus 3 causes that all of
the wind power production cannot be delivered to the load.
Therefore, wind power spillage is occurring (up to 35 MW in
scenario High of Case I). However, if the potential of the DR
market is used in the energy/reserve market (Case II), the expected
wind power spillage will be decreased from 22.4 MW down to
12.4 MW (about 45% decrement). As a result, the scheduled wind
power in the energy/reserve market increased from 15 up to 30 
MW. Please note that due to utilising more wind power in Case II,
the scheduled generation of G1 is reduced down to 25 MW
(compared to 45 MW without DR).

Table 2 compares the scheduled reserves in the considered
cases. As can be seen in Table 2, the scheduled upward reserves
(including synchronous and non-synchronous) in Cases I and II are
the same. However, in Case II, 10 MWh of DR reserve is
scheduled. The scheduled DR reserve in Case II is used in real-
time to facilitate wind power integration by reducing the expected
wind power spillage by 45%. Incorporation of local DR buyers in
the DR market in Case III results in more scheduled DR up to 17
MWh. More utilisation of the DR leads to decrement of the upward
reserve by 26% and expected wind power spillage by 6.7% in
comparison to Case II. It should be noted that in Case III, the DR

Fig. 4௒ Three-bus example
 

Table 1 Energy/reserve and DR market results in MW
Period t scheduled

wind power
Wind power

spillage
Scheduled
generation

Scheduled upward
reserve

Scheduled downward
reserve

Scheduled non-
sync. reserve

Pre Low High G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3
1 6 0 0 3 0 0 24 0 0 4 0 0 0 0 0 0 0 0
2 30 0 0 0 0 0 50 0 0 0 0 0 0 0 0 17 0 0
3 15 [35] 20 [10] 10 [0] 35 [25] 45

[25]
0 50 0 0 0 0 [10] 0 0 0 0 0 0 0

4 8 0 0 4 0 0 32 0 0 2 0 0 0 0 0 0 0 0
 

Table 2 Scheduled reserves in MWh
Upward reserve Downward reserve DR Reserve Expected wind spillage

Up Down
Case I 23 0 — — 22.4
Case II 23 0 10 0 12.4
Case III 18 0 17 0 11.6
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cost will be shared between the local and global DR buyers. Hence,
more DR is utilised in the energy/reserve market.

The energy, reserve and DR costs from the TSO point of view
are reported in Table 3. While the DR is utilised in Case II and
caused the energy cost reduction, but the total cost is about the
same as in Case I. The reason is that the DRP's bid prices are
assumed the highest amounts that could be scheduled in the energy/
reserve market. In Case III, the deployment price of DR obtained
$30/MWh, which is decreased $20/MWh in comparison to Case II.
The reason for this reduction is that each of the two local DR
buyers in Case III will pay $10 per each MW of deployed DR.

5௑Case study
The IEEE reliability test system (RTS) over a 24-h horizon is used
for simulations. The required data for simulations have been
extracted from [39]. It is assumed that all the generating units offer
to provide spinning reserves at the rate of 25% of their highest
marginal cost of energy production [40]. The wind power producer
with the installed capacity of 400 MW is located on Bus 3. The
wind power production data are extracted from [41], which is
corresponding to the wind farm located in the southwest zone of
the IESO on 5 September 2017. The maximum variation of the
wind power from the predicted values is assumed to be 20%. The
probability of the predicted scenario is 50%. To simulate the high
stressed condition, it is assumed that the capacity of the lines
connecting Bus 3 to the network is limited to 80%.

It is assumed that at each load bus, a local DR market with two
local DR buyers and one DRP is run (if the DR is requested). The
DR capacity bid of all the DRPs (up- and downward DR) is
assumed $11/MWh. The upward DR bid is considered a four-block
incremental function with equal price/power blocks. The first price
block is assumed higher than the most expensive energy bid price
of the generating units, i.e. $45/MWh. The price steps are equal to
$1/MWh. For downward DR, the price blocks start at $30/MWh
with $1/MWh increasing steps. The capacity price offers of all the
local DR buyers for purchasing up- and downward DR are
assumed $3/MWh and $2/MWh, respectively. The DR price offers
of the local DR buyers are assumed $11/MWh and $5/MWh for
up- and downward DR, respectively. The value of lost load is

considered $3000/MWh. The maximum participation of DR at
each bus is assumed 10% of its connected load. Simulations are
conducted for the following cases: Case I: Energy/reserve market
without DR market, Case II: Bi-level energy/reserve and DR
market and Case III: Bi-level energy/reserve and DR market with
considering $100/MWh wind spillage cost.

The problem is modelled in GAMS and is solved using CPLEX
12.5.1 [42] with a duality gap of 0.01%. The CPU solution time
was 819 s on a Windows-based computer with a 2.4-GHz, Intel (R)
Core (TM) i5-6300U CPU and 8-GB of RAM. In order to increase
the convergence speed without much deviation from the optimal
solution, the non-spinning reserve can be excluded from the
energy/reserve market clearing problem, as suggested in [35]. By
excluding non-spinning reserve, the CPU solution time is reduced
to 21.8 s. In general, some mathematical algorithms, such as
benders’ decomposition [43], can be used to reduce the
computational requirement.

The scheduled reserves, DR and wind power spillage in three
considered cases are reported in Table 4. As can be seen, while the
assumed DR bid prices are higher than the generating unit cost
offers, in Case II, 8.48 MWh of DR is scheduled. In Case II, the
load flexibility leads to a reduction of the scheduled reserves for
the generating units in comparison to Case I. However, in Cases I
and II, a high amount of wind power spillage is scheduled due to
the poor correlation between the wind power and load profile (see
Fig. 5), and the high cost of reserve scheduling. It should be noted
that in Case III, the TSO offers for purchasing the DR at all the
load buses except for Bus 16 while in Case II, only the DR is
requested from buses 2, 3 and 14.

High reserve scheduling in Case III reduces the amount of wind
power spillage by 83%. As can be seen in Table 4, the demand
increment as DR, i.e. downward DR, is called in Case III. Utilising
the downward DR, besides the downward reserve of the generating
units, during high-wind periods leads to the reduction in wind
power spillage. Fig. 5 illustrates the load and wind power profile
during the scheduling horizon as well as scheduled DRs in Case
III. Since during off-peak hours, the wind power production is
high, the downward DR is scheduled to reduce the wind power
spillage.

Table 3 Energy/reserve and DR costs in $ and DR prices in $/MWh
 Energy cost Reserve cost DR Cost Total cost DR Price

Cap. Ener. Cap. Ener.
Case I 4976 124.5 — — 5100.5 — —
Case II 4376 124.5 100 500 5100.5 10 50
Case III 4296 85 102 366 4849 6 30

 

Table 4 Scheduled reserves, DR and wind spillage in MWh
Upward reserve Downward reserve DR Reserve Spillage

Up Down
Case I 671.672 240.995 — — 238.39
Case II 545.832 358.355 8.48 0 238.39
Case III 1089.62 539.89 124.85 44.70 39.18

 

Fig. 5௒ Load and wind power pattern and scheduled DR
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Table 5 reports the energy and reserve costs as well as DR
payments.

Utilisation of the DR in Case II results in reduction of the
energy and reserve costs. Because of the high cost of wind power
spillage in Case III, more wind power is utilised and consequently
more reserves are scheduled. Therefore, the operation cost is
increased up to 1.5% in comparison to Case II.

Table 6 compares the proposed model that utilises DR exchange
concept with those in the literature that are partial approaches for
the DR scheduling problem, such as [44], in which DR is
scheduled from the TSO's point of view without considering other
buyers.

The comparison is carried out for Case III. As can be seen, due
to more DR scheduling, the total operation cost is decreased in the
proposed model. The cost of reserve required for covering wind
power uncertainty in the proposed model is obtained 8.9% lower in
comparison to partial approaches.

Figs. 6 and 7 illustrate the impact of DR cost and wind power
penetration level on the energy/reserve market objective function
and the amount of scheduled DR, respectively. The DR cost is
varied from 0 to 200% of the assumed quantities in the case study.
As can be seen, increasing the DR cost leads to decrement in
scheduled DR in the energy/reserve market (Fig. 7) and hence, the
effectiveness of the DR in the energy/reserve market cost reduction
is decreased (Fig. 6). Moreover, by increasing the wind power in
the system more DR is utilised in the energy/reserve market.
However, due to more reserve requirements the energy/reserve cost
is increased from about 17 to 30% wind penetration level.

Finally, the impacts of wind power prediction and variation on
scheduled reserve and DR are investigated. For this purpose, the
proposed bi-level model is run for different probabilities of wind
power prediction, varying from 100 to 0%. In this case, a 50%
variation of wind power from the predicted values is considered.
To show the impact of wind power variation, the probability of the
predicted wind power is assumed to be 50%. Wind power
generation in different scenarios is varied from 0 to 100%. The
results of this investigation are illustrated in Fig. 8. As can be seen
in Fig. 8, (i) more reserve is needed for managing the variation of
the wind power in comparison to the prediction error, (ii) the
amount of the scheduled reserve for managing wind power
prediction error is almost constant for prediction accuracy under
90%. If the wind power is predicted with the accuracy above 90%,
which may not be achieved easily, the reserve requirements will be
decreased; significantly, (iii) the proposed model has a significant
impact on decreasing the scheduled reserves for the prediction
accuracies up to 40%. For example, in wind power prediction
accuracy of 65%, the proposed model leads to a decrease in the
scheduled reserve by 24.5%. The reason is that trading the DR via
the local DR markets makes it possible to share the high cost of the
DR between all the DR buyers. Therefore, from the viewpoint of
the TSO, the DR is considered as an efficient resource to be used
for covering the wind power uncertainty. The high utilisation of the
DR increases the system flexibility and consequently decreases the
system requirements for reserves, (iv) increasing the wind power

variation level from the predicted value proportionally increases
the scheduled reserves and (v) by increasing the wind power
variation, the impact of the proposed model on the decrement of
reserves increases. For 100% variation from the predicted value,
the scheduled reserves will decrease down to 7.85% in comparison
to the case without DR.

Table 5 System operation costs in $
 Energy/reserve market objective Energy cost Reserve cost DR payment
Case I 428,272.97 424535.22 3737.75 —
Case II 428,270.69 424,478.93 3690.84 100.92
Case III 435,462.78 427,549.14 5479.64 2391.12

 

Table 6 Energy and DR market cash flow
Proposed model Partial approach

scheduled reserves, MWh 1629.51 1706.21
scheduled DR, MWh 168.7 44.71
energy cost, $ 427,549.14 428,999.09
reserve cost, $ 5479.64 5971.02
TSO's payment for DR, $ 2391.12 995.15
energy/reserve market objective, $ 435,462.78 435,988.11

 

Fig. 6௒ Impact of DR cost and wind power penetration level on the energy
and reserve cost

 

Fig. 7௒ Impact of DR cost and wind power penetration level on the
scheduled DR

 

Fig. 8௒ Reserve versus wind power prediction accuracy and variation
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6௑Conclusions
In this paper, we incorporate local DR market model in the context
of stochastic energy/reserve market with high wind power. The
local DR markets are run in load buses to face local DR buyers
with retail DR providers. For optimal coordination of the demand-
side resources with the resources in transmission level, a stochastic
multi-period bi-level programming problem is utilised. In the
proposed bi-level model, the upper-level problem belongs to the
energy/reserve market clearing in a wind-integrated power system.
The clearance of the local DR markets is considered as lower-level
problems.

In order to verify the proposed model and show its applicability,
it was tested on simple and real test systems. Results showed the
effectiveness of the proposed model in reducing the reserve costs
and wind power spillage. Furthermore, it was shown that the model
had a significant impact on decreasing the required reserve for
managing the wind power prediction error. The proposed model for
trading the DR was compared by the partial approaches in the
literature, in which DR is managed from the viewpoint of only one
beneficiary. The comparison showed that more utilisation of the
DR in the energy/reserve market and lower reserve cost for
managing wind power uncertainty can be achieved from the
proposed approach.

Since for some customers, the demand curtailment may be
subject to load recovery, the proposed DR market model can be
extended to include the load recovery effects. Furthermore,
implementation of efficient methods for solving the resulting large-
scale MILP problem makes the object of future research.
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8௑Appendix
௑
8.1 Appendix 1: TSO's DR price

In the objective function of the local DR market j (8), the social
welfare for the participants of the DR market, except the TSO, is
maximised. Therefore, the dual variables associated with the DR
demand–supply balance of the local DR buyers, i.e. constraints
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(10) and (12), represent the shadow prices of these constraints [45].
In the DR market model, the optimal values of these dual variables,
i.e. λjbgt

cU∗

 and λjbgwt
dU∗

, which reflect the incremental cost of supplying
the next megawatt of the DR demand (capacity and deployment),
are known as DR clearing prices for the local DR buyers.

The TSO’ demand for the DR, as the global DR buyer, is not
included in (8) and is determined in the upper-level problem (1)–
(7). Here, we show that in the proposed DR market clearing model
the optimal values of the dual variables associated with the DR
demand–supply balance constraints of the TSO, i.e. constraints (9)
and (11), can be considered as DR clearing prices for the TSO. For
the sake of simplicity, suppose that in the optimal point of the
lower-level optimisation problem (8)–(22), none of the inequality
constraints is active. Hence, based on the KKT optimality
equations [45], the dual variables associated with constraints (13)–
(18) are equal to zero. From the KKT conditions, we have (see
(29)) where Lj is the Lagrangian function for the optimisation
problem related to the local DR market j [45]. At the optimal point

γ jt
cU∗

+ ∑
b = 1

NB j

∑
g = 1

NGb

cld
bg

λ
jbgt
cU ∗

= ajldt
cU , ∀l, d, t (30)

Based on (30), the sum of the DR clearing prices for the local DR
buyers and the optimal value of the dual variable associated with
constraint (9) is equal to the cost of one-megawatt DR capacity
provided by customer d of DRP l, i.e. ajldt

cU . Therefore, γ jt
cU∗

 is
obtained by subtracting the paid money by the local DR buyers for
one-megawatt DR capacity from the cost of providing one-
megawatt DR capacity.

γ jt
cU∗

= ajldt
cU − ∑

b = 1

NB j

∑
g = 1

NGb

cld
bg

λ
jbgt
cU ∗

, ∀l, d, t (31)

Therefore, the optimal value of the dual variable γ jt
cU represents the

share of the TSO, as a DR buyer, in compensation of the cost of
one-megawatt DR capacity. Hence, we can conclude that the
optimal value of the dual variable associated with (9) is equivalent
to the price of the DR capacity for the TSO. Please note that this
dual variable is included in the objective function (1) of the upper-
level problem, which is minimised. Considering the inequality
constraints of the lower-level problem (8)–(22), the clearing prices
for the DR capacity must satisfy the following (KKT conditions)
equations:

−ajldt
cU + γ jt

cU + ∑
b = 1

NB j

∑
g = 1

NGb

cld
bg

λjbgt
cU + ∑

w = 1

Nw

ηjldwt
U − μ̄ jldt

U

+μ jldt
U − τ jld(t − 1)

U + τ jldt
U = 0, ∀l, d, t

(32)

The clearing prices for the DR deployment, i.e. γ jwt
dU and λjbgwt

dU  are
determined, similarly.

8.2 Appendix 2: Solution approach

To solve the bi-level problem (25)–(28), first, it is converted to a
single-level programming problem. Then, the resulted problem is
linearised to be solved using commercial solvers as well.

The DR market clearing problem at bus j (8)–(22) is a linear
programming problem. Hence it presents a continues and convex
problem. Based on the duality theory, each lower-level problem
can be represented by its constraints, its dual problem constraints
and the strong duality condition [45]. By incorporating the
constraints of the primal and dual problems of the lower-level
problems as well as the strong duality condition into the upper-
level problem, the bi-level problem can be converted to a single-
level problem. The dual problem of the lower-level problem j is

Minmise J̄ j = ∑
t = 1

NT

−γ jt
cURjt

U + ∑
w = 1

Nw

−γ jwt
dUr jwt

U

+ ∑
l = 1

NA j

∑
d = 1

ND

Pjldt
DR, max

μ̄ jldt
U − Pjldt

DR, min
μ jldt

U

+ ∑
l = 1

NA j

∑
d = 1

ND

RDjld
U, max

τ jldt
U

+ ∑
l = 1

NA j

∑
d = 1

ND

∑
w = 1

Nw

∑
k = 1

Nk

pjldt
DR, max(k)θ jldwt

U (k)

+ ∑
b = 1

NB j

∑
g = 1

NGb

∑
w = 1

Nw

∑
h = 1

Nh

d jbgt
DR, max(k)δjbgwt

U (h)

(33)

(see (34)) 

−γ jwt
dU − ∑

b =

NB j

∑
g = 1

NGb

cld
bg

λjbgwt
dU − ηjldwt

U

+θ jldwt
U (k) ≥ − πwajldt

dU (k), ∀l, d, k, w, t

(35)

λjbgt
cU − ∑

w = 1

Nw

ξjbgwt
U ≥ αjbgt

cU , ∀b, g, t (36)

λjbgwt
dU + ξjbgwt

U + δjbgwt
U (h) ≥ πwαjbgt

dU (h), ∀b, g, h, w, t (37)

On the other hand, the strong duality theorem [45] states that at the
optimal point, the objective functions of the primal and dual
problems have the same value.

∂L j

∂Pjldt
DR, U

= − ajldt
cU + γ jt

cU + ∑
b = 1

NB j

∑
g = 1

NGb

cld
bg

λjbgt
cU = 0, ∀l, d, t (29)

subject to: − γ jt
cU − ∑

b = 1

NB j

∑
g = 1

NGb

cld
bg

λjbgt
cU − ∑

w = 1

Nw

ηjldwt
U + μ̄ jldt

U − μ jldt
U

+τ jld(t − 1)
U − τ jldt

U ≥ − ajldt
cU , ∀l, d, t

(34)
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∑
t = 1

NT

∑
b = 1

NB j

∑
g = 1

NGb

αjbgt
cU Djbgt

DR, U − ∑
l = 1

NA j

∑
d = 1

ND
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DR, U

+ ∑
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ND

∑
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Nk
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dU (k)pjldwt

DR, U(k)

= ∑
t = 1

NT

−γ jt
cURjt

U + ∑
w = 1

Nw

−γ jwt
dUr jwt

U

+ ∑
l = 1

NA j

∑
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ND

Pjldt
DR, max

μ̄ jldt
U − Pjldt

DR, min
μ jldt

U
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l = 1

NA j
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ND

RDjld
U, max

τ jldt
U

+ ∑
l = 1

NA j

∑
d = 1

ND

∑
w = 1

Nw

∑
k = 1
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pjldt
DR, max(k)θ jldwt

U (k)

+ ∑
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∑
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NGb

∑
w = 1

Nw

∑
h = 1

Nh

d jbgt
DR, max(h)δjbgwt

U (h)

(38)

Finally, the equivalent single-level mixed-integer non-linear
programming problem of the proposed bi-level model can be
expressed as follows:

Minimise (1) (39)

subject to: (2) − (7) (40)

(9) − (23) ∀ j (41)

(34) − (38) ∀ j (42)

Because of the products of the upper-level variables (Rjt and r jtw)
and the lower-level variables (γ jt

c  and γ jtw
d ) in (23) and (24) that

appear in the objective function (1), the bi-level problem is non-
linear. Based on the strong duality condition (34), the sum of the
bilinear products γ jt

c Rjt and γ jtw
d r jtw can be replaced by its equivalent

linear terms. Hence, the bi-level problem can be represented by a
MILP problem.
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