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ABSTRACT

A mesoscopic method based on the lattice Boltzmann method for thermal–solutal incompressible non-Newtonian power-law fluids through
porous media is introduced. The macroscopic equations of different representative element volume (REV) models of porous media are pre-
sented, and the equations of power-law fluids through porous media for various REV models reported. The general mesoscopic model for
two- and three-dimensional cases are presented, and their derivations shown. To demonstrate the ability of the proposed method, natural
convection and double-diffusive natural convection of Newtonian and power-law fluids in porous cavities are studied, and the results are val-
idated against previous findings. Finally, double-diffusive natural convection in a porous cubic cavity filled with a non-Newtonian power-law
fluid is simulated by the proposed method.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042526

I. INTRODUCTION

The study of fluid flow, heat, and mass transfer through porous
media has been important for centuries, and significant efforts have
been devoted for modeling and simulation of the material continu-
ously.1–4 Some of the engineering applications at which the heat and
mass transfer through porous media plays a key role are geophysics,
die filling, metal processing, agricultural and industrial water distribu-
tion, oil recovery techniques, injection molding, and hyperthermia on
cancer cells. To study fluid flow, heat, and mass transfer in the porous
medium, two general methods of the pore-scale approach and the rep-
resentative element volume (REV) scale approach are generally con-
sidered. The pore-scale method is complicated to apply and demands
significant computer resources. In contrast, the REV approach is more
computationally efficient due to the application of the average trans-
port properties and more straightforward to implement. The back-
ground and the development process of REV models for Newtonian
fluids are presented and discussed in Appendix A.1–25 However, most
fluids and the interaction of some fluids with porous structures in nat-
ural and industrial applications, e.g., biofluidics,26 geophysics,27 bio-
mechanical studies,28,29 hydraulic fracturing,30 and enhanced oil
recovery31 show non-Newtonian behavior.32 So, the Newtonian mod-
els can lead to incorrect predictions of flow, heat, and mass transfer for

these kinds of complex porous medium systems. Studying non-
Newtonian fluid flow through porous media has been received signifi-
cant attention and investigated by researchers from different disciplines
of science and engineering for a long time. Some of the earlier review
articles and developments can be found in the studies by Bird et al.,33

Christopher and Middleman,34 Savins,35 Kemblowski and
Michniewicz,36 Pascal,37 Dharmadhikari and Kale38 where they applied
non-Newtonian power-law model in the Darcy model. In the power-law
model, the shear rate dependent viscosity is given by gð _cÞ ¼ l� _cðn�1Þ

where l� and n are the consistency and power law indices and _c is the
shear rate defined by _c ¼ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 : A1
p

. The power-law model is con-
sidered as a subclass of generalized Newtonian fluids and the constitutive
equation for this kind of fluid is s ¼ gð _cÞA1 where s is the extra stress
tensor. A power-law index of 0 < n < 1 represents a shear-thinning
fluid, while n> 1 exhibits that the fluid is shear-thickening and n¼ 1
results in the Newtonian fluid. The modified Darcy’s law in the presence
of gravity force effect can be written as

rp ¼ qg� l�jujðn�1Þ

K�

� �
u; (1)

where K� is the modified permeability and defined by a relation based
on porosity, power-law index, and constant parameters as
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K� ¼ 1
2Ct

n�
3nþ 1

� �n 50K
3�

� �ðnþ1Þ=2
; (2)

Ct which is the tortuosity factor found differently by various authors.
Christopher and Middleman34 proposed Ct ¼ 25

12, Kemblowski and
Michniewicz36 suggested Ct ¼ 2:5n 2ð1�nÞ=2, Pascal37 showed
Ct ¼ ð2512Þ

ðnþ1Þ=2, and Dharmadhikari and Kale38 expressed it as

Ct ¼
2
3

8n
9nþ 3

� �n 10n� 3
6nþ 1

� �
75
16

� �3ð10n�3Þ
ð10nþ11Þ

: (3)

Based on their empirical results, Dharmadhikari and Kale38 intro-
duced a new power-law index in Eq. (3) by n0 ¼ nþ 0:3ð1� nÞ.
They indicated the main reason for the updated power-law index is
the different behavior of power-law fluid flows through porous media
where they incline to have a shorter path because of the stretching and
contracting deformation which causes the tortuosity factor to lower
values in shear-thinning fluids compared to Newtonian fluids.

The extended Darcy model for power-law fluids was studied by
several researchers in various problems.39–47 In some previous studies,
the Forchheimer term also considered for analyzing the porous media.
Shenoy48 derived the governing equation for Darcy–Forchheimer flow
of non-Newtonian power-law fluids through porous media, using the
approximate integral method. They used the obtained equations for
studying the forced and mixed convection heat transfer in non-
Newtonian power-law fluid-saturated porous media as follows:

rp ¼ qg� l�jujðn�1Þ

K�
þ E q jujffiffiffiffi

K
p

 !
u: (4)

Shenoy49 considered the effect of Brinkman part and extended the
Brinkman–Darcy equation for power-law fluids. It was indicated that
the Brinkman term is valid in high porosities so it is safe and reason-
able to assume the dynamic viscosity shows the non-Newtonian
power-law behavior as

rp ¼ qgþ l�

�n
r � _cðn�1Þ A1

� �
� l�jujðn�1Þ

�K �

 !
u: (5)

Shenoy49 showed the complete form of the equation of general non-
Darcy flow of power-law fluids including the inertia and Brinkman
terms as

q
�2
ðu � ruÞ ¼ qg�rpþ l�

�n
r � _cðn�1Þ A1

� �

� l�jujðn�1Þ

K�
þ E q jujffiffiffiffi

K
p

 !
u: (6)

Although Eq. (6) is restricted to high porosity regions, the models of
Darcy, Darcy–Forchheimer, and Brinkman–Darcy can be obtained
from the equation with ignoring the applied terms.

The main aim of this study is to introduce an lattice Boltzmann
method (LBM) for thermal–solutal problems of non-Newtonian fluids
through porous media which can recover the continuum, momentum,
energy and concentration equations for the generalized porous model
and non-Newtonian subclass of power-law model. In addition, the
model has the ability to remove present limitations in simulating non-
Newtonian fluids in conventional LBM. Following the development of

the method, in Sec. II, two- and three-dimensional models of the
approach in various REV porous models for the non-Newtonian
power-law fluids are derived in thermal–solutal problems. In Sec. III,
the proposed approach is evaluated with previous studies and applied
for two- and three-dimensional thermal and thermal–solutal
problems.

II. THE NUMERICAL METHOD

The lattice Boltzmann method (LBM) has been recognized as a
powerful mesoscopic numerical method and alternative technique to
macroscopic numerical approaches for simulation of different com-
plex fluid flow, heat, and transfer problems.50–58 The main benefits of
LBM are the nature of the parallel algorithm, the simple and straight-
forward programming and implementation, and strong ability for
complex geometries. In contrast to the common macroscopic numeri-
cal methods (e.g., the finite element method) which discretizes contin-
uum equations, LBM utilizes mesoscopic kinetic equations which
satisfy the macroscopic averaged properties. LBM is based on the
movement of particles that are defined in specific directions in a
selected lattice. So, it causes the computation process to drop signifi-
cantly compared to microscopic methods. The basic information
about conventional LBM and its previous models for studying non-
Newtonian fluids and porous media is provided and discussed in
Appendix B (Refs. 59–79), which clarifies the present gaps clearly.

The basic and fundamental concepts of the applied mesoscopic
method in this study were initially introduced by Fu et al.80,81 They
presented a two-dimensional LBM which was combined with finite
difference method and proposed a different equilibrium particle distri-
bution function compared to conventional LBM based on a quadratic
in the particle velocity. They also used a splitting technique to solve lat-
tice Boltzmann equation (LBE) and set the non-dimensional relaxa-
tion time equal to one and extract the extra stress independent from
the relaxation time. So, it makes this method appropriate for various
non-Newtonian fluids. Fu et al.80 validated the method with some
basic benchmarks and was implemented for simulation of microchan-
nel and microtube flows. The method was extended for thermal prob-
lems and presence of body forces in the study of Fu et al.82 where they
validated the proposed method with the case of two and three dimen-
sional of natural convection in cavities which were filled with
Newtonian fluid (air). However, in the studies of Fu et al.,80–82 the der-
ivation of all parameters in continuum momentum and energy equa-
tions were not shown properly and some elements in the equations,
e.g., viscous dissipation, heat sources, or radiation were missed.
Huilgol and Kefayati83 removed the mentioned drawbacks and noted
the equilibrium particle distribution function in the forms of vectors
and matrices for two- and three-dimensional cases. They also devel-
oped the method for compressible flows. Then, Huilgol and Kefayati84

developed the method for cylindrical and spherical coordinates. They
validated the method with the lid-driven cavity and natural convection
of Bingham fluid in a two-dimensional enclosure. In the next step,
they used cylindrical coordinates for simulation of Bingham fluid and
the Herschel–Bulkley fluid in a pipe of circular cross section and com-
pared the obtained results with the numerical solutions of previous
studies based on the discussed Lagrangian method. Kefayati et al.85

developed thermal incompressible non-Newtonian fluids through
porous media for two-dimensional cases. They assessed the accuracy
of the method with studying natural convection in a porous cavity and
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compared against previous papers. To show the ability of the proposed
model, natural convection of power-law and Bingham fluids in a
porous cavity were simulated.

In Eq. (6), which shows the generalized steady porous equation
for power-law fluids, the term of Brinkman that represents the viscous
shear stress can be presented with an extra stress tensor s. So, the
unsteady generalized equation can be written as

q
�

@u
@t
þ ðu � rÞ u

�

� �
¼ qg�rpþ 1

�n
r:s� l�jujðn�1Þ

K�
þ Eq jujffiffiffiffi

K
p

 !
u:

(7)

In the presence of an external force F0, e.g., gravity force (qg) and mul-
tiplying two sides of Eq. (7) by porosity �, we have

q
@u
@t
þ ðu � rÞ u

�

� �
¼ �rð� pÞ þ 1

�ðn�1Þ
r:sþ F; (8)

F ¼ � �l
�jujðn�1Þ

K�
u� q E �ffiffiffiffi

K
p jujuþ �F0: (9)

In this approach, the applied normalized Boltzmann equation in the
presence of the external forces is similar to the LBE with the
Bhatnagar–Gross–Krook (BGK) approximation which is presented in
Eq. (B14). In contrast to the shown equilibrium distribution function
in Eq. (B16), the f eqi ðx; tÞ is found as

f eqi ðx; tÞ ¼ Ki þ ei � Li þ ei � eið Þ : Mi: (10)

To satisfy the generalized equation of incompressible porous media or
Darcy–Forchheimer–Brinkman equation for a two-dimensional case
with the lattice of D2Q9, the scalar parameter Ki, the vector Li, and the
symmetric matrixMi are calculated by (see Appendix C)

K0 ¼ q� 2p�
c2
� qjuj2

c2
þ sxx þ syy
�ðn�1Þc2

; (11a)

Ki ¼ 0; i ¼ 1; 2;…; 8; (11b)

L1 ¼
qu
2c2
¼ Li; i ¼ 1; 3; 5; 7 (11c)

Li ¼ 0; i ¼ 0; 2; 4; 6; 8 (11d)

M1 ¼
M11 0
0 M22

� �
; (11e)

M11 ¼
1
2c4

�pþ q
u2

�

� �
� 1
�ðn�1Þ

sxx

� �
; (11f)

M22 ¼
1
2c4

�pþ q
v2

�

� �
� 1
�ðn�1Þ

syy

� �
; (11g)

M2 ¼
0 M12

M21 0

� �
; (11h)

M12 ¼ M21 ¼
1
8c4

q
uv
�

� �
� 1

�ðn�1Þ
sxy

� �
: (11i)

It should be noted that the matrices Mi are such that M0 ¼ 0; M1

¼ Mi; i ¼ 1; 3; 5; 7; M2 ¼ Mi; i ¼ 2; 4; 6; 8. The force term (Fi) in
Eq. (B14) can be calculated by

Fi ¼
1
2c2

F � ei; i ¼ 1; 3; 5; 7 (12a)

Fi ¼ 0; i ¼ 0; 2; 4; 6; 8: (12b)

In this method, a splitting method86 is used to solve the equation of
lattice Boltzmann–BGK (LBGK) (B14). It is possible to separate the
equation into two parts of streaming and collision as

@fi
@t
þ ei � rxfi � Fi ¼ 0 streaming; (13)

@fi
@t
¼ �1

-f
fi � f eqi
	 


collision: (14)

The streaming part in Eq. (13) can be simplified in a discretization
scheme as

fiðx þ eiDx; t þ DtÞ � fiðx; tÞ � Fiðx; tÞDt ¼ 0 (15)

and the collision part in Eq. (14) using the Euler method can be writ-
ten in a discretized form as

fiðx; t þ DtÞ ¼ f eqi ðx; tÞ: (16)

In contrast to the conventional LBM, boundary conditions are
imposed directly with macroscopic values, which makes it one of the
main advantage of this LBM. So, the boundary conditions are used as
initial values (e.g., u, p) in the parameters of the equilibrium distribu-
tion function (f eqi ) in Eqs. (11a)–(11h). Then, the obtained f eqi are used
to calculate the distribution function fi in the collision part by applying
Eq. (16). Next, in the streaming procedure which is considered in Eq.
(15), fi in the nearest particles in the lattice are found. Finally, the mac-
roscopic values are updated with the obtained fi in the previous step as

u � 1
q

X8
i¼0

fiei; (17)

p �
X8
i¼0

fijeij2 �
1
2�

qjuj2 þ
sxx þ syy

2�n
; (18)

and the algorithm repeats again from the cited initial step with the
new f eqi as a result of the updated macroscopic values.

In order to satisfy the presented energy equation (A7) for ther-
mal–solutal problems, the following equation based on energy distri-
bution function is applied (see Appendix D).

@gi
@t
þ ei � rxgi � Gi ¼

�1
-g

gi � geqi
	 


; (19)

where the energy equilibrium distribution function geqi ðx; tÞ has a lin-
ear relationship with the particle velocity as

geqi ðx; tÞ ¼ Ai þ ei � Bi; (20)

the parameter Ai for various particles in D2Q9 lattice is calculated by
A0 ¼ ðqcpÞm T; Ai ¼ 0; i ¼ 1; 2;…; 8. The vector Bi is defined as

Bi ¼
1
2c2
ðqcpÞf uT þ qþ q0 � s � u
h i

; i ¼ 1; 3; 5; 7 (21)

where the heat flux (q) follows the Fourier’s law of heat conduction
with effective thermal conductivity by q ¼ �ke @T@x and q0 refers to the
Dufour effect and is a heat flux due to a concentration gradient and is
calculated by q0 ¼ � qDkT

cs
@C
@x . For i ¼ 0; 2; 4; 6; 8, we have Bi ¼ 0. The

source term of Gi which is a scalar value is determined by
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Gi ¼
l
K

uþ q Effiffiffiffi
K
p ujuj

� �
� uþ r � sð Þ � u ; i ¼ 1; 3; 5; 7 (22)

and for i ¼ 0; 2; 4; 6; 8; Gi ¼ 0. The same splitting approach of fi is
applied for solving the equation of energy distribution function where

the streaming and collision parts are found by @gi@t þ ei � rxgi � Gi ¼ 0

and @gi
@t ¼ �1-g

ðgi � geqi Þ; respectively. The discretized form of the two

parts after evaluation are obtained by giðx þ eiDx; t þ DtÞ � giðx; tÞ
�Giðx; tÞDt ¼ 0 and giðx; t þ DtÞ ¼ geqi ðx; tÞ. The boundary condi-
tions (u0; p0;T0;C0) provide the initial values for geqi , so the values
give the initial number of the equilibrium energy distribution function
ðg0;eqi Þ and updates the gi in the collision part. In the streaming step,
the gi in the neighbor particles with the lattice space of Dx is obtained.
Finally, the new value of temperature is calculated by

T �
X8
i¼0

giðx; tÞ: (23)

The found temperature from Eq. (23) can be implemented in the
energy equilibrium distribution function for the next iteration ðg1;eqi Þ
and the process continues again from the collision part.

The macroscopic concentration equation is derived from a con-
centration distribution function as follows (see Appendix E):

@hi
@t
þ ei � rxhi ¼

�1
-h

hi � heqi
	 


: (24)

The concentration equilibrium distribution function heqi ðx; tÞ has a
similar relationship to the energy one as

heqi ðx; tÞ ¼ Zi þ ei � Ui: (25)

The scalar value of Zi is found in various particles of the lattice by
Z0 ¼ �C; Zi ¼ 0; i ¼ 1; 2;…; 8. The vector Ui is calculated as

Ui ¼
1
2c2

Jþ J0ð Þ ; i ¼ 1; 3; 5; 7 (26)

where (J) is the total mass flux, which is the combination of the advec-
tive (Ja) and the diffusive or dispersive (Jd) mass fluxes. Jd is defined
by Fick’s law as Jd ¼ �DerC. The advective mass transfer is obtained
by Ja ¼ uC. J0 is the thermo-diffusive mass fluxes and refers to the
Soret parameter and is calculated by J0 ¼ �DCTrT . For i ¼ 0; 2; 4;
6; 8, we have Ui ¼ 0. The splitting method generates the streaming
and collision sections in the forms of @hi

@t þ ei � rxhi ¼ 0 and
@hi
@t ¼ �1-h

ðhi � heqi Þ; respectively. The discretized forms of the two parts
after evaluation are obtained by hiðx þ eiDx; t þ DtÞ � hiðx; tÞ ¼ 0
and hiðx; t þ DtÞ ¼ heqi ðx; tÞ. The boundary conditions give the initial
values of heqi and then updates the hi in the collision part. In the
streaming step, the hi in the neighbor particles with the lattice space of
Dx is found. Consequently, the new value of concentration is calcu-
lated by

C �
X8
i¼0

hiðx; tÞ: (27)

The value of concentration from Eq. (27) is implemented in the con-
centration equilibrium distribution function in the next iteration
ðh1;eqi Þ.

A. Three-dimensional models

Different space-filling, symmetric lattices can be used for three-
dimensional cases in this method. Here, the D3Q15 lattice is imple-
mented. The applied LBE and the equilibrium distribution function
are similar to Eqs. (B14) and (10), respectively. The parameters in Eq.
(10) can be calculated as

K0 ¼ q� 3p�
c2
� qjuj2

c2
þ sxx þ syy þ szz

�ðn�1Þc2
; (28a)

Ki ¼ 0; i ¼ 1; 2;…; 14 (28b)

L1 ¼
qu
2c2
¼ Li; i ¼ 1;…; 6 (28c)

Li ¼ 0; i ¼ 0; 7; 8;…; 14 (28d)

M1 ¼
Mxx 0 0

0 Myy 0

0 0 Mzz

2
64

3
75; (28e)

Mxx ¼
1
2c4

�pþ q
u2

�

� �
� 1
�ðn�1Þ

sxx

� �
; (28f)

Myy ¼
1
2c4

�pþ q
v2

�

� �
� 1

�ðn�1Þ
syy

� �
; (28g)

Mzz ¼
1
2c4

�pþ q
w2

�

� �
� 1

�ðn�1Þ
szz

� �
; (28h)

M2 ¼
0 Mxy Mxz

Myx 0 Myz

Mzx Mzy 0

2
64

3
75; (28i)

Mxy ¼ Myx ¼
1
8c4

q
uv
�

� �
� 1

�ðn�1Þ
sxy

� �
; (28j)

Myz ¼ Mzy ¼
1
8c4

q
vw
�

� �
� 1
�ðn�1Þ

syz

� �
; (28k)

Mxz ¼ Mzx ¼
1
8c4

q
uw
�

� �
� 1

�ðn�1Þ
sxz

� �
: (28l)

It should be noted that the matrices Mi are such that M0 ¼ 0;
M1 ¼ Mi; i ¼ 1;…; 6; M2 ¼ Mi; i ¼ 0; 7;…; 14.

The equilibrium distribution function is modified as follows:

X14
a¼0

f eqa ¼ q; (29)

X14
a¼0

f eqa na ¼ qu; u ¼ uiþ vjþ wk; (30)

X14
a¼0

f eqa na � na ¼ M; (31)

X14
a¼0

f ðnÞa ¼ 0; n � 1; (32)

X14
a¼0

f ðnÞa na ¼ 0; n � 1; (33)

whereM has the matrix form as
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M ¼
Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

2
64

3
75: (34)

The body force distribution functions now satisfy

X14
i¼0

Fi ¼ 0 ;
X14
i¼0

Fiei ¼ F: (35)

The choice of Fi in different particles in the lattice is

F0 ¼ 0; F1 ¼
1
2c2

F � e1 ¼ �F3; (36)

F2 ¼
1
2c2

F � e2 ¼ �F4; (37)

F5 ¼
1
2c2

F � e5 ¼ �F6; (38)

Fi ¼ 0; i ¼ 7;…; 14: (39)

The energy distribution function in Eq. (19) and the energy equilib-
rium distribution function in Eq. (20) are utilized in the three-
dimensional model while the following conditions should be satisfied

X14
i¼0

gðnÞi ¼ 0; n � 1; (40)

X14
i¼0

geqi ¼ ðqcpÞm T; (41)

X14
i¼0

geqi ei ¼ ðqcpÞf T uþ qþ q0 � s � u; (42)

X14
i¼0

Gi ¼
l
K
uþ qEffiffiffiffi

K
p ujuj

� �
� uþ r � sð Þ � u; (43)

where the parameters in Eq. (20) for geqi are calculated as

A0 ¼ ðqcpÞm T ; Ai ¼ 0 ; i ¼ 1; 2;…; 8: (44)

The vector Bi is defined as

Bi ¼
1
2c2
ðqcpÞf uT þ qþ q0 � s � u
h i

; i ¼ 1;…; 6

Bi ¼ 0 ; i ¼ 0; 7;…; 14:
(45)

The source term of Gi in the three dimensional model is obtained as

Gi ¼
l
K

uþ q Effiffiffiffi
K
p ujuj

� �
� uþ r � sð Þ � u ; i ¼ 1;…; 6

Gi ¼ 0 ; i ¼ 0; 7;…; 14:
(46)

To find the concentration distribution function (hi), Eq. (24) similar to
the two-dimensional case is applied and also the equilibrium concen-
tration distribution function (heqi ) follows Eq. (25) and need to satisfy
the following conditions:

X14
i¼0

heqi ¼ �C; (47)

X14
i¼0

heqi ei ¼ Jþ J0: (48)

The scalar value of Zi and the vector Ui in the equation is found by

Z0 ¼ �C; Zi ¼ 0; i ¼ 1; 2;…; 14

Ui ¼
1
2c2

Jþ J0ð Þ; i ¼ 1;…; 6

Ui ¼ 0 ; i ¼ 0; 7;…; 14:

(49)

III. VALIDATION AND NUMERICAL EXAMPLES

Double-diffusive natural convection in a two-dimensional porous
cavity with the height of H and the length of L which is filled with a
Newtonian fluid (s ¼ le A1) was studied by Goyeau et al.87 The hori-
zontal walls of the enclosure have zero mass and heat fluxes while all
vertical and horizontal walls are impermeable. The temperatures of
the hot left wall and the cold right wall of the cavity were fixed at TH,
and TC. The concentrations of the hot left wall and the cold right wall
of the cavity were fixed at CH, and CC. They applied the Darcy and the
Darcy–Brinkman models for the porous media and solved the general-
ized equations in the absence of the Forchheimer inertia term in the
momentum equation by finite difference method (FDM) since they
considered the values which resulted in Reynolds number less than
unity. In their work, they assumed the fluid flow is incompressible and
the parameters of viscous dissipation, Soret, and Dufour were
neglected. They also assumed the effective viscosity (le) and the effec-
tive thermal conductivity (ke) in the Brinkman term is equal to the
fluid viscosity (l) and thermal conductivity (k). It causes the effective
thermal exclusivity to become equal to the fluid thermal diffusivity
(a ¼ ae) while Boussinesq approximation was implemented for
change of density. So, the studied macroscopic dimensional equations
for the Darcy–Brinkman model were used as

r � u ¼ 0; (50)
q
�2
ðu � rÞ u ¼ �rpþ ler2u� l

K
u

þ qg bTðT � TCÞ þ bCðC � CCÞ½ �ey; (51)

u:rT ¼ aer2T; (52)

u:rC ¼ Der2C; (53)

where ey is the unit vector in the y direction. bT and bC are the ther-
mal expansion coefficient and the concentration expansion coefficient,
which are defined as

bT ¼ �
1
q

@q
@T

� �
C

and bC ¼ �
1
q

@q
@C

� �
T
: (54)

It is needed to find the non-dimensional equations to solve the prob-
lem. Several researchers have endeavored to introduce specific non-
dimensional variables to decrease the number of the non-dimensional
variables (e.g., see the proposed methods by Refs. 88–90) Here, the
non-dimensional variables of x� ¼ x

H ; u� ¼ u
U ; p� ¼ p

qU2 ;T� ¼ ðT
�TCÞ=DT; DT ¼ TH � TC ;C� ¼ ðC�CCÞ=DC; DC ¼ CH �CC;

am ¼ ke
�q cpf

are applied to obtain non-dimensional equations. The

buoyancy velocity scale (U) is found by U ¼ am
H

	 

Ra0:5m where Ram is

the modified Rayleigh number and calculated by Ram ¼ q2 bT gH
3DT Prm

l2
e

.

The modified Prandtl number ðPrmÞ, Darcy number ðDamÞ and Lewis
number ðLemÞ are defined by
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Prm ¼
le

am q
; Dam ¼

K
�H2

; Lem ¼
am
De
� (55)

As a result, the non-dimensional equations after dropping the asterisks
can be written as

r � u ¼ 0; (56)

ðu � rÞ u ¼ �rpþ Prmffiffiffiffiffiffiffiffiffi
Ram
p r2u

� Prm
Dam

ffiffiffiffiffiffiffiffiffi
Ram
p uþ PrmðT þ NCÞey; (57)

u:rT ¼ 1ffiffiffiffiffiffiffiffiffi
Ram
p r2T; (58)

u:rC ¼ 1

Lem
ffiffiffiffiffiffiffiffiffi
Ram
p r2C; (59)

where N is the buoyancy ratio which is defined by N ¼ bC DC
bT DT. Goyeau

et al.87 fixed the Prandtl number at Pr ¼ l
q a ¼ 10 and r ¼ 1 (in other

words, they kept the porosity equal to unity (� ¼ 1) and therefore the
modified non-dimensional parameters are equal to the non-
dimensional parameters in the study; Lem ¼ Le; Ram ¼ Ra, and
Dam ¼ Da). The non-dimensional parameters of the mesoscopic
method for solving the non-dimensional macroscopic equations for a
Newtonian fluid (n¼ 1) are needed to be found. Equations
(11a)–(11i) are used for recovering the non-dimensional continuity
equations where the non-dimensional extra tensor is calculated by
s ¼ Prmffiffiffiffiffiffi

Ram
p A1. The force term in Eq. (12a) is obtained by

F ¼ � Prm
Dam

ffiffiffiffiffiffi
Ram
p þ PrmðT þ NCÞ. For recovering the non-dimensional

energy equation, the parameters in Eq. (20) are defined by A0 ¼ T ;
Bi ¼ 1

2c2 ½uT þ q� as the non-dimensional heat flux is implemented by
q ¼ � 1ffiffiffiffiffiffi

Ram
p rT . To find the variables in Eq. (25) for having the

dimensionless concentration, they are determined by Z0 ¼ C;
Ui ¼ 1

2c2 ½uC � 1
Lem

ffiffiffiffiffiffi
Ram
p rC�. In this study, the time step is fixed at

Dt ¼ 0:0001 and the applied mesh is Dx ¼ Dy ¼ 150. The stopping
criterion for this applied approach is as����q�X8

i¼0
fiðx; tÞ

���� < ðDtÞ2: (60)

In fact, the algorithm continues until the specified difference between
the sum of the distribution functions and the density.

Figure 1 compares the results of the present method and the
work of Goyeau et al.87 for isotherms, streamlines, and isoconcentra-
tions at Le ¼ 10, N¼ 10, Da ¼ 10�3, Pr¼ 10 and Ra ¼ 105 (it should
be noted that Goyeau et al.87 used the term of Ra� ¼ 100 which has
the following relationship Ra ¼ Ra�=Da ¼ 105). The thermal
Rayleigh number (Ra) and Darcy number (Da) were defined by

Ra ¼ qgbTDTH3

la and Da ¼ K
H2; respectively. They evaluated heat and

mass transfer by calculating the average Nusselt (Nu) and Sherwood
(Sh) numbers at the left hot wall as follows:

Nu ¼
ð1
0

@T
@x

� �
x¼0

dy ; Sh ¼
ð1
0

@C
@x

� �
x¼0

dy: (61)

Sezai and Mohamad91 studied the three-dimensional case of the above
problem with opposing and horizontal gradients of temperature and

concentration. They validated their two (2D) and three dimensional
(3D) results with the study of Goyeau et al.87 using the average Nusselt
and Sherwood numbers. The average Nusselt (Nu) and Sherwood
numbers (Sh) at the left hot wall are calculated as

Nu ¼
ð1
0

ð1
0

@T
@x

� �
x¼0

dy dz; (62)

Sh ¼
ð1
0

ð1
0

@C
@x

� �
x¼0

dy dz: (63)

For this problem, the time step is chosen by Dt ¼ 10�4 and the applied
mesh is Dx ¼ Dy ¼ Dz ¼ 1

50. Figures 2 and 3 illustrate the average
Nusselt and Sherwood numbers for two- and three-dimensional cases
in different buoyancy ratios. The figures compare the results of the pre-
sent method with the work of Sezai and Mohamad.91 The comparison
demonstrates a good agreement between the present study and the
study of Sezai and Mohamad.91 To validate the mesoscopic method for
a thermal non-Newtonian fluids through porous media, a two-
dimensional shallow porous cavity with the height of H and the length
of L which is filled with power-law fluid for laminar, incompressible,
and steady flow has been investigated. The problem was studied analyti-
cally and numerically by Bian et al.94 The constant hot and cold temper-
atures on the vertical sides were used while the horizontal sides were
insulated. They applied the modified Darcy model for the momentum
equation [which is shown in Eq. (1)] and the Boussinesq approximation
was applied. In addition, it was assumed the viscous dissipation is negli-
gible. So, the governing equations of the study can be presented as

r � u ¼ 0; (64)

0 ¼ �rp� l�jujðn�1Þ

K�

� �
uþ qgbTðT � TCÞey; (65)

u:rT ¼ aer2T: (66)

The modified permeability K� is calculated based on Eq. (2) where the

proposed value of Pascal37 for the tortuosity factor (Ct ¼ ð2512Þ
ðnþ1Þ=2)

is implemented. The non-dimensional variables for this problem were

introduced in94–97 as x� ¼ x
L ; u

� ¼ u L
a ; p

� ¼ p K Lðn�1Þ

an l� , and T� ¼ ðT
�TCÞ=DT�; DT� ¼ TH � TC . With dropping asterisks, the non-
dimensional equations were presented in the cited studies92–97 as

r � u ¼ 0; (67)

0 ¼ �rp� jujðn�1Þu
� 


þ R� ðTeyÞ; (68)

u:rT ¼ r2T; (69)

where R� is the modified Darcy–Rayleigh number which is given by

R� ¼ q bT g K Ln DT
l� an . By taking the curl of Eq. (68), the pressure can also

be eliminated.92–97 With consideration to the definition of the curl
operator, Eq. (68) can be altered to the following equation:

r	 jujðn�1Þu
� 


¼ R� r 	 ðTeyÞ: (70)

So, in the previous studies they solve Eq. (70) for the momentum
equation. To apply the mesoscopic method, Eqs. (67)–(69) are consid-
ered. To solve the problem with mesoscopic method, the extra tensor
(s ¼ 0) and the second-order velocities (u2 ¼ v2 ¼ uv ¼ 0) in Eq.
(11) are equal to zero and the porosity is also fixed at � ¼ 1. The force
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term in Eq. (12a) is defined by F ¼ �ðjujðn�1ÞuÞ þ R� ðTeyÞ. For
recovering the energy equation, the parameters in Eq. (20) are imple-
mented as A0 ¼ T ; and Bi ¼ uT �rT ; i ¼ 1; 3; 5; 7. To validate
the results of the mesoscopic method with the presented analytical
results of Bian et al.,94 the average Nusselt number was compared
for the aspect ratio of A ¼ H=L ¼ 4 in different modified
Rayleigh–Darcy numbers and power-law indexes in Fig. 4. The shown
lines in Fig. 4 are the obtained analytical results of Bian et al.94 and the
shown red symbols are the achieved values of the present mesoscopic
method. The average Nusselt number was calculated as

Nu ¼ 1
A

ðA
0

@T
@y

� �
y¼0

dx: (71)

Amari et al.39 studied non-Newtonian power-law fluids through two-
dimensional porous long shallow cavities while a constant heat flux
(q0) was applied on the bottom or side walls. The modified Darcy
model was used for the momentum equation. The aspect ratio in the
cavity was defined by A0 ¼ L0=H0 where L0 and H0 are the length
and height of the cavity. The dimensional equation was similar to
Eqs. (67)–(69). The non-dimensional variables were defined as

x� ¼ x
H0 ; u

� ¼ uH0
a ; p� ¼ p K H0ðn�1Þ

an l� ; T� ¼ ðT � T0Þ=DT 0, and DT 0

¼ q0H0=k. In this study, the average Nusselt number was computed by

Nu ¼
Ð 1=2
�1=2 ½ 1DT�x¼0dy where the DT is the dimensionless temperature

difference. The applied mesoscopic method for this problem is the
same as the previous problem and just the boundary conditions should
be changed. The results are compared for the case of a bottom heated
cavity for various power-law indexes and aspect ratios at R� ¼ 100 in
Table I, which demonstrates a good agreement.

Khelifa98 investigated double-diffusive natural convection in a
vertical porous cavity filled with non-Newtonian power-law fluids
numerically and analytically. The vertical walls of the cavity were sub-
jected to constant fluxes of heat and solute and the two horizontal
walls were impermeable and adiabatic. They also studied the effect of
Soret parameter in the concentration equation and named this case
Soret induced convection. They used the modified Darcy model of the
momentum equation and applied the Boussinesq approximation for
the density variation in temperature and concentration. Their non-
dimensional governing equations can be written as98,99

r � u ¼ 0; (72)

FIG. 1. Comparison between the present
applied method and the result of Goyeau
et al.87 at Le ¼ 10, N¼ 10, Da ¼ 10�3,
Pr¼ 10, and Ra ¼ 105.

FIG. 2. Comparison of the average Nusselt number between the present applied
method and the result of Sezai and Mohamad.91

FIG. 3. Comparison of the average Sherwood number between the present applied
method and the result of Sezai and Mohamad.91
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0 ¼ �rp� jujðn�1Þu
� 


þ R� ðT þ NCÞ ey; (73)

@T
@t
þ u:rT ¼ r2T; (74)

K0
@C
@t
þ u:rC ¼ 1

Le
r2C � ar2Tð Þ: (75)

They applied the same non-dimensional variables of the previous ther-
mal example for the momentum and energy equation. The parameter
K0 was defined by K0 ¼ �=r and a was a constant number which
played the role of the non-dimensional Soret parameter.

It should be noted that Khelifa98 applied the Curl operation on
the momentum to eliminate the pressure similar to the previous two
examples. To apply the mesoscopic method for solving Eqs. (73)–(75),

the approach is similar to the first example and the only difference is
the force term which should be computed by F ¼ �ðjujðn�1ÞuÞ
þR� ðT þ NCÞey . For recovering the concentration equation, the
parameters in Eq. (25) are implemented as Z0 ¼ K0 C; and
Ui ¼ uC � 1

Le ðrC � arTÞ ; i ¼ 1; 3; 5; 7. The average Nusselt
number and Sherwood number are compared with the study of
Khelifa98 in different buoyancy ratios and power-law indexes for
R� ¼ 100, Le¼ 10, and a¼ 0 in Figs. 5 and 6.

In the next part, the three-dimensional power-law fluids in a
porous cubic cavity have been studied by the method while the general
equation of Brinkman–Forchheimer extended Darcy model has been
applied. The dimensional equation with neglecting the viscous dissipa-
tion, Soret and Dufour parameters can be written as

r � u ¼ 0; (76)

q
�2
ðu � rÞ u ¼ �rpþ 1

�n
r � s� l�jujðn�1Þ

K�
þ E q jujffiffiffiffi

K
p

 !
u

þqg bTðT � TCÞ þ bCðC � CCÞ½ �ez; (77)

u:rT ¼ aer2T; (78)

u:rC ¼ Der2C; (79)

where the extra tensor is s ¼ l� _cðn�1Þ A1. Different velocity scales and
non-dimensional methods have been applied for obtaining the non-
dimensional equations of power-law fluids through natural convection
process in enclosures100–104 and porous cavities.87–91,105 Here, the
velocity scale is defined by U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTDTL

p
where the parameter L is

the length scale. With the cited scales, the non-dimensional parameters
are calculated by x� ¼ x

L ; u� ¼ u
U ; p� ¼ p

qU2 ; s
� ¼ s

l�ðULÞ
n ;T�

¼ ðT �TCÞ=DT; DT ¼ TH �TC ;C� ¼ ðC�CCÞ=DC; DC ¼ CH

�CC: So, the governing non-dimensional equations are presented as

r � u ¼ 0; (80)

FIG. 4. Comparison of the average Nusselt number between the present applied
method and the result of Bian et al.94

TABLE I. Comparison of the average Nusselt number between the present study
and the results of Amari et al.39 for a cavity heated from below in different power-law
indexes and aspect ratios at R� ¼ 100.

n¼ 0.6 n¼ 1 n¼ 1.4

A0 ¼ 1
Present study 5.802 2.962 1.89
Amari et al.39 5.814 2.970 1.94
A0 ¼ 2
Present study 5.66 3.59 2.48
Amari et al.39 5.75 3.63 2.51
A0 ¼ 3
Present study 5.831 3.68 2.529
Amari et al.39 5.865 3.72 2.546
A0 ¼ 4
Present study 5.981 3.699 2.51
Amari et al.39 5.997 3.708 2.55 FIG. 5. Comparison of the average Nusselt number between the present applied

method and the result of Khelifa et al.98
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1
�2
ðu � rÞ u ¼ �rpþ 1

�n
ffiffiffiffiffiffi
Gr
p r � s� E jujffiffiffiffiffiffi

Da
p u

� jujðn�1Þ

K�0Da
ffiffiffiffiffiffi
Gr
p uþ ðT þ NCÞez; (81)

u:rT ¼ 1

Pr Gr
1

nþ1
r2T; (82)

u:rC ¼ 1

Le Pr Gr
1

nþ1
r2C; (83)

where K�0 is found by K�0 ¼ K�=K and the dimensionless Grashof,
Darcy, and Prandtl numbers are defined as

Gr ¼ q2 Lnþ2 g bT DT2�n

l�2
; Da ¼ K

L2
; (84)

Pr ¼ 1
ae

l�

q

� � 2
1þnð Þ

Lð
1�n
1þnÞ Lg bT DTð Þ

3ðn�1Þ
2ðnþ1Þ: (85)

The non-dimensional extra tensor in the mesoscopic method in Eq.
(28) is defined by s ¼ 1

�
ffiffiffiffi
Gr
p A1. The force term is also obtained by

F ¼ �½� E jujffiffiffiffi
Da
p u� jujðn�1Þ

K�0Da
ffiffiffiffi
Gr
p uþ ðT þ NCÞez�. The parameters of the

mesoscopic method for the energy and concentration equation are cal-
culated by A0 ¼ T ; Bi ¼ 1

2c2 ½uT þ q� as the non-dimensional heat
flux is implemented by q ¼ � 1

Pr Gr
1

nþ1
rT . In addition, Z0 ¼ C;

Ui ¼ 1
2c2 ½uC � 1

Le Pr Gr
1

nþ1
rC�. In this study, the applied mesh is

Dx ¼ Dy ¼ Dz ¼ 1
60 and the selected time step is Dt ¼ 10�4. The

Newtonian fluid (n¼ 1), shear thinning fluid (0:3 
 n < 1) and shear
thickening fluid (1 < n 
 1:4) are evaluated. Figure 7 illustrates the
isotherms, iscoconcentrations, and streamlines at n¼ 0.8,
Da ¼ 10�3; Gr ¼ 103, Le¼ 1, and Pr¼ 100 in the three dimensional
double-diffusive natural convection of porous media for different
porosities. It depicts that the gradient of the isotherms on the hot wall
declines by the drop of the porosity. The pattern has been confirmed
by the streamlines where the core of the streamlines demonstrates that
the convection process weakens due to the decrease in porosity. The

FIG. 6. Comparison of the average Sherwood number between the present applied
method and the result of Khelifa et al.98

FIG. 7. Isotherms, streamlines, and isoconcentrations for different porosities (a) � ¼ 0:5 and (b) � ¼ 0:9 at n¼ 0.8, Da ¼ 10�3; Gr ¼ 103, Le¼ 1, N¼ 0.1, and Pr¼ 100.
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average Nusselt and Sherwood numbers using Eqs. (62) and (63) are
calculated and demonstrated for different power-law indexes and
porosities at Gr ¼ 103; Da ¼ 10�3, Le¼ 1, N¼ 0.1, and Pr¼ 100 in
Fig. 8. It is clear that the average Nusselt and Sherwood numbers
decline as the power-law index enhances. But, the porosity has a differ-
ent effect on heat and mass transfer where the increase in the porosity
augments the average Nusselt and Sherwood numbers significantly for
the studied non-dimensional parameters. To assess the effect of Darcy
number (which is directly proportional to the permeability of the
porous medium) on heat and mass transfer in various power-law
indexes, the average Nusselt and Sherwood numbers are calculated at
Gr ¼ 103; � ¼ 0:5, Le¼ 1, N¼ 0.1, and Pr¼ 100 in Fig. 9. It shows
that the average Nusselt and Sherwood numbers in various porosities
decrease due to the drop of the Darcy number in all studied power-
law indexes. In addition, it reveals that the rise of power-law index
from n¼ 0.3 to 1.4 declines heat and mass transfer gradually.

However, it demonstrates that the effect of the power-law index is
marginal at Da ¼ 10�4 compared to higher values of Darcy numbers.
The pattern also is observed by the data plotted in Fig. 10 which dem-
onstrates that the magnitudes of the velocity and temperature compo-
nents in the middle of the cubic cavity enhance significantly with
increasing Darcy number when other parameters are kept unaltered.
In fact, the rise of Darcy number causes the drag force due to porous
media in the momentum equation to become smaller compared to the
strength of the buoyancy force. So, the effects of convection become
increasingly strong.

IV. CONCLUSION

In the present work, a comprehensive numerical method, using
LBM for two- and three-dimensional cases, is presented which can
derive the macroscopic equations of continuity, momentum, energy,
and concentration for laminar incompressible flows of power-law

FIG. 8. The average Nusselt and Sherwood numbers for different power-law indexes (n) and porosities (�) at Gr ¼ 103; Da ¼ 10�3, Le¼ 1, N¼ 0.1, and Pr¼ 100.

FIG. 9. The average Nusselt and Sherwood numbers for different power-law indexes (n) and Darcy numbers (Da) at Gr ¼ 103; � ¼ 0:5, Le¼ 1, N¼ 0.1, and Pr¼ 100.
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fluids in porous media. The proposed method can be utilized to solve
isothermal, thermal, and solutal problems of non-Newtonian power-
law fluids in porous media without applying any assumptions and cov-
ering all terms in the mentioned equations. In addition, it is possible to
apply various REV approaches for the porous media in this method,
e.g., Darcy, Forchheimer–Darcy, Darcy–Brinkman, and the general
Darcy–Forchheimer–Brinkman models. In contrast to the conven-
tional LBM for porous media,64,65 which applied a force term due to
the porosity in the distribution function, an equilibrium distribution
function based on macroscopic variables of the momentum equation
for the applied porous model is derived. Different from conventional
LBM, which utilizes specific distribution function relations for bound-
ary conditions, various macroscopic boundary conditions of velocity,
temperature, and concentration can be imposed directly in different
Neumann and Dirichlet boundary conditions. The introduced method
was validated by previous studies and the good agreement between
them demonstrated the accuracy of this approach. It was shown that
the present method can be applied effectively for thermal–solutal
problems of non-Newtonian power-law fluids through porous media
where double-diffusive natural convection of power-law fluids in a
porous enclosure for two- and three-dimensional cases was simulated
and presented for different non-dimensional parameters.

The present mesoscopic method only considered REV models
with the assumption of the local thermal equilibrium (LTE) between
fluid and solid phases. In our future studies, the present approach will
be developed for local thermal non-equilibrium (LTNE) in porous
media.

NOMENCLATURE

a Acceleration
A1 First Rivlin–Ericksen tensor
c Lattice speed
cp Specific heat capacity at constant pressure
C concentration

Ct Tortuosity factor
d Diameter of solid particle
D Mass diffusivity
Da Darcy number
DCT Dufour coefficient
DTC Soret coefficient

e Particle speed
ey Unit vector in y direction
ez Unit vector in z direction
E Inertial coefficient
Ec Eckert number
f Density distribution functions

feq Equilibrium density distribution functions
F Total body force
F External forces
g Internal energy distribution functions
g Gravity acceleration

geq Equilibrium internal energy distribution functions
G Gain component
h Internal concentration distribution functions

heqa Equilibrium internal concentration distribution functions
H Height of the cavity
J total mass flux
k Thermal conductivity
K Permeability
K� Modified permeability
L Length of the cavity
Le Lewis number
n Power-law index
N Buoyancy ratio

Nu Average Nusselt number
p Pressure
Pr Prandtl number
q Heat flux
q0 Heat flux due to the concentration gradient

FIG. 10. The velocity and temperature distributions in the x direction at y ¼ z ¼ 0:5 for various Darcy numbers at Gr ¼ 103; � ¼ 0:5; n ¼ 0:8, Le¼ 1, N¼ 0.1, and
Pr¼ 100.
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R Ideal gas
Ra Rayleigh number
Sh Average Sherwood number
t Time
T Temperature
u Velocity in x direction
U The buoyancy velocity scale
v Velocity in y direction
w Velocity in z direction

x, y, z Cartesian coordinates

Greek letters

a Thermal diffusivity
bC Solutal expansion coefficient
bT Thermal expansion coefficient

_c Shear rate
Dt Time increment
Dx Lattice spacing in x direction
Dy Lattice spacing in y direction
Dz Lattice spacing in z direction
� Porosity
k Non-dimensional relaxation time
l Dynamic viscosity
N Internal energy density
q Density of fluid
r Differential collision cross section
s Extra stress tensor
! Collision operator
/ Relaxation time
U Viscous dissipation
x Weighting factor
- Dimensional relaxation time

Subscripts

a Advective
avg Average
C Cold
d Diffusive
e Effective
f Fluid
H Hot
i SPECIFIC node
L Left
m Mean
r Relative
R Right
s Solid
0 Initial

APPENDIX A: REV MODELS FOR NEWTONIAN
FLUIDS

The first and foremost REV model which has been utilized
widely in multifarious subjects and disciplines is the Darcy model.
In this approach, it is assumed that a Newtonian fluid passes
through an isotropic porous medium while the flow is laminar and

steady. The proposed mathematical model of the Darcy model for
the momentum equation is written as

l
K

u ¼ �rp; (A1)

where u, K, and p are the velocity, the permeability of the porous
medium, and pressure; respectively. The continuity equation for the
case of incompressible flow is expressed by r � u ¼ 0. However, the
Darcy model can be accurate in intense flows, high porosity materi-
als, and near the boundaries due to the negligence of the inertia
term. To evaluate the inertia term, various methods were intro-
duced and one common idea is to adopt the Forchheimer–Darcy
equation,5,6 which can be stated as

l
K

uþ q Effiffiffiffi
K
p ujuj ¼ �rp; (A2)

where q is the density and E is the inertia coefficient (or the
Forchheimer correction factor), as it plays the role of porous inertia
effects (i.e., separation and wake effects) which are relevant at
higher flow velocities. The Forchheimer correction factor which is
an empirical factor and can be defined by a relation with porosity
(�), e.g., E ¼ affiffiffiffiffiffi

a0 �3
p and the parameters of a and a0 are constants

which were defined in various previous theoretical and empirical
studies. When E¼ 0, i.e., when Forchheimer effects can be
neglected, the model reduces to the conventional Darcy law.
Brinkman7 noted that the Darcy model can be useful for small per-
meabilities, but not for higher ones. Another drawback of the Darcy
model is the difficulty in defining and framing boundary conditions
in porous parts and adjoining empty space. To tackle this issue,
Brinkman suggested adding the effects of the viscous shearing
stresses to consider the influences and formulate rational boundary
conditions. So, the proposed equation was the combination of pres-
sure gradient, the divergence of the viscous stress tensor, and the
damping force due to the porous mass as follows:

l
K

u ¼ �rpþ ler2u; (A3)

where le represents the effective viscosity of the fluid (called as a
factor by Brinkman). The main advantage of the Brinkman model
is that it is a reduced form of the Navier–Stokes equation for high
permeability cases and approaches to an asymptote of the Darcy
equation for low permeability. Some researchers have considered
the effective dynamic viscosity equals to the dynamic viscosity
ðle ¼ lÞ for weak flow in porous media. But, many other relations
for the effective dynamic viscosity were suggested in the Brinkman’s
model since it has shown in various numerical simulations that the
effective viscosity is smaller or larger than the viscosity. For exam-
ple, Ochoa-Tapia and Whitaker8 showed that le is identical to l=�.
Lundgren9 found le < l when the porosity is smaller than 0.7
(� < 0:7). It was also shown that the Brinkman equation is appro-
priate for � > 0:8 by the study of Rubinstein10 and � > 0:95 by the
work of Durlofsky and Brady.11 So, the Brinkman model demon-
strates better results with increasing the value of porosity.

Vafai and Tien12 applied the two elements of inertial forces
and solid boundary simultaneously by the volume-averaging tech-
nique and introduced the governing equation of momentum for
isotropic medium and incompressible flow as13
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q
�2
ðu � ruÞ ¼ �rpþ l

�
r2u� l

K
u� q Effiffiffiffi

K
p ujuj: (A4)

The concept of the volume-averaging was introduced by
Whitaker14–16 who applied the technique to study porous media
with deriving the Darcy law by the integration of the Navier–Stokes
equation. Vafai and Kim17 indicated that the momentum formula-
tion in Eq. (A4) had shown an excellent agreement with experimen-
tal results. In addition, it is significantly important for analyzing
fluids in regions with partially porous media. The parameters of
K and E in this model were calculated by Vafai18 in the form of
K ¼ �3 d2

150 ð1��Þ2 ; and E ¼ 1:75ffiffiffiffiffiffiffiffiffi
150 �3
p where d is the diameter of the solid

particle.
Lauriat and Prasad19 studied the unsteady Brinkman-extended

Darcy model including the transport and viscous terms for natural
convection in vertical porous cavities. Assuming that the solid par-
ticles and the fluid are in thermal equilibrium, they derived the
momentum equation in the absence of the gravity force as

q
�

@u
@t
þ q
�2
ðu � rÞ u ¼ �rpþ ler2u� l

K
u: (A5)

The generalized form of the momentum, energy, and concentration
balance equations based on the Brinkman–Forchheimer extended
Darcy model for unsteady flow was modified and given as1–4,20–25

q
�

@u
@t
þ ðu � rÞ u

�

� �
¼ �rpþ l

�
r2u� l

K
u� q Effiffiffiffi

K
p ujuj; (A6)

r
@T
@t
þ u:rT ¼ aer2T þ DTCr2C þ U; (A7)

�
@C
@t
þ u:rC ¼ Der2C þ DCT r2T; (A8)

where T is temperature and ae is the effective thermal diffusivity,

which is calculated by ae ¼ ke=ðq cpÞf . r is defined by r ¼ ðq cpÞe
ðq cpÞf

.

Here, ke is the effective thermal conductivity and calculated by
ke ¼ kf þ ð1� �Þks where the subscripts of f and s refer to the fluid
and solid phases; respectively. cp is the heat capacity of the fluid. In
addition, ðq cpÞe is found by ðq cpÞe ¼ � ðq cpÞf þ ð1� �Þ ðq cpÞs. U

is the viscous dissipation and calculated by23–25

U ¼ l
K
uþ q Effiffiffiffi

K
p ujuj

� �
� uþ 1

2
leðA1 : A1Þ; (A9)

where A1 is the first Rivlin Ericksen tensor and defined by
A1 ¼ ruþ ðruÞT . C is the concentration and De is the effective
mass diffusivity coefficient. Here, DTC and DCT are the Soret and
Dufour coefficients, respectively. It should be mentioned that the
viscous dissipation and the Dufour parameter in the energy equa-
tion and the Soret parameter in the concentration equation can be
neglected in most cases.

APPENDIX B: CONVENTIONAL LATTICE
BOLTZMANN METHOD (LBM)

The single particle distribution function [f ¼ f ðx; e; tÞ] is the
key variable in kinetic theory which represents the number of

molecules (particles) with the unit mass m¼ 1, velocity e at position
x and time t which has the following relationship with the macro-
scopic density

q ¼
ð
f de: (B1)

In addition, the macroscopic velocity u and temperature T can be
obtained by the momentum density and the internal energy density,
respectively, as follows:

qu ¼
ð
ef de ¼ 0 ; qN ¼ 1

2

ð
v2r f de ¼ 0; (B2)

where N is the internal energy density and calculated by N ¼ D0
2 RT

with D0 being the number of degrees of freedom of a particle and R
is the ideal gas constant. Moreover, vr is the magnitude of the rela-
tive velocity; which is the difference between the particle velocity
and the local mean velocity and defined by vr ¼ je� uj. The rate of
change of the distribution function of particles before and after a
collision can be defined by a collision operator [!ðf Þ] as

df
dt
¼ !ðf Þ: (B3)

The collision operator !ðf Þ satisfies the conservation of mass,
momentum, and the total energy conservation. Based on the defini-
tion of the distribution function f and its functions, its total deriva-
tive is found as

df
dt
¼ @f
@x

dx
dt
þ @f
@e

de
dt
þ @f
@t

dt
dt
: (B4)

So, Eq. (B4) can be written as

df
dt
¼ @f
@x

eþ @f
@e

aþ @f
@t
: (B5)

Here, a is the acceleration of the particles and based on the second
Newtonian’s law a ¼ F=m with F being the intermolecular and
external forces. The collision part !ðf Þ is the difference between the
Gain (G) and Loss (L) components of the two-particle collision and
is presented by an integral equation as

!ðf Þ ¼ G� L ¼
ð
ðf 01f 02 � f1f2Þ vrrðX; vrÞ dX dv2; (B6)

where f 01; f
0
2 are the distribution functions of the two particles after

collisions. rðX; vrÞ is the differential collision cross section for the
two particles during the collision process which has the velocities of
u1;u2 (incoming, before the collision) into u01; u

0
2 (outgoing, after

collision).
Finally, the classic continuum Boltzmann equation for one

particle with the unit mass and consideration to Eqs. (B1)–(B6) is
written in the form of an integrodifferential equation as

@f
@t
þ e � rxf þ F � ref ¼

ð
ðf 01f 02 � f1f2Þ vrrðX; vrÞ dX dv2: (B7)

The complicated integral in the collision part in the RHS of Eq.
(B7) encouraged researchers to introduce a simplified approxima-
tion for the presented integral in the collision and the most well-
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known one is the Bhatnagar–Gross–Krook (BGK) collision approxi-
mation (!B), which is defined as

!B ¼
�1
-f

f � f eqð Þ: (B8)

Then, the lattice Boltzmann–BGK (LBGK) equation with consider-
ing the force term can be written as

@f
@t
þ e � rxf þ F � ref ¼

�1
-f

f � f eqð Þ; (B9)

where -f is the dimensional relaxation time due to collision and feq

is the equilibrium distribution functions, which is found in conven-
tional LBM as

f eq � f eq q;u;T; eð Þ ¼ q

2pRTð ÞD0=2
exp � e� uð Þ2

2RT

� �
: (B10)

To find the third term in Eq. (B9) in the presence of the force term,
considering the equation for feq in Eq. (B10) is assumed as

ref � ref
eq ¼ �ðe� uÞ

RT
f eq: (B11)

The exponential function in Eq. (B10) can be expanded by a Taylor
series and approximated as

f eq ¼ qx 1þ e � u
c2s
þ ðe � uÞ

2

2c4s
� juj

2

2c2s

" #
; (B12)

where x ¼ exp � e:e
2RT

	 

ð2pRTÞ�D0=2 and cs ¼

ffiffiffiffiffiffiffi
RT
p

, which is the
speed of sound. Now, Eq. (B9) can be revised as

@f
@t
þ e � rxf ¼

�1
-f

f � f eqð Þ þ F � ðe� uÞ
RT

f eq: (B13)

A discretized form of Eq. (B13) can be written as

@fi
@t
þ ei � rxfi ¼

�1
-f

fi � f eqi
	 


þ Fi; (B14)

where Fi ¼ F � ðei�uÞRT f eqi . Next, integrating Eq. (B14) over a time
interval Dt with et=-f as the integrating factor and linearizing in
terms of this time interval, Eq. (B13) is changed to

fiðx þ eiDx; t þ DtÞ � fiðx; tÞ

¼ � 1
kf

fiðx; tÞ � f eqi ðx; tÞ
� �

þ Fiðx; tÞDt; (B15)

where kf ¼ -f =Dt is the non-dimensional relaxation time and the
discretized equilibrium distribution functions and the force term
Fiðx; tÞ are derived as

f eqi ¼ qxi 1þ ei � u
c2s
þ ðei � uÞ

2

2c4s
� juj

2

2c2s

" #
; (B16)

Fiðx; tÞ ¼ xiq 1� 1
2kf

� �
ei � F
c2s
þ
uF : eiei � c2s I

	 

c4s

" #
: (B17)

For applying the method and discretized equations, a specific lattice
should be defined. So, the parameter of DmQn is used where m

presents the dimension of the study (2D or 3D) and n is the number
of nodes in the selected lattice. For example, in the D2Q9 model,
there are nine discrete velocities in the lattice i ¼ 0; 1;…; 8 for a
two-dimensional case (Fig. 11) and are defined by59

ei ¼
ð0; 0Þ; i ¼ 0

c ðcos hi; sin hiÞ; i ¼ 1; 3; 5; 7

c
ffiffiffi
2
p
ðcos hi; sin hiÞ; i ¼ 2; 4; 6; 8;

8><
>: (B18)

where hi is calculated by hi ¼ ða� 1Þp=4. In the D3Q15 model,
there are fifteen discrete velocities for a three-dimensional case in
the lattice (Fig. 12): i ¼ 0; 1;…; 14 and are given by

ei ¼
0; i ¼ 0

c ð61; 0; 0Þ; c ð0;61; 0Þ; c ð0; 0;61Þ; i ¼ 1� 6

c ð61;61;61Þ; i ¼ 7� 14;

8><
>: (B19)

where c ¼ Dx=Dt and Dx is the lattice spacing. The macroscopic
density and velocity are found as

q ¼
XM
i¼0

fi ; qu ¼
XM
i¼0

fiei; (B20)

where xi is the weighting factor which can be defined by mass and
momentum conservation, as well as isotropy. It is determined for
D2Q9 by x0 ¼ 4=9; xi ¼ 1=9 ; i ¼ 1; 3; 5; 7; xi ¼ 1=36 ; i ¼ 2; 4;
6; 8 and for D3Q15 it is equal to x0 ¼ 2=9; xi ¼ 1=9; i ¼ 1� 6;
xi ¼ 1=72 ; i ¼ 7� 14. cs is defined by cs ¼ c=

ffiffiffi
3
p

. The effective
kinematic viscosity is determined by � ¼ c2s ðkf � 0:5ÞDt and the
pressure (p) is found by p ¼ c2sq. The LBE of temperature distribu-
tion function for finding temperature and satisfying the energy
equation is given as

@gi
@t
þ ei � rxgi ¼

�1
-g

gi � geqi
	 


; (B21)

where -g is the relaxation time. The discretized form of Eq. (B21)
can be written as

giðx þ eiDx; t þ DtÞ � giðx; tÞ ¼ �
1
kg

giðx; tÞ � geqi ðx; tÞ
� �

; (B22)

where gi is the temperature distribution function, kg is the dimen-
sionless relaxation time for the temperature and is defined by

FIG. 11. Discrete velocity distribution in D2Q9.
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1
c2s Dt

aþ 0:5 ¼ kg where a is the thermal diffusivity. The equilibrium
temperature distribution function geqi is found by

geqi ðx; tÞ ¼ xiT 1þ ei � u
c2s

� �
(B23)

and the fluid temperature T is defined by

T ¼
XM
i¼0

gi: (B24)

Different models for advection-diffusion equations were proposed
in LBM60–62 and a general method for concentration equations
which satisfies the concentration equations is as63

@hi
@t
þ ei � rxhi ¼

�1
-h

hi � heqi
	 


; (B25)

where -h is the relaxation time. The discretized form of Eq. (B25)
can be written as

hiðx þ eiDx; t þ DtÞ � hiðx; tÞ ¼ �
1
kh

hiðx; tÞ � heqi ðx; tÞ
� �

; (B26)

while the equilibrium temperature distribution is proposed similar
the approach of fluid flow and temperature field as

heqi ðx; tÞ ¼ xiC 1þ ei � u
c2s

� �
; (B27)

where hi is the concentration distribution function, kh is the
dimensionless relaxation time for concentration and is defined by
1

c2s Dt
Dþ 0:5 ¼ kh where D is the mass diffusivity coefficient. Then,

the concentration can be calculated by

C ¼
XM
i¼0

hi: (B28)

The most popular model for studying porous media with REV is
the proposed model by Guo and Zhao64 that introduced for isother-
mal incompressible Newtonian fluid flow in porous media. They
considered the generalized model for porous media and recovered
Eq. (A6) from the proposed model. The total body force Fiðx; tÞ in
the RHS of Eq. (B15) is the summation of the force due to the

presence of the porous medium and other external forces (F0),
which is given by

Fiðx; tÞ ¼ xiq 1� 1
2kf

� �
ei � F
c2s
þ uF : ðeiei � c2s IÞ

�c4s

" #
; (B29)

F ¼ � �l
K

u� q � Effiffiffiffi
K
p ujuj þ �F0: (B30)

They also modified the equilibrium distribution function for porous
media as

f eqi ðx; tÞ ¼ xiq 1þ ei � u
c2s
þ ðei � uÞ

2 � c2s juj
2

2�c4s

" #
: (B31)

Guo and Zhao65 developed the model for thermal problems and applied
for studying natural convection in a porous cavity. The used LBE of
temperature distribution function and the equilibrium temperature dis-
tribution function are similar to Eqs. (B22) and (B23) since the modified
velocity due to porous media is imposed in the equations. But, the tem-
perature has the following relation with the temperature distribution
function

ðqcpÞe
ðqcpÞf

T ¼
XM
i¼0

gi; (B32)

where the dimensionless relaxation time for the temperature in
porous media was given by 1

c2s Dt
am þ0:5 ¼ kg . However, it was pro-

posed by some researchers66–69 the equilibrium temperature distri-
bution function should also be modified similar to the fluid flow
part [e.g., with dividing the second term of LHS of Eq. (B23) to
porosity (�)]. There are limited studies into the thermal–solutal pro-
cess through porous media by LBM while the fluid is considered as
Newtonian. In most cases, the method of Guo64,65 was used for the
concentration part. However, Chen et al.70 noted that the model
has a significant issue that the porosity in the studied domain
should be uniform. Further, the effective mass diffusivity depends
on the porosity which is nonphysical. So, they proposed a new con-
centration equation while applied the same fluid flow and tempera-
ture LBEs of Guo’s model.

In the past two decades, LBM has been used for studying iso-
thermal and thermal problems of Newtonian and non-Newtonian
fluids through porous media.71–77 For studying non-Newtonian flu-
ids, in the conventional LBM the non-dimensional relaxation time
is locally altered as a function of the shear-rate _c since the dynamic
viscosity is not constant and is changing. So, we have

kðx; tÞ ¼ 1
c2sDt

gðx; tÞ
qðx; tÞ

� �
þ 0:5: (B33)

In this approach, the first Rivlin Ericksen A1 for a two-dimensional
case was found to be

A1 ¼
1

kðx; tÞc2sqDt

XM
i¼0

eiei fiðx; tÞ � f eqi ðx; tÞ
� �

: (B34)

It is clear that the variation of the local shear rate is directly related
to the relaxation time which would not be avoidable to face numeri-
cal instability. In addition, the relation restricts the model and can-
not deal with a wide range of non-Newtonian fluid models.

FIG. 12. Discrete velocity distribution in D3Q15.
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Furthermore, in all of the mentioned studies, the terms of vis-
cous dissipation, Soret and Dufour parameters were neglected and
the terms were not derived.

The viscous dissipation in uniform Newtonian fluid flow was
investigated using LBM in some previous studies. He et al.78 proposed
an LBM for studying thermo-hydrodynamics in incompressible flows.
The model had the advantage to consider the viscous dissipation and
compression work due to pressure. The approach was assessed by simu-
lating two benchmarks of Couette flow and Rayleigh–Benard convec-
tion. In this method, the effect of the viscous dissipation in the internal
distribution energy equation was improved by adding a source term in
the LHS of Eq. (B22) as follows:

giðx þ eiDx; t þ DtÞ � giðx; tÞ

¼ � 1
kg

giðx; tÞ � geqi ðx; tÞ
� �

þ fiðx; tÞqiðx; tÞDt
� �

; (B35)

qiðx; tÞ ¼ ðei � uÞ � 1
q
ð�rpþr:sÞ þ ðei � uÞ:ru

� �
: (B36)

Shi et al.79 simplified the model of He et al.78 based on a LBGK equation
for thermal flows with studying the viscous dissipation in incompress-
ible flow. They evaluated and validated the proposed method by simu-
lating laminar incompressible convection with and without heat
dissipation in Couette and Poiseuille flow. Finally, they recovered the
macroscopic equations through Chapman–Enskog procedure. They
added a source term to the LHS of the internal distribution energy equa-
tion (B22) for small Mach number as

giðx þ eiDx; t þ DtÞ � giðx; tÞ

¼ � 1
kg

giðx; tÞ � geqi ðx; tÞ
� �

þ DtR0; (B37)

R0 ¼ �2=3R fiðx; tÞ � f eqi ðx; tÞ
� �

ei � uð Þ ei � uð Þ :
@u
@x
: (B38)

It should be noted that the viscous dissipation had a significant
effect in the uniform Newtonian fluid when the flows have high
Prandtl number (Pr ¼ l

qa) and Eckert number (Ec ¼ u2
cpDT

) since the

compression work in the compressible flow is neglected.
The boundary conditions in conventional LBM are imposed by

the relation between the distribution functions and/or equilibrium dis-
tribution functions. For example, the bounce-back approach is used for
no-slip boundary conditions, which assumes that the particles hitting
the boundary reflect back. Another approach which is suitable for
Dirichlet boundary conditions is the non-equilibrium extrapolation,
which decomposes the distribution function at the boundary node into
its equilibrium and non-equilibrium parts.

APPENDIX C: THE DISCRETE PARTICLE
DISTRIBUTION FUNCTION

Recalling the LBGK equation (B14), we have

@fi
@t
þ ei � rxfi ¼

�1
-f

fi � f eqi
	 


þ Fi: (C1)

To have the introduced f eqi in the equation, the following conditions
should be satisfied.

X8
i¼0

f eqi ¼ q; (C2)

X8
i¼0

f eqi ei ¼ qu; u ¼ uiþ vj; (C3)

X8
i¼0

f eqi ei � ei ¼ M; (C4)

where

M ¼
Mxx Mxy

Myx Myy

2
4

3
5; (C5a)

Mxx ¼ q
u2

�
þ � p� 1

�ðn�1Þ
sxx; (C5b)

Mxy ¼ Myx ¼ q
uv
�
� 1

�ðn�1Þ
sxy; (C5c)

Myy ¼ q
v2

�
þ � p� 1

�ðn�1Þ
syy: (C5d)

Further, the following conditions for the proposed force term in the
equation should be satisfied:

X8
i¼0

Fi ¼ 0 ;
X8
i¼0

Fiei ¼ F: (C6)

The Chapman–Enskog expansion is used for fi as

fi ¼ f eqi þ ff ð1Þi þ f2f ð2Þi þ Oðf3Þ: (C7)

Now, substituting the fi in (C7) into (C1), we find that

@f eqi
@t
þr � ðf eqi eiÞ � Fi ¼ �

1
-f

f ð1Þi þ OðeÞ: (C8)

Summing the equation above, we obtain

@

@t

X8
i¼0

f eqi

 !
þr �

X8
i¼0

f eqi ei

 !
þ

X8
i¼0

Fi

 !
¼� 1

-f

X8
i¼0

f ð1Þi þOðeÞ:

(C9)

Using Eq. (C2), (C3), and (C6) and considering q as a constant for
an incompressible flow, Eq. (C9) reduces to

qðr � uÞ ¼ 0þ OðeÞ: (C10)

Actually, (C10) is the continuity equation of an incompressible
medium and show the proposed method satisfies the continuity
equation. Multiplying (C9) by ei;

@f eqi ei
@t
þ ðei � rxf

eq
i Þei � Fiei ¼ �

1
-f

eif
ð1Þ
i þ OðeÞ; (C11)

we also have

r � ðf eqi ei � eiÞ ¼ ðei � rxf
eq
i Þei; (C12)

and summing over i, one obtains
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@

@t

X8
i¼0

f eqi ei

 !
þr �

X8
i¼0

f eqi ðei � eiÞ

�
X8
i¼0

Fiei

 !
¼ � 1

-f

X8
i¼0

eif
ð1Þ
i þ OðeÞ: (C13)

Recalling [(C3), (C4), (C5), and (C7)], Eq. (C13) is obtained as

@

@t

X8
i¼0

f eqi ei

 !
þr �

X8
i¼0

f eqi ðei � eiÞ

�
X8
i¼0

Fiei

 !
¼ � 1

-

X8
i¼0

eif
ð1Þ
i þ OðeÞ: (C14)

So, Eq. (C14) can be written as follows:

q
@u
@t
þ ðu � rÞ u

�

� �
þrð� pÞ � 1

�ðn�1Þ
r:s� F ¼ 0þ OðeÞ;

(C15)

which demonstrates the generalized unsteady porous media for
REV scale approach.

APPENDIX D: INTERNAL ENERGY DISTRIBUTION
FUNCTION

The equation of the energy distribution function is as

@gi
@t
þ ei � rxgi � Gi ¼

�1
-g

gi � geqi
	 


: (D1)

The following conditions should be held to have the cited relation
for the energy equilibrium distribution function geqi ðx; tÞ

X8
i¼0

geqi ¼ ðqcpÞm T; (D2)

X8
i¼0

geqi ei ¼ ðqcpÞf T uþ qþ q0 � s � u; (D3)

X8
i¼0

Gi ¼
l
K
uþ qEffiffiffiffi

K
p ujuj

� �
� uþ r � sð Þ � u: (D4)

The Chapman–Enskog expansion gives

gi ¼ geqi þ egð1Þi þ e2gð2Þi þ Oðe3Þ: (D5)

By substituting the relation in (D5) into (D1), we have

@geqi
@t
þr � ðgeqi eiÞ � Gi ¼ �

1
-g

gð1Þi þ OðeÞ: (D6)

Summing Eq. (D6) over i,

@

@t

X8
i¼0

geqi

 !
þr �

X8
i¼0

geqi ei

 !

�
X8
i¼0

Gi

 !
¼ � 1

-g

X8
i¼0

gð1Þi þ OðeÞ: (D7)

Using Eqs. (D2)–(D4), the above equation becomes

@

@t
ððqcpÞm TÞ þ r � ððqcpÞf Tu� s � uþ qþ q0Þ

� r � sð Þ � u� l
K

u� q Effiffiffiffi
K
p ujuj

� �
� u

� �
¼ 0þ OðeÞ: (D8)

Equation (D8) can be written as

ðqcpÞm
@T
@t
þ ðqcpÞf u � rT þr � q

þr � q0 � r � ðs � uÞ þ r � sð Þ � u

� l
K

u� q Effiffiffiffi
K
p ujuj

� �
� u ¼ 0þ OðeÞ; (D9)

where

r � ðs � uÞ � r � sð Þ � u ¼ 1
2
s : A1: (D10)

So, we can have the following relationship.

�r � ðs � uÞ þ ðr � sÞ � u� l
K

u� q Effiffiffiffi
K
p ujuj

� �
� u

¼ � 1
2
s : A1 �

l
K

u� q Effiffiffiffi
K
p ujuj

� �
� u ¼ �U (D11)

with considering q ¼ �ke @T@x and q0 ¼ � qDkT
cs

@C
@x , and dividing by

ðqcpÞf , Eq. (D9) becomes

ðqcpÞm
ðqcpÞf

@T
@t
þ u � rT �r � ðaerTÞ

�r � ðDTCrCÞ � U ¼ 0þ OðeÞ: (D12)

Equation (D12) satisfies Eq. (A7).

APPENDIX E: CONCENTRATION DISTRIBUTION
FUNCTION

The equation of the concentration distribution function is as
follows:

@hi
@t
þ ei � rxhi ¼

�1
-h

hi � heqi
	 


: (E1)

The following relations must hold:

X8
i¼0

heqi ¼ �C; (E2)

X8
i¼0

heqi ei ¼ Jþ J0: (E3)

The Chapman–Enskog expansion gives

hi ¼ heqi þ ehð1Þi þ e2hð2Þi þ Oðe3Þ: (E4)

Substituting the expression for hi in (E4) into Eq. (E1), and sum-
ming over i
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@

@t

X8
i¼0

heqi

 !
þr �

X8
i¼0

heqi ei

 !
¼ � 1

-h

X8
i¼0

hð1Þi þ OðeÞ � (E5)

Using Eqs. (E2)–(E4), the above equation becomes

@

@t
�C þr � Jþ J0ð Þ ¼ 0þ OðeÞ; (E6)

we have J ¼ uC � DerC and J0 ¼ �DCTrT , so Eq. (E6) can be
written as

@

@t
�C þr � uCð Þ � r � DerCð Þ � r � DCTrTð Þ ¼ 0þ OðeÞ;

(E7)

where r � ðuCÞ ¼ urC þ Cðr � uÞ Since the fluid flow is incom-
pressible, the term of r � u is equal to zero. So, it concludes that
r � ðuCÞ � urC. With this information, Eq. (E7) is presented as

�
@C
@t
þ u � rC � Der2C � DCTr2T ¼ 0þ OðeÞ; (E8)

which demonstrates Eq. (A8).
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