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Abstract

Background

Statistical models are regularly used in the forecasting and surveillance of infectious dis-

eases to guide public health. Variable selection assists in determining factors associated

with disease transmission, however, often overlooked in this process is the evaluation and

suitability of the statistical model used in forecasting disease transmission and outbreaks.

Here we aim to evaluate several modelling methods to optimise predictive modelling of

Ross River virus (RRV) disease notifications and outbreaks in epidemiological important

regions of Victoria and Western Australia.

Methodology/Principal findings

We developed several statistical methods using meteorological and RRV surveillance data

from July 2000 until June 2018 in Victoria and from July 1991 until June 2018 in Western

Australia. Models were developed for 11 Local Government Areas (LGAs) in Victoria and

seven LGAs in Western Australia. We found generalised additive models and generalised

boosted regression models, and generalised additive models and negative binomial models

to be the best fit models when predicting RRV outbreaks and notifications, respectively. No

association was found with a model’s ability to predict RRV notifications in LGAs with greater

RRV activity, or for outbreak predictions to have a higher accuracy in LGAs with greater

RRV notifications. Moreover, we assessed the use of factor analysis to generate indepen-

dent variables used in predictive modelling. In the majority of LGAs, this method did not

result in better model predictive performance.

Conclusions/Significance

We demonstrate that models which are developed and used for predicting disease notifica-

tions may not be suitable for predicting disease outbreaks, or vice versa. Furthermore, poor
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predictive performance in modelling disease transmissions may be the result of inappropri-

ate model selection methods. Our findings provide approaches and methods to facilitate the

selection of the best fit statistical model for predicting mosquito-borne disease notifications

and outbreaks used for disease surveillance.

Author summary

Mosquito-borne diseases cause significant illness worldwide. Mosquito breeding, which

leads to disease transmission, is driven by favorable climatic and meteorological events

(e.g., rainfall and warm temperatures). Understanding the association meteorological con-

ditions have with mosquito breeding aids in directing mosquito control activities when

there is a likelihood of disease transmission. Predictive models are used in public health

decision making and resource allocation to guide mosquito control programs. However,

there are multiple modelling methods, all of which provide differing degrees of accuracy

in their predictions and suitability to the disease transmission dynamics. This study aims

to assess commonly used statistical models for predicting mosquito-borne disease notifi-

cations and outbreaks. We demonstrate that statistical model selection plays an important

role in accurately forecasting mosquito-borne disease and poor predictive performance

may be due to inappropriate model selection. Furthermore, a model suited to predicting

disease notifications may not always be the best model to accurately predict the occur-

rence of disease outbreaks. The methods used here can aid in public health to establish

suitable predictive mosquito-borne disease surveillance systems to help guide disease pre-

vention and resource allocation, and mosquito control activities.

Introduction

Meteorological factors influence the transmission ecology of pathogen, host and vector species

populations, and human behaviour, which can act directly or indirectly to drive mosquito-

borne disease dynamics [1,2]. Climate events (such as rainfall or tidal events) impact upon

mosquito population dynamics and the presentation of disease in host and human populations

preceding these events. The time between meteorological events that lead to increases in mos-

quito populations and when mosquito-borne diseases are detected in humans represents the

enzootic transmission cycle. This period includes the diseases’ intrinsic incubation period and

the circulation through animal populations before transmission spilling over into human pop-

ulations. The time delay preceding meteorological events (e.g., heavy rainfall), which repre-

sents the circulation and transmission of disease before the spillover into humans, make

mosquito-borne diseases well suited for predictive modelling (i.e., forecasting) of outbreaks.

There are several statistical methods that are suited for forecasting disease notifications [1,3–

6]. Differing predictive modelling approaches in the literature likely vary in their ability to pre-

dict disease activity, but it is unknown which methods are better and under which circum-

stances. In this study, we address this problem by assessing commonly used statistical methods

in forecasting mosquito-borne disease notifications and outbreaks in Australia.

Ross River virus (RRV, family Togaviridae, genus Alphavirus) is an important arbovirus

that is endemic in Australia having a complex epidemiology with a multi-vector and multi-

host transmission system being dependent on ecological context [7–10]. It is the most com-

mon mosquito-borne virus affecting humans in Australia, with an annual average incidence
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rate of 40 cases per 100,000 population [11]. Over the past two decades, epidemiological stud-

ies on environmental and meteorological factors have been conducted across multiple regions

of Australia, providing insight into the factors and complexity of RRV transmission across dif-

ferent locations [1,2,6,12–15]. The variations reported include site-specific meteorological,

environmental, and geographic factors, mosquito vector species, and host species [7–9].

There are multiple time series statistical modelling studies aimed at forecasting RRV trans-

mission. Epidemiological analyses have typically focused on locations where attack rates of

RRV are highest and areas where transmission is seasonally driven with either an annual or bi-

annual oscillation of human disease cases [6,15]. Statistical models predicting RRV notifica-

tions include, but are not limited to: logistic and Poisson regressions, negative binomial regres-

sions, seasonal and non-seasonal auto-regressive integrated moving average models, and

generalised additive models [e.g.,1,2,6,13–18]. The use of these models has primarily been to

estimate the probability of an RRV outbreak at a given time, or to predict counts of notifica-

tions using a combination of environmental and meteorological factors, and mosquito surveil-

lance [e.g.,13,17]. The sensitivity and specificity of predicting outbreaks in previous

forecasting studies vary, yet there has been, to our knowledge, no evaluation of the relative per-

formance of the types of models used in forecasting RRV. Of studies that have focused on pre-

dicting RRV transmission, few present the models’ predictive performance [10].

The aim of this paper is to evaluate several modelling methods for predicting RRV notifica-

tions and outbreaks using meteorological variables, and to assess factors affecting predictive

performance. These include generalised boosted regression, generalised additive regression,

hurdle regression, negative binomial regression, and auto-regressive integrated moving aver-

age regression models. To maximise the utility of the study, we undertook the forecasting

across sites in Victoria and Western Australia that include locations with a varying number of

RRV notifications and are subject to systematic meteorological and vector population moni-

toring. At each site, we model both RRV notifications per 100,000 population and the likeli-

hood of a disease outbreak as these are desired forecasting outputs to inform public health

policy in Australia. We follow a systematic approach to develop a framework in constructing

and selecting the best performing epidemiological models.

Methods

Data

This study included 18 sites that experience RRV outbreaks; sites included 11 Victorian and

seven Western Australian Local Government Areas (LGAs) (Fig 1). RRV notifications for Vic-

toria and Western Australia were extracted from the Public Health Event Surveillance System

(PHESS) held within the Victorian Department of Health and Human Services, and the West-

ern Australian Notifiable Infectious Diseases Database (WANIDD) held by Western Austra-

lian Department of Health, respectively. RRV notification data included the estimated month

or week and year of RRV symptom onset, postcode and, for Victoria only, serological testing

results for the RRV infection. RRV notifications were aggregated into the total number of noti-

fications by month and year. Notifications of RRV were included if they met the most recent

national surveillance case definition for confirmed or probable RRV (effective 1st January

2016): specifically, detection of RRV by polymerase chain reaction (PCR) or demonstration of

RRV-IgG seroconversion for confirmed RRV, or detection of both RRV-IgM and RRV-IgG

within the same specimen for probable RRV [19]. Ross River virus human notification data

were collected from July 2000 until June 2018 in Victoria, and from July 1991 until June 2018

in Western Australia. Population estimates for each LGA were obtained from the Australia

Bureau of Statistics [20].
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Meteorological data were collected from the SILO database hosted by the Queensland Gov-

ernment, which provides access to daily meteorological datasets of a range of meteorological

and climate variables from Bureau of Meteorology weather stations [21]. All variables exam-

ined were summarised into monthly observations for each LGA (Table 1) which included (per

month): total rainfall (mm), maximum and minimum temperature (degrees Celsius), mean

vapor pressure (hPa), maximum and minimum relative humidity (%), Morton’s areal actual

and potential evapotranspiration (mm), and mean sea level pressure (hPa). These variables

were chosen based on their availability and use in previous RRV forecasting studies. Where

multiple weather stations existed within a single LGA, we used a single weather station closest

to the main population centre where the majority of RRV notifications were reported. The use

Fig 1. Local Government Areas used in forecasting Ross River virus notifications and outbreaks across the States

of Victoria and Western Australia, Australia.

https://doi.org/10.1371/journal.pntd.0009252.g001

Table 1. Best fit model predictive performance of RRV notifications and outbreaks in local government areas (LGA) in Victoria (VIC), and Western Australia

(WA) by LGA climate. The total number of RRV notifications (Cases), the best model used for predicting RRV notifications, adjusted R-squared coefficient (R2), the best

model used for predicting outbreaks, sensitivity (Sn), specificity (Sp), and Matthews correlation coefficient (MCC). ARIMA = auto-regressive integrated moving average

model; GAM = generalised additive model; BR = generalised boosted regression; NB = negative binomial regression; and Hurdle = hurdle regression. Ninety five percent

confidence intervals (95% CI) are given of the distribution of each predictive performance measure from Jackknife pseudo-random sampling using the respective best fit

model. Models with a “�” following the model type used the Factorial Approach. See Table 2 for a comparison of how close modelling methods were to one another for pre-

dicting RRV notifications and outbreaks.

Notification Models Outbreak Models

State LGA Climate Cases (n) Best model R2 (95% CI) Best model Sn (95% CI) Sp (95% CI) MCC (95% CI)

VIC Ballarat Temperate 65 GAM 0.533 (0.505–0.534) GAM 0.75 (0.67–0.69) 1.00 (0.98–0.99) 0.86 (0.75–0.76)

VIC Benalla Semi-arid 65 GAM 0.141 (0.109–0.147) GAM� 0.50 (0.48–0.53) 0.89 (0.89–0.89) 0.26 (0.22–0.25)

VIC Bendigo Semi-arid 170 BR 0.431 (0.154–0.247) BR 0.25 (0.29–0.31) 1.00 (1.00–1.00) 0.49 (0.49–0.50)

VIC Campaspe Semi-arid 205 Hurdle 0.757 (0.725–0.745) Hurdle 0.50 (0.50–0.51) 1.00 (1.00–1.00) 0.70 (0.70–0.70)

VIC Geelong Semi-arid 103 Hurdle 0.581 (0.340–0.508) Hurdle 0.25 (0.21–0.23) 1.00 (1.00–1.00) 0.49 (0.37–0.41)

VIC Gippsland Semi-arid 126 GAM� 0.214 (0.195–0.219) Hurdle 0.43 (0.37–0.41) 0.92 (0.92–0.92) 0.31 (0.29–0.30)

VIC Horsham Semi-arid 205 BR 0.143 (0.060–0.143) BR 0.67 (0.63–0.64) 0.96 (0.96–0.96) 0.49 (0.49–0.50)

VIC Mildura Temperate 312 Hurdle 0.462 (0.303–0.418) GAM 0.25 (0.30–0.32) 1.00 (0.99–1.00) 0.49 (0.27–0.28)

VIC Shepparton Temperate 201 GAM 0.301 (0.203–0.391) GAM 0.25 (0.16–0.19) 1.00 (1.00–1.00) 0.49 (0.29–0.33)

VIC Surf Coast Temperate 98 GAM 0.078 (0.037–0.120) Hurdle 0.25 (0.22–0.24) 0.99 (0.96–0.97) 0.33 (0.21–0.23)

VIC Swan Hill Temperate 128 GAM 0.065 (0.055–0.070) GAM 0.00 (0.00–0.00) 1.00 (1.00–1.00) 0.00 (0.00–0.00)

WA Broome Semi-arid 542 BR 0.518 (0.325–0.449) BR 0.75 (0.67–0.71) 0.95 (0.95–0.95) 0.54 (0.48–0.50)

WA Capel Temperate 305 NB 0.226 (0.210–0.233) NB 0.00 (0.00–0.01) 0.96 (0.96–0.97) 0.00 (-0.02 - -0.01)

WA Derby Semi-arid 100 GAM 0.357 (0.334–0.386) NB 0.43 (0.36–0.37) 0.99 (0.97–0.98) 0.54 (0.43–0.44)

WA Kalgoorlie Temperate 264 NB 0.145 (0.130–0.156) NB 0.00 (0.00–0.00) 1.00 (1.00–1.00) 0.00 (0.00–0.00)

WA Kununurra Semi-arid 178 BR 0.382 (0.355–0.397) BR 0.80 (0.77–0.78) 0.90 (0.90–0.91) 0.50 (0.49–0.50)

WA Peel Temperate 2044 Hurdle� 0.245 (0.150–0.324) BR� 0.18 (0.17–0.18) 0.97 (0.95–0.96) 0.24 (0.18–0.19)

WA Port Hedland Semi-arid 196 Hurdle 0.176 (0.132–0.151) GAM 1.00 (0.61–0.69) 0.88 (0.89–0.90) 0.40 (0.23–0.27)

Mean

Overall 0.320 0.40 0.97 0.43

VIC 0.337 0.37 0.98 0.50

WA 0.293 0.45 0.95 0.32

STDEV

Overall 0.195 0.29 0.04 0.17

VIC 0.231 0.26 0.03 0.21

WA 0.132 0.30 0.04 0.10

https://doi.org/10.1371/journal.pntd.0009252.t001
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of a single station was also necessary due to a high rate of intermittent and discontinuous mon-

itoring by the other stations outside of population centres.

Statistical analysis

Statistical analysis followed a stratified structured approach when linking meteorological pre-

dictors with RRV notifications. We undertook two approaches in constructing predictive

models; the first used meteorological factors as independent variables within the predictive

models, hereafter referred to as the “Independent Approach”. The second approach used fac-

tor analysis to determine factor scores of the meteorological variables to be used as indepen-

dent variables in the models, hereafter referred to as the “Factorial Approach”. In both

approaches, the distribution of each independent variable was assessed using a Shapiro-Wilks

test for normality and, if found to be significantly non-normal (p� 0.05), was transformed as

appropriate to approximate symmetry. In all cases this involved a log10 scale transformation,

however a square-root transformation was also assessed during preliminary analysis [2,22].

The transformation of independent variables in seasonally driven systems allows for variables

to be assessed as a stationary effect, often improving forecasting accuracy. Lags were intro-

duced to each independent variable based on a cross-correlation analysis of the independent

variable associated with the dependent variable. These lags help represent the time it takes for

RRV to circulate through the mosquito and host populations, and the incubation periods

before the onset of symptomatic RRV in humans and its subsequent disease notification.

These time lags allow for predictions of RRV notifications to be made for the future. After the

introduction of lag periods, pairwise correlations between independent variables were assessed

in the independent approach, using Spearman’s correlation coefficient, similar to that of other

RRV prediction modelling [1,2,17]. If two independent variables were found to be highly cor-

related with one another (cut-off of 0.75), the variable with the largest mean absolute correla-

tion with the other independent variables was removed.

Data were split into a training and testing data sets. The training data set included data from

July 2000 to June 2012 for Victorian LGAs and from July 1991 to June 2012 for Western Austra-

lia. Data from July 2012 to June 2018 for Victoria and Western Australia were then used as the

testing data set to validate the models. Five modelling designs were used to predict RRV notifica-

tions and outbreaks: these included negative binomial regression, generalised boosted regression,

hurdle, generalise additive, and autoregressive integrated moving average (ARIMA) models. Sea-

sonal ARIMA models were initially used; however, the preliminary analysis found the seasonal

components of the model did not significantly improve the model predictions. Except for gener-

alised boosted regression models, all models used here represent those which have commonly

been used in predicting the transmission and outbreaks of vector-borne diseases, including RRV

[23]. For negative binomial regression, generalised boosted regression, hurdle, and generalised

additive models, RRV notification data was used as the dependent variable expressed as counts

of RRV notifications and human population data of each LGA was then used as an offset term to

account for differences in population densities. In the ARIMA models, human notification data

were divided by the population at risk and used as the dependent variable.

The Independent Approach used meteorological factors as independent variables in the

model. For negative binomial regression, hurdle, generalised additive, and ARIMA models

forward and backwards Akaike Information Criterion (AIC) automated stepwise variable

selection was used to select the best model fit with the lowest AIC value to make predictions.

For the generalised boosted regression models, variables underwent parameter tuning using

the relative variable importance, whereby variables with importance equal to zero were

excluded from the final model [24,25]. Variable importance was calculated based on the
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number of times a variable is selected for splitting within the classification decision tree, using

weighted squared cumulative reduction in error which is averaged over all regression trees

[26,27]. Variable importance is then divided by the highest variable importance to give values

between zero and one, with higher values indicating greater importance in the model.

The Factorial Approach uses exploratory factor analysis to find groups of independent vari-

ables, “factors”, to be used as independent variables within the final model. To identify factors,

a correlation matrix was made of the meteorological variables, allowing for up to nine possible

factors. The eigenvalues of this matrix correspond to factors, and those factors with an

eigenvalue > 1 were retained for use in the exploratory factor analysis applying an oblique

rotation, allowing for correlations between factors, and ordinary least squares to obtain factor

scores [28]. Eigenvectors were used as factors and as independent variables with each model.

In the generalised additive models for both modelling approaches, a seasonal natural cubic

spline was included as a predictor, with knots placed at yearly intervals (every 12 months) to

allow for complex seasonality associations in transmission.

The predictive performance of each approach and model type was judged by assessing how

well the model was able to predict RRV notifications per 100,000 population, and if the model

was able to ‘predict’ an observed RRV outbreak. For the models which predicted counts of

RRV notifications, predictions were converted into RRV notifications per 100,000 population.

An RRV outbreak was classified using a fixed RRV notification threshold, whereby monthly

RRV notifications per 100,000 above the mean plus one standard deviation of the observed

RRV notifications per 100,000 for the entire time period for each LGA was classified as an out-

break [2,17]. We initially evaluated three different outbreak thresholds: monthly mean,

monthly mean plus one standard deviation, and monthly mean plus two standard deviations

to account for variability in RRV notifications. We found that using the monthly mean in

many of the Victorian LGAs classified months with a single case as outbreaks and using the

monthly mean plus two standard deviations excluded clear distinct outbreak periods and was

instead representative of an epidemic threshold (S1 and S2 Figs). For the assessment of how

well the model predicted RRV notifications, we evaluated an adjusted R2 from a linear regres-

sion model of predicted RRV notifications as an independent variable predicting the observed

RRV notifications as the dependent variable in the testing portion of the data with a statistical

significance having a p-value< 0.05. Predictive model performance for how well predictions

matched observed outbreaks were evaluated using sensitivity, specificity, and Matthews corre-

lation coefficient (MCC) [29]. For models predicting outbreaks, where MCC values were

equal, the same model type which had the greater adjusted R2 was used as the best fit model.

A Jackknife approach was used to assess how sensitive the best fit models were to the train-

ing data to obtain 95 percent confidence intervals for each of the predictive performance mea-

sures. We randomly resampled 90 percent of our training data 1000 times, creating pseudo-

random training data before refitting each best fit model and making predictions on the testing

data. Undertaking the Jackknife approach allowed us to obtain the distribution of each model’s

respective predictive performance on the testing data and assess how reliant the best fit model’s

predictive accuracy and model performance is on the selection the training data sample.

Statistical analysis was undertaken in R (Version 3.5.3, www.r.project.org), using the latest

compatible versions of packages ‘mltools, ‘psych’, ‘gam’, ‘caret’, ‘mlbench’, ‘mgcv’, ‘MuMIn’,

‘pscl’, ‘forecast’, ‘gbm’, ‘splines’, ‘MASS’, ‘broom’, ‘zoo’, and ‘car’.

Results

For the study period, there were a total of 5,307 RRV notifications across all 18 LGAs

(Table 1). The range in the number of RRV cases generally reflects the population differences
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among the sites, differing time lengths in the data available, and frequency of disease

outbreaks.

Of the 18 LGAs, 12 identified the same model type as performing best for predicting out-

breaks and RRV notifications, while the remaining six LGAs had two differing model types to

separately predict outbreaks and RRV notifications (Tables 1 and 2). Between the two

Table 2. Independent and Factorial Approach results by State; Victoria (VIC), and Western Australia (WA) and local government area (LGA) for predicting RRV

notifications per 100,000 population (R2) and outbreaks (Sn, Sp and MCC). Adjusted R-squared coefficient (R2), sensitivity (Sn), specificity (Sn), and Matthews correla-

tion coefficient (MCC) of model performance and predictions. Shading represents the best fit statistical model for predicting notifications (grey); predicting outbreaks

(red): and predicting both outbreaks and notifications (blue).

State LGA Boosted Regression Generalised Additive

Model

Hurdle Model Negative Binomial ARIMA

R2 Sn Sp MCC R2 Sn Sp MCC R2 Sn Sp MCC R2 Sn Sp MCC R2 Sn Sp MCC

Independent Approach
VIC Ballarat 0.18 0.50 1.00 0.70 0.53 0.75 1.00 0.86 0.37 0.00 1.00 0.00 0.52 0.25 1.00 0.49 0.07 0.00 1.00 0.00

VIC Benalla 0.00 0.00 1.00 0.00 0.14 0.00 1.00 0.00 0.12 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.10 0.00 1.00 0.00

VIC Bendigo 0.43 0.25 1.00 0.49 0.17 0.75 0.88 0.38 0.27 0.00 1.00 0.00 0.18 0.00 1.00 0.00 0.04 0.00 1.00 0.00

VIC Campaspe 0.26 0.50 0.97 0.47 0.74 0.50 1.00 0.70 0.76 0.50 1.00 0.70 0.74 0.50 1.00 0.70 0.29 0.25 1.00 0.49

VIC Geelong 0.18 0.25 1.00 0.49 0.29 1.00 0.84 0.46 0.58 0.25 1.00 0.49 0.26 0.00 1.00 0.00 0.09 0.00 1.00 0.00

VIC Gippsland 0.02 0.43 0.87 0.24 0.14 0.00 0.99 -0.04 0.13 0.43 0.92 0.31 0.14 0.29 0.93 0.22 0.12 0.00 1.00 0.00

VIC Horsham 0.14 0.67 0.96 0.49 0.06 1.00 0.83 0.39 0.00 0.00 1.00 0.00 0.06 0.00 1.00 0.00 0.08 0.00 1.00 0.00

VIC Mildura 0.13 0.50 0.96 0.41 0.40 0.25 1.00 0.49 0.46 0.00 1.00 0.00 0.36 0.00 1.00 0.00 0.27 0.00 1.00 0.00

VIC Shepparton 0.12 0.00 1.00 0.00 0.30 0.25 1.00 0.49 0.16 0.00 1.00 0.00 0.29 0.00 1.00 0.00 0.11 0.00 1.00 0.00

VIC Surf Coast -0.01 0.00 1.00 0.00 0.08 0.00 1.00 0.00 0.01 0.25 0.99 0.33 0.06 0.00 1.00 0.00 0.07 0.00 1.00 0.00

VIC Swan Hill -0.01 0.00 0.97 -0.04 0.07 0.00 1.00 0.00 0.05 0.00 1.00 0.00 0.06 0.00 1.00 0.00 0.02 0.00 1.00 0.00

WA Broome 0.52 0.75 0.95 0.54 0.33 1.00 0.88 0.52 0.42 0.75 0.95 0.54 0.36 0.00 0.97 -0.04 0.19 0.00 1.00 0.00

WA Capel 0.11 0.00 0.97 -0.02 0.22 0.00 1.00 0.00 0.18 0.00 0.95 -0.03 0.23 0.00 0.96 0.00 0.11 0.00 1.00 0.00

WA Derby 0.16 0.29 0.93 0.22 0.36 1.00 0.79 0.50 0.28 0.29 0.99 0.40 0.32 0.43 0.99 0.54 0.08 0.00 1.00 0.00

WA Kalgoorlie 0.03 0.00 1.00 0.00 0.12 0.00 1.00 0.00 0.14 0.00 1.00 0.00 0.15 0.00 1.00 0.00 0.13 0.00 1.00 0.00

WA Kununurra 0.38 0.80 0.90 0.50 0.35 0.40 0.89 0.21 0.36 0.40 0.90 0.23 0.36 0.40 0.90 0.23 0.07 0.00 1.00 0.00

WA Peel 0.09 0.00 0.96 -0.08 0.12 0.45 0.78 0.18 0.17 0.00 0.96 -0.08 0.17 0.18 0.94 0.16 0.13 0.00 1.00 0.00

WA Port Hedland 0.07 0.50 0.95 0.29 0.07 1.00 0.88 0.40 0.18 0.50 0.96 0.33 0.14 0.00 1.00 0.00 0.04 0.00 1.00 0.00

Factorial Approach
VIC Ballarat -0.01 0.00 0.97 -0.04 0.03 0.00 1.00 0.00 0.02 0.00 1.00 0.00 0.02 0.00 1.00 0.00 0.00 0.00 1.00 0.00

VIC Benalla 0.00 0.00 1.00 0.00 0.04 0.50 0.89 0.26 0.02 0.00 1.00 0.00 0.02 0.00 1.00 0.00 0.04 0.00 1.00 0.00

VIC Bendigo 0.00 0.00 1.00 0.00 0.07 0.00 0.97 -0.04 0.02 0.00 1.00 0.00 0.03 0.00 1.00 0.00 0.05 0.00 1.00 0.00

VIC Campaspe -0.01 0.00 0.99 -0.03 0.09 0.00 1.00 0.00 0.07 0.00 1.00 0.00 0.08 0.00 1.00 0.00 0.03 0.00 1.00 0.00

VIC Geelong -0.01 0.00 0.99 -0.03 -0.01 0.25 0.81 0.03 -0.01 0.25 0.93 0.15 -0.01 0.25 0.97 0.26 0.00 0.00 1.00 0.00

VIC Gippsland 0.00 0.29 0.82 0.07 0.22 0.14 0.96 0.13 0.21 0.29 0.92 0.19 0.21 0.14 0.93 0.08 0.12 0.00 1.00 0.00

VIC Horsham -0.01 0.00 0.93 -0.05 -0.01 1.00 0.63 0.25 -0.01 0.00 0.96 -0.04 -0.01 0.00 1.00 0.00 0.05 0.00 1.00 0.00

VIC Mildura -0.01 0.00 0.95 -0.05 -0.01 0.00 0.96 -0.05 -0.01 0.00 0.97 -0.04 -0.01 0.00 0.97 -0.04 0.04 0.00 1.00 0.00

VIC Shepparton 0.00 0.00 1.00 0.00 0.04 0.00 1.00 0.00 0.04 0.00 1.00 0.00 0.03 0.00 1.00 0.00 0.04 0.00 1.00 0.00

VIC Surf Coast -0.01 0.00 1.00 0.00 -0.01 0.00 1.00 0.00 0.02 0.00 1.00 0.00 -0.01 0.00 1.00 0.00 0.02 0.00 1.00 0.00

VIC Swan Hill 0.00 0.00 0.97 -0.04 -0.01 0.00 0.93 -0.06 -0.01 0.00 0.97 -0.04 -0.01 0.00 0.99 -0.03 0.02 0.00 1.00 0.00

WA Broome 0.04 0.00 0.97 -0.04 0.03 0.00 0.95 -0.05 0.04 0.00 1.00 0.00 0.03 0.00 1.00 0.00 0.04 0.00 1.00 0.00

WA Capel 0.13 0.00 0.99 -0.01 0.1 0.00 1.00 0.00 0.14 0.00 1.00 0.00 0.07 0.00 1.00 0.00 0.10 0.00 1.00 0.00

WA Derby 0.17 0.57 0.96 0.53 0.06 0.86 0.82 0.45 0.05 0.14 0.96 0.13 0.06 0.14 0.97 0.17 0.14 0.00 1.00 0.00

WA Kalgoorlie 0.01 0.00 1.00 0.00 0.08 0.00 1.00 0.00 0.12 0.00 1.00 0.00 0.10 0.00 1.00 0.00 0.04 0.00 1.00 0.00

WA Kununurra 0.20 0.20 0.95 0.15 0.21 0.00 0.99 -0.03 0.21 0.20 0.93 0.12 0.21 0.20 0.92 0.10 0.19 0.00 1.00 0.00

WA Peel 0.09 0.18 0.97 0.24 0.21 0.45 0.82 0.23 0.25 0.00 1.00 0.00 0.24 0.00 0.99 -0.05 0.15 0.00 1.00 0.00

WA Port Hedland -0.01 0.50 0.91 0.21 -0.01 0.00 0.93 -0.04 0.00 0.00 1.00 0.00 -0.01 0.00 1.00 0.00 0.02 0.00 1.00 0.00

https://doi.org/10.1371/journal.pntd.0009252.t002
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modelling approaches, Independent Approach was found to be the best method for predicting

RRV outbreaks and RRV notifications, with more LGAs having a best fit model with this

method than that of the Factorial Approach (Table 1). One LGA had a best fit model using the

Factorial Approach for predicting both outbreaks and RRV notifications, one LGA used the

Factorial Approach for predicting outbreaks while using the Independent Approach for pre-

dicting RRV notifications, and one LGA used the Factorial Approach for predicting RRV noti-

fications while using the Independent Approach for predicting RRV outbreaks (Table 1). The

predictive models appeared to generally capture the activity in RRV transmission across LGAs

(Figs 2 and 3). The mean sensitivity and specificity for a model to correctly identify outbreaks

among the LGAs examined were 0.40 and 0.97, respectively (Table 1). The sensitivity and spec-

ificity values seen in the models is further supported by having a weak to moderate mean Mat-

thews correlation coefficient (MCC = 0.43) (Table 1). The model’s predictive performance is

apparent when predictions are visually plotted against the observed RRV notifications (Figs 2

and 3, for variables included in each best fit model see S1 Table). Ballarat and Campaspe were

found to have the best performing model to predict RRV outbreaks with a moderate to strong

Matthews correlation coefficient of 0.86 and 0.70 respectively (Table 1). Campaspe in Victoria

had the best performing model for predicting RRV notifications when assessing the R-squared

coefficient (Table 1). While the models for Swan Hill, Capel, and Kalgoorlie were found to be

the poorest at predicting outbreaks. Generalised additive models were found to be the most

common best fit predictive model among LGAs for predicting both outbreaks (6/18) and RRV

notifications (7/18) (Tables 1 and 2). The best-fit model for predicting outbreaks, after general-

ised additive models, were generalised boosted regression models (5/18), hurdle models (4/

18), and negative binomial regression models (3/18). The best-fit model for predicting RRV

notifications, after generalised additive models, were hurdle models (5/18), generalised

boosted regression models (4/18), and negative binomial regression models (2/18). ARIMA

models were not chosen as a best-fit model for predicting RRV notifications or outbreaks in

any LGA. The most identified best fit predictive model among the Victorian LGAs were gener-

alised additive models which were used in seven of the 11 LGAs, while the most identified

best-fit model in Western Australia were negative binomial regression and boosted regression

models, being used in three of the seven LGAs each. Interestingly, boosted regression models

fitted RRV notifications better than the other statistical methods in the training data, but were

not the best at predicting RRV notifications or outbreaks (Table 1, Figs 1 and 2).

The predictive performance measures for outbreaks (i.e., sensitivity, specificity, & MCC)

were commonly above of the Jackknife 95% confidence interval distribution suggesting the

best fit models have greater predictive accuracy when using larger timeseries (Table 1).

Interestingly, there were six sites where the best fit model predictions had an adjusted R2

outside of the 95% confidence intervals of the Jackknife R2 distribution, which included

hurdle models and two generalised boosted regression models (Table 1). Similarly, several

of the best fit model predictions had an MCC outside of the 95% confidence intervals of the

Jackknife MCC distribution (Table 1). The mean difference between the upper and lower

95% confidence intervals across all sites from the Jackknife distribution for R2 and the MCC

were 0.07 and 0.02 respectively and ranged from 0.015–0.188 for the R2 and 0–0.04 for the

MCC.

Model performance to predict RRV notifications did not improve with greater annual

mean RRV notifications (p-value = 0.94), i.e., greater disease activity (Fig 4A). A model’s abil-

ity to predict outbreaks had no association with an LGAs annual mean RRV notifications (p-

value = 0.34, Fig 4B) and no significant trend was found in the association between the mean

number of outbreaks per five-year period and model performance to predict RRV outbreaks

(p-value = 0.35, Fig 4C). Moreover, we found no significant association between greater annual

PLOS NEGLECTED TROPICAL DISEASES Improving predictive mosquito-borne disease surveillance

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009252 March 9, 2021 9 / 21

https://doi.org/10.1371/journal.pntd.0009252


PLOS NEGLECTED TROPICAL DISEASES Improving predictive mosquito-borne disease surveillance

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009252 March 9, 2021 10 / 21

https://doi.org/10.1371/journal.pntd.0009252


mean RRV notifications with narrower distribution of the predictive performance of MCC (p-

value = 0.85) or R2 (p-value = 0.95) and no significant association between the mean number

of outbreaks per five-year period with a narrower distribution of the predictive performance of

MCC (p-value = 0.39) and R2 (p-value = 0.91) from the Jackknife pseudo-resampling. An

example of this can be seen in Ballarat; despite having the lowest number of RRV notifications

among the LGAs examined here, Ballarat had the best predictive model for predicting out-

breaks with the highest MCC coefficient (Table 1).

Preliminary analysis investigated three different types of outbreak thresholds where out-

breaks were classified if notifications per 100,000 were above the monthly mean, monthly

mean plus one standard deviation, and monthly mean plus two standard deviations (S1 and S2

Figs). The threshold of the mean plus one standard deviation was used here. However, prelimi-

nary analysis using different outbreak thresholds, such as the monthly mean, for several LGAs

led to improved outbreak predictions and different selection of the best fit model for outbreaks

(S2 Table). This is illustrated in several of the WA LGAs where outbreak model selected dif-

fered and the predictive accuracy was greater using the monthly mean number of RRV notifi-

cation per 100,000 population as the outbreak threshold versus the monthly mean plus one

standard deviation (Tables 1 and S2). Moreover, the confidence intervals of the predictive per-

formance measures for predictive outbreaks from the Jackknife distribution were seen to more

commonly be centred around the best fit model estimate in using the outbreak threshold of a

monthly mean (Tables 1 and S2).

Discussion

The transmission of mosquito-borne diseases is complex, with meteorological drivers of dis-

ease dynamics varying among geographic and climatic regions. Predictive modelling of the

transmission of Ross River virus (RRV) has used multiple statistical approaches for developing

forecasting tools [e.g.,6,10,15]. However, the selection of a statistical model over others is rarely

discussed or explored, and relative predictive performance comparing models has yet to be

assessed in relation to the forecasting of mosquito-borne disease activity. Our study demon-

strates the importance of evaluating the selection process (here, Independent vs Factorial) of a

statistical model for predicting mosquito-borne diseases, and that the choice of a predictive

model can affect the accuracy of disease predictions. To the best of our knowledge, the current

study is the first to compare multiple modelling methods for predicting RRV outbreaks and

notifications using out-of-sample RRV notifications across multiple Local Government Areas

(LGAs) in Australia.

Among the predictive models examined here, there were three statistical model types com-

monly found to be the best fit model for predicting RRV outbreaks and notifications. Interest-

ingly, out of the 18 LGAs examined, the same type of statistical model for predicting outbreaks

and notifications was the best fit for twelve of those LGAs. This demonstrates that predictive

models which are used for forecasting RRV notifications may not always be the most ideal for

identifying RRV outbreaks or vice versa. The best predictive models for predicting outbreaks

were found to be generalised additive models and generalised boosted regression models,

while, in contrast, the best predictive models for forecasting RRV notifications were general-

ised additive models and hurdle models. ARIMA models were not found to be a best fit model

Fig 2. Best fit predictive models of Ross River virus notifications (per 100,000 population) per month for 11 local government areas in Victoria, Australia.

Legend: solid black line: observed RRV notifications, solid grey line: model predicted RRV notifications, dotted red line: model predicted notifications used to predict

RRV outbreaks, solid light blue line: model predicted RRV notifications used to predict observed notifications and outbreaks, horizontal solid black line: notifications

threshold to classify outbreaks, dashed vertical black line: splitting training (left side of line) and testing (right side of line) data.

https://doi.org/10.1371/journal.pntd.0009252.g002
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Fig 3. Best fit predictive models of Ross River virus notifications (per 100,000 population) per month for six local government areas in Western Australia.

Legend: solid black line: observed RRV notifications, solid grey line: model predicted RRV notifications, dotted red line: model predicted notifications used to predict

RRV outbreaks, solid light blue line: model predicted RRV notifications used to predict observed RRV notifications and outbreaks, horizontal solid black line: RRV

notifications threshold to classify outbreaks, dash vertical black line: splitting training (left side of line) and testing (right side of line) data.

https://doi.org/10.1371/journal.pntd.0009252.g003
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in any LGA for predicting RRV outbreaks or notifications. This may be in part due to the

ARIMA models being inherently sensitive to data containing outliers, in this instance, LGAs

which have only a small number of outbreaks present in the data (such as in LGAs where out-

breaks were only seen in Victoria during 2011/12 and 2016/17). A seasonal ARIMA model was

initially examined during the preliminary analysis, as many of the northern Western Austra-

lian LGAs have annual seasonally driven RRV activity. However, the seasonal component con-

sistently led to poorer model predictions and was subsequently dropped. This may be owing to

several of the LGAs examined having infrequent and less annual seasonally driven RRV trans-

mission compared with semi-arid and tropical regions in which these models have previously

been used, and the seasonal dynamics being partially represented in the meteorological vari-

ables [30–32]. A Jackknife approach was used to validate the accuracy of best fit model for

each LGA. The predictive performance from the Jackknife approach showed that predictions

made by the best fit models for predicting RRV notifications were accurate and the distribu-

tion of the predictive performance measures (i.e., adjusted R2) to be narrow suggesting the

best fit models are reliable estimates when predicting the true risk of disease transmission. Pre-

dictive performance of the best fit models for predicting outbreaks was generally better than

that of the predictive performance distribution of the Jackknife (i.e., Matthews correlation

coefficient), suggesting that the ability to predict outbreaks is improved with a longer time-

series. However, the difference between the predictive performance for outbreaks could also

have arisen due to several of the Victorian LGAs having fewer outbreaks in the training data

than LGAs with greater RRV activity and with the data partitioning used in the Jackknife caus-

ing a distribution lower than that seen in the best fit model trained on the entire time series.

There were six LGAs where the best fit model had a greater predictive performance for pre-

dicting RRV notifications than when compared with the distribution from the Jackknife. Simi-

larly, there were eleven LGAs where the best fit model had a greater predictive performance

for predicting RRV outbreaks than when compared with the distribution from the Jackknife.

These LGAs having a greater predictive performance may indicate that for some regions, hav-

ing a longer/larger timeseries to train a model on leads to greater predictive accuracy. These

results suggest that using a k-fold cross-validation method may instead be a more reliable

approach in providing greater predictive accuracy by being able to train and test predictive

models across the entire data [1].

An RRV outbreak here is defined as a month with a higher number of RRV cases than the

monthly mean plus one standard deviation per 100,000, with this outbreak definition com-

monly being used in RRV predictive modelling [2,17,33]. During preliminary analysis, three

outbreak thresholds were explored: notifications above the monthly mean, monthly mean plus

one standard deviation, and the monthly mean plus two standard deviations per 100,000 popu-

lation. From the preliminary analysis using different outbreak thresholds, we demonstrate that

the choice of an outbreak threshold can impact upon a best fit model selection and the predic-

tive performance. Using a single outbreak definition across multiple LGAs and geographic

regions may overlook many subtle and local differences which can contribute to an outbreak

definition. Using a broad outbreak definition where the threshold is set too high could lead to

misclassification of an outbreak and a definition not suited to the local RRV transmission

Fig 4. Association between mean annual RRV notifications (per 100,000 population) by LGA with (a) the adjusted R2 from a

linear regression of the association between predicted RRV notifications and observed RRV notifications in the testing portion of

the data; (b) the Matthews Correlation Coefficient from predictions made in the testing portion of the data; and (c) the association

between the mean number of months which had a RRV outbreak per five years with the Matthews Correlation Coefficient from

predictions. Solid black line is the adjusted R2 of the association, and the dashed blue lines show the 95% confidence intervals of

the association.

https://doi.org/10.1371/journal.pntd.0009252.g004
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ecology, with the models developed potentially being representative of predicting epidemics

where the frequency of disease is significantly in excess of what is otherwise expected [34].

There have been multiple outbreak definitions used in modelling RRV [1,2,12,16,17], with fur-

ther research being needed to advance region-specific outbreak threshold definitions and

methods used in RRV predictive modelling to be able to accurately compare predictive perfor-

mance between studies.

A significant strength to our study is the extensive number of LGAs investigated across

multiple climatic regions, and several statistical models evaluated using out-of-sample predic-

tions. This study, to the best of our knowledge, is the first to examine and evaluate the predic-

tive performance of multiple predictive statistical modelling techniques for forecasting RRV

activity. Common methods used to evaluate RRV outbreaks have relied upon accuracy, sensi-

tivity, and specificity measures which have limitations of a model’s ability to predict a disease

outbreak [1,3,6,12,16,18,29]. In addition to sensitivity and specificity, we used a Matthews cor-

relation coefficient (MCC), which is more robust, as it is calculated based on true positives,

false negatives, true negatives, and false positives [29]. The advantage of using MCC to evaluate

predictions is that a high quality MCC score is only generated if predictions are correctly clas-

sified, in this instance, correctly predicting when there is and is not an RRV outbreak. This

allows for a robust and certain means to assess model predictions of binary outcomes, such as

RRV outbreaks, where there is imbalance between predictive categories. For example, the LGA

of Campaspe in Victoria had a moderate to strong MCC in the best fit model to predict

observed RRV outbreaks, however it had a relatively poor sensitivity coefficient, but had high

specificity and did not predict outbreaks when there were none. In contrast, the best fit model

in the LGA of Port Hedland had relatively high sensitivity and specificity but only had a weak

to moderate MCC coefficient as it often predicted outbreaks when there were none. Using sen-

sitivity and specificity alone, Port Hedland would have ranked as one of the best fit models

examine here, however using MCC as our predictive measure, the over prediction of outbreaks

is taken into consideration and a more robust assessment can be made. The method used here

could then be used as a framework when developing more robust mosquito-borne disease pre-

dictive models that also use meteorological independent variables for deterministic and pre-

dictive disease modelling.

The accuracy of predictive modelling of RRV, as well as of other mosquito-borne diseases,

has often been thought to be better in areas with greater disease notifications. However, sur-

prisingly, among the LGAs investigated here, we found no association with a model’s ability to

predict RRV notifications in LGAs with more frequent RRV outbreaks or with greater RRV

notifications, and no association in accurately predicting RRV outbreaks in LGAs which have

a greater yearly mean number of notifications of RRV. Predictive modelling of RRV in the past

has shown models forecasting out-of-sample RRV transmission to be less accurate in areas

with fewer RRV notifications and outbreaks [1,2,18]. Instead, here we found the best perform-

ing model which scored the highest in predicting outbreaks was in an LGA which had the low-

est number RRV notifications. Our results suggest that poor predictive performance of RRV

notifications may instead be in part due to the use of inappropriate model selection methods.

Supplementing RRV predictive models with mosquito surveillance data in most instances

improves notification and outbreak predictions [3,16–18]. However, mosquito surveillance is

time and labour intensive, often being too expensive for many LGAs to undertake, particularly

in regional areas of Australia. Readily available meteorological information, on the other hand,

offers an inexpensive means to model and thereby predict disease transmission and inform

public health organisations of future disease events.

Owing to differences in geographic host and vector life-history traits, transmission dynam-

ics in response to meteorological drivers differ between climatic regions [1,12]. We found
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LGAs in semi-arid and temperate climates had different best fit statistical model types, general-

ised boosted regression models and generalised additive models respectively. Generalised

additive models and negative binomial regression models were the second most used statistical

model type in semi-arid and temperate climates, respectively. Epidemiological predictive mod-

els have utilised variable selection methods to determine site-specific factors for forecasting

RRV transmission, which can then inform public health decision-making. Our findings sug-

gest that in areas where mosquito surveillance is unavailable, statistical model selection may be

able to provide improved disease predictive surveillance for public health management.

Meteorological factors often have temporal correlations with one another, for instance, maxi-

mum and minimum temperatures generally follow similar temporal trends. The correlation

between meteorological factors can cause multicollinearity in statistical models, potentially bias-

ing the effect an independent variable has on explaining or predicting disease. In predicting

RRV, the common occurrence of multicollinearity between meteorological independent vari-

ables has frequently led to the omission of variables in deterministic and predictive models

[1,2,12,35–38]. However, by excluding explanatory independent variables, information specific

to the occurrence to seasonal or sporadic outbreaks may be overlooked. Factor Analysis using

principle component analysis allows for the inclusion of all related meteorological factors with-

out having multicollinearity, and this is achieved through using eigenvectors as independent var-

iables, from factor scores which have eigenvalues greater than one [28,39].

Interestingly, there were only three LGAs in which the Factorial Approach fitted better

than the Independent Approach, with one LGA fitting a model for predicting outbreaks, one

for predicant RRV notifications, and one for predicting both RRV notifications and outbreaks.

We speculate that the use of factor scores may reduce the susceptibility of the biological

dynamics and responses to specific meteorological conditions on disease transmission. For

instance, RRV has specific thermal limits, which promote or inhibit viral transmission [40].

Moreover, rainfall has on numerous occasions been shown to be a positive predictor of RRV

notifications, with monthly rainfalls exceeding a threshold increasing the likelihood of an out-

break or disease incidence [1,2,6,15–18,30]. The muddling of these specific responses through

a factorial representation may overshadow the subtle nuance of environmental and meteoro-

logical events and their effect on RRV transmission.

Among our results, we found that generalised boosted regression models had a better

model fit to the training data than that of the other models evaluated. Despite this, generalised

boosted regressions did not provide as good predictive accuracy and precision for forecasting

RRV notifications and outbreaks when assessing the model on testing data. This may suggest

that in describing deterministic pathways of previous RRV transmission, generalised boosted

regression may help to explain subtle meteorological drivers leading to outbreaks, while for

predictive forecasting, the decision trees made when training a model may restrict the forecast

flexibility in a time series setting when ecological change in vector and host populations occur

which influence RRV transmission.

This study focused on assessing predictive model performance and has not discussed which

independent variables were important within each LGA, or the biological and ecological impli-

cations of the statistical models. Future studies could explore and compare independent vari-

ables used within each statistical model and the factoring of meteorological variables in the

Factorial Approach. Furthermore, comparisons could be made between models that include

mosquito surveillance and meteorological data and those only using meteorological data

alone, to evaluate how well our approach closes the gap in improving predictive capabilities.

Moreover, we do not assess the deterministic characteristics of what meteorological variables

were associated with RRV notifications and how this differed between LGAs. Therefore, we

do not make any inferences on the meteorological drivers which lead to changes in RRV
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transmission across the LGAs. Here we used estimated date of RRV symptom onset as our out-

come of interest; using a back-calculated date of the likely date of exposure by incorporating

an expected intrinsic incubation period may further improve model predictive accuracy and

be more representative of when RRV transmission is occurring. Other factors likely influenc-

ing the accuracy of modelling RRV transmission and subsequent predictive performance are

changes in the rate of under- and over-reporting and false positive testing [41–43]. We make

no attempt to estimate or control for these parameters. While these factors influence accurately

modelling the true extent of disease infections and transmission within populations, using dis-

ease surveillance data we have available allows for reliable temporal trends in disease dynamics

to be predicted and used in public health decision making.

There are multiple environmental, meteorological, biological, socioeconomic, geographical,

host, and vector components which contribute to the transmission dynamics of RRV

[10,36,44]. Factors included in the predictive models developed here use meteorological data

which are readily accessible without the need for extensive data requests or data gathering pro-

cesses, allowing for the approach used here to be easily replicated and integrated into predic-

tive disease surveillance systems. However, a caveat to this approach is the omission of

variables that have previously been found to be important in the transmission of RRV among

regions studied here. For example, variation in tide heights, river flow and height, and climatic

conditions (e.g., Southern Oscillation Index) which are known to be associated with increases

in mosquito breeding and potential host movement which can lead to greater RRV transmis-

sion [1,2,10,17,18,43]. Moreover, mosquito and host species vary between the LGAs examined

here. For instance, mosquito populations along coastal LGAs are likely to include halotolerant

species while inland areas typically have freshwater breeding mosquitoes. Mosquitoes species

communities in North Western parts of Western Australia can include Culex annulirostris, a

freshwater breeding mosquito, and Aedes vigilax, a saltmarsh breeding mosquito [8]. Inland

areas of Victoria include Cu. annulirostris and Aedes camptorhynchus, a saltmarsh breeding

mosquito [2,17]. Vector and host dynamics play an integral role in shaping the dynamics in

disease transmission systems. In models that do not include mosquito surveillance or host

information, the differences in mosquito and host species communities are likely represented

during variable selection of climatic and meteorological factors which influence these ecologi-

cal and biological interactions. Within our variable selection process, variables may have

undergone a logarithmic transformation which may lead to models being overfitted. As our

aim was to develop and assess forecast models, we are less focused on the climatic epidemio-

logical implications in RRV transmission.

In conclusion, we present new approaches to developing and improving environmental

and meteorologically driven mosquito-borne disease early warning forecasting tools. Our find-

ings show that predictive models developed for forecasting disease notifications may not

always be suited for forecasting disease outbreaks or vice versa. When developing a mosquito-

borne disease predictive model for forecasting disease outbreaks and disease notifications, gen-

eralised additive models and generalised boosted regression models, and generalised additive

models and hurdle models were most often selected as the best fit models, respectively, and are

recommended as an initial model when developing future RRV predictive models. However,

we demonstrate that in some regions, the model type used needs further discrimination to

achieve reliable and accurate predictions. The use and evaluation of predictive performance of

statistical models for mosquito-borne diseases have largely been neglected, with research typi-

cally only presenting and discussing a single modelling approach. Our findings highlight the

importance of the selection of a statistical model used for out-of-sample predictive modelling

in RRV. We demonstrate that a model’s ability to predict RRV outbreaks or notifications is

not greater in areas with higher yearly RRV notifications. Our approach used in this research
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aims to provide a new perspective and framework in accurately predicting RRV using only

meteorological data where mosquito surveillance information is not available. By using this

approach, disease forecast systems can be established to aid in public health decision making

and allow for timely and targeted mitigation activities to be carried out effectively to reduce

the significant burden of RRV disease in Australia.

Supporting information

S1 Fig. Best fit predictive models of Ross River virus notifications (per 100,000 population)

per month for 11 local government areas in Victoria, Australia. Legend: solid black line:

observed RRV notifications, solid grey line: model predicted RRV notifications, dotted red

line: model predicted notifications used to predict RRV outbreaks, solid light blue line: model

predicted RRV notifications used to predict observed notifications and outbreaks, horizontal

solid black lines: notifications threshold to classify outbreaks (monthly mean, monthly mean

plus one standard deviation, monthly mean plus two standard deviations), dashed vertical

black line: splitting training (left side of line) and testing (right side of line) data.

(EPS)

S2 Fig. Best fit predictive models of Ross River virus notifications (per 100,000 population)

per month for six local government areas in Western Australia. Legend: solid black line:

observed RRV notifications, solid grey line: model predicted RRV notifications, dotted red

line: model predicted notifications used to predict RRV outbreaks, solid light blue line: model

predicted RRV notifications used to predict observed RRV notifications and outbreaks, hori-

zontal solid black lines: RRV notifications threshold to classify outbreaks (monthly mean,

monthly mean plus one standard deviation, monthly mean plus two standard deviations),

dash vertical black line: splitting training (left side of line) and testing (right side of line) data.

(EPS)

S1 Table. Variables used within each best fit model for each Local Government Area

(LGA). ARIMA = auto-regressive moving average model; GAM = generalised additive model;

BR = generalised boosted regression; NB = negative binomial regression; and Hurdle = hurdle

regression. Models with a “�” following the model type used the Factorial Approach. Variables

followed by a “$” represents a variable that did not undergo a log10 transformation. Variable

acronyms are as follows MSLP = mean sea level pressure; VP = mean vapor pressure; Rhmax/

min = maximum and minimum relative humidity; Tmax/min = maximum and minimum

temperature; EVA = Morton’s areal actual evapotranspiration; EPP = Morton’s areal potential

evapotranspiration; and F1, F2, and F3 are Eigenvectors with variables names within each

bracket indicating variables included in the Eigenvector.

(DOCX)

S2 Table. Best fit model predictive performance of RRV notifications and outbreaks in

local government areas (LGA) in Victoria (VIC), and Western Australia (WA) by LGA cli-

mate using the monthly mean number of RRV notifications by 100,000 population as the

outbreak threshold. The total number of RRV notifications (Cases), the best model used for

predicting RRV notifications, adjusted R-squared coefficient (R2), the best model used for pre-

dicting outbreaks, sensitivity (Sn), specificity (Sp), and Matthews correlation coefficient

(MCC). ARIMA = auto-regressive moving average model; GAM = generalised additive model;

BR = generalised boosted regression; NB = negative binomial regression; and Hurdle = hurdle

regression. Ninety five percent confidence intervals (95% CI) are given of the distribution of

each predictive performance measure from Jackknife pseudo-random sampling using the

respective best fit model. Models with a “�” following the model type used the Factorial
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Approach. See Table 2 for a comparison of how close modelling methods were to one another

for predicting RRV notifications and outbreaks.
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