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Abstract5

Ocean wave energy has significant technical potential but limited full-scale deployments and tech-

nology convergence. Consequently, guidelines for developing wave energy converters (WECs) are still

developing themselves, especially around experimental uncertainty analysis (UA). To develop a com-

prehensive WEC-specific UA methodology, we conducted a 1:30 scale experiment of a case study

oscillating water column (OWC) WEC. This paper presents the methodology, which describes UA10

principles and means to identify parameters causing uncertainty, and demonstrates new WEC-specific

UA methods: general uncertainty analysis (GUA), the Monte Carlo method (MCM) for uncertainty

propagation, and Type A and Type B uncertainty evaluation. Results show the expanded uncertainty

averaged ±16% for capture width ratio and ±6% for wave loads; Type B uncertainty tended to be

slightly larger than Type A uncertainty; and uncertainty in regular waves slightly larger than irregular15

waves. The MCM was found to be effective and efficient in uncertainty propagation. In general, given

WECs tend to maximise motions, use a power take-off system, and must survive storms, WEC model

tests may be especially susceptible to uncertainty due to nonlinearities and modelling complexities. In

conclusion, UA should be carried out in WEC model test experiments. We close with recommendations

for refining relevant international guidelines.20
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1. Introduction

Guidelines and standards support the development of technologies from idea to prototype to prod-

uct, so they must be accurate, robust, and meet industry needs. In ocean wave energy, which has

significant technical potential [1], guidelines for testing and developing wave energy converter (WEC)25

technologies have been established by research projects [2, 3, 4, 5, 6, 7] and, more recently, by interna-

tional organisations [8, 9]. These guidelines, however, are still undergoing active development because

of limited full-scale deployments that feedback knowledge and because of the large diversity of WECs

still being developed [10, 11]. In particular, guidelines are lacking on uncertainty analysis (UA) in

hydrodynamic model test experiments of WECs [12]. This lack is important to address because WEC30
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technology developers, researchers, consultants, and investors make critical decisions based on model

test results: proof-of-concept, validation and calibration of numerical models, system identification,

design and prediction of prototype performance, to inform Levelised Cost of Energy (LCOE), and

investment [13, 9, 7].

UA is key to understanding the causes and effects of uncertainty in model test experiments. Un-35

fortunately, UA is neither well understood nor widely used in WEC model tests [12]. Despite sound

knowledge of UA in mature maritime fields such as general hydrodynamic experimentation [14], offshore

structures [15], ships [16, 17], and coastal engineering [18], applying this knowledge in wave energy,

particularly in WEC experiments, is inadequate and carries risk because WECs tend to maximise

motions, use a power take-off (PTO) system, often have novel geometries and moorings that influence40

motions, and are exposed to extreme wave-induced loads [13]. The few studies that have focused on the

problem of experimental uncertainty in WEC model tests show that, in consequence of these unique

WEC characteristics, uncertainty can considerably influence experimental results [19, 20, 21, 22]. For

example, spatial variations of generated waves in wave tanks [19] coupled with difficult to measure

interactions and absorbed power of an array of heaving-buoy WECs lead to uncertainty levels that45

mostly concealed motions and power [20]. Capture width ratio of oscillating water column (OWC)

WECs has also been shown to be especially susceptible to uncertainty [21, 22]. More broadly, uncer-

tainty extends beyond the laboratory to uncertainty in wave resource assessment [23, 24, 25], mean

annual energy production (MAEP) estimates [25, 26], and open water tests [27].

To address the lacking WEC-specific knowledge of experimental uncertainty, guidelines have been50

developed in research projects [6, 5] and by the International Towing Tank Conference (ITTC) with

Uncertainty Analysis for a Wave Energy Converter 7.5-02-07-03.12 [28]. While these are a good step

toward rigorous, standardised best practices, the guidance is relatively immature; it lacks important

uses of UA, such pre-test or general uncertainty analysis, alternative methods to propagate uncertainty

such as the Monte Carlo method (MCM) [29, 30, 22], and WEC-specific methods for evaluating Type55

A and Type B uncertainty [21]. To refine this guidance, we carried out a 1:30 scale experiment of a

case study oscillating water column (OWC) WEC, based on Australian company Wave Swell Energy’s

Uniwave® technology1, which is a bottom-fixed device with a unidirectional flow power take-off (PTO)

system enabled by passive valves. The aim was to develop a comprehensive UA methodology, that

could be used as a template or guidance for most WEC designs and experiments – the work is thus60

necessarily descriptive.

This paper presents the methodology and demonstrates how UA was applied in the experiment.

It is structured by seven experimental phases: planning, design, construction, debugging, execution,

1https://www.waveswell.com/technology/
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analysis, and reporting (based on [30]). It introduces to the wave energy field the concepts of general

uncertainty analysis (GUA), used in experiment planning and design, and detailed uncertainty analysis65

(DUA), used in subsequent experimental phases. It also develops the MCM for use in both GUA and

DUA to effectively and efficiently propagate uncertainty in nonlinear and time-dependent measurands

(capture width ratio and its lower-level measurands and quantities). Step by step, the principles of

GUA and DUA are explained and reinforced by rich examples of their application in the experiment,

including power performance and wave loads results from the experiment that is representative of70

technology readiness level (TRL) 1-4. Ultimately, the work argues for the importance of UA, that it

is worthwhile investing in understanding it and using it in WEC model test experiments.

2. Overview of experimentation and uncertainty analysis

UA is the analysis of uncertainties in an experiment to assure and quantify the quality of results.

Figure 1 shows the relation between UA uses and experimentation phases and activities. UA is split75

into two categories: GUA, used in the planning and initial design phase of an experiment, and DUA,

used in the remaining experimental phases of design, construct, debug, execute, analyse, and report

[30].

Ask questions; consider approaches; 
choose scale and laboratory.

Consider instrumentation, apparatus; 
test matrix. 

Assemble components in apparatus; 
calibrations.

Initial runs; troubleshooting.

Runs; data acquisition, recording, 
storing.

Determine answer, solution, or 
objectives.

Present data; conclusions. 

Phase Activities Uncertainty Analysis Uses

Choose and plan the experiment. 

Choose instrumentation; detailed design.

Guide decisions on changes and 
calibration techniques/processes.

Verify operations.

Quantify standard, combined, and 
expanded uncertainties. 

Balance checks; monitoring of apparatus.

Guide choice of analysis techniques. 

G
U

A

Design

Construct

Debug

Execute

Analyse

Report

Plan

D
U

A

Figure 1: Experimental phases with descriptive activities and corresponding uses of uncertainty analysis.

GUA requires evaluating the relative importance of general uncertainties in an experiment. In

particular, it requires evaluating various approaches, instruments, apparatus, and measurement pro-80

cedures that might best answer the questions or objectives of interest. DUA, on the other hand,
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requires evaluating uncertainties at a detailed level, to guide decisions on experimental design and

implementation, to monitor data and its uncertainty, and to quantify the quality of results throughout

the experiment. To provide a systematic means of performing both GUA and DUA, we introduce a

three-stage structure: (1) formulate, (2) propagate, and (3) summarise (based on [31, 29]). Figure 285

shows the concepts in and process of these stages.

Descriptions of key terms in Figure 2 are as follows:

• Measurand model: Y = f (X1, X2, . . . , XN ), where Y is the output quantity and is a function

of i=1:N number of input quantities Xi (lowercase xi, y are the estimates or measurements of

quantities)90

• PDF: probability density function of input quantities Xi

• uG(Xi): general uncertainty, one value characterised by an assumed PDF of Xi’s

• uA(xi): Type A uncertainty – evaluated by statistical analysis, i.e., the standard deviation of

the PDF produced by repeated observations

• uB(xi): Type B uncertainty – evaluated from instrument calibrations, manufacturer’s specifica-95

tions, or uncertainties taken from handbooks

3. Case study WEC description

The case study WEC was based on the Wave Swell Energy (WSE) Uniwave technology, which is

a bottom-fixed oscillating water column (OWC) WEC (Figure 3). Unlike conventional OWC WECs,

which use bidirectional or rectified flow PTO systems [32], the WSE technology uses valves to create100

a unidrectional flow PTO system. This PTO comprises a unidirectional nonlinear air turbine, with

unidirectional airflow enabled by valves that open and exhaust air on the up-stroke of the inner

free surface, then close on the down-stroke to direct air through the air turbine, thereby generating

electricity (see [33] for more details).

Froude scaling was applied to design a 1:30 scale model of the WSE prototype WEC. The PTO105

system was modelled using an orifice plate to represent the quadratic air pressure-flow characteristics

of the air turbine (a common practice [32, 34]). Light weight, robust plastic sheets simulated the

passive valves. subsection 5.6 further details the experimental design and physical model.

4. General uncertainty analysis

GUA is carried out before an experiment begins, and has many uses: it enforces us to examine110

an intended experiment and provides an integrated grasp of how to carry it out; identifies potential
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𝑢஻(𝑥ଵ)

𝑢஻(𝑥ଶ)

𝑢஻ 𝑥ଷ             𝑢஺ 𝑦

General Uncertainty Analysis

Assign PDFs to 𝑋௜ based on judgement of 
available information. 

Propagate PDFs for 𝑋௜ through 𝑌 to obtain 
PDF for 𝑌.

Use PDF of 𝑌 to obtain:
• mean of 𝑌
• standard deviation of 𝑌, the general combined 

standard uncertainty 𝑢ீ(𝑌)
• coverage interval 𝑘ୡ containing 𝑌 with a 

specified probability, the expanded uncertainty 
𝑈ீ = 𝑘௖𝑢ீ 𝑌

Present results of general uncertainties as 𝑋௜ ±
𝑢ீ(𝑋௜) and 𝑌 ± 𝑈ீ .

a. Define the measurand

b. Identify uncertainty sources

c. Evaluate standard uncertainty

Determine combined uncertainty

Summarise uncertainties

Detailed Uncertainty Analysis 

Assign PDFs to 𝑥௜ based on Type A and Type 
B standard uncertainties.

Propagate PDFs for 𝑥௜ through 𝑦 to obtain 
PDF for y.

Use PDF of 𝑦 to obtain:
• mean of 𝑦
• standard deviation of 𝑦, the detailed 

combined standard uncertainty 𝑢௖(𝑦)
• coverage interval 𝑘௖ containing 𝑦 with a 

specified probability, the expanded 
uncertainty 𝑈 = 𝑘௖𝑢௖ 𝑦

Present results of detailed uncertainties as 𝑥௜ ±
𝑢(𝑥௜) and 𝑦 ± 𝑈.

𝑦 = 𝑓 𝑥𝒊             𝑦, 𝑢௖ 𝑦

1. Formulate

2. Propagate

3. Summarise

𝑋ଵ 𝑋ଶ

𝑋ଷ

𝑢ீ(𝑋ଵ) 𝑢ீ(𝑋ଶ)

𝑢ீ(𝑋ଷ)
𝑌

𝑥ଵ 𝑥ଶ

𝑥ଷ

𝑢஺(𝑥ଵ) 𝑢஺(𝑥ଶ)

𝑢஺(𝑥ଷ)

𝑦

𝑢ீ 𝑋ଵ       𝑢ீ 𝑋ଶ       𝑢ீ 𝑋ଷ 𝑢஻ 𝑥ଵ       𝑢஻ 𝑥ଶ       𝑢஻ 𝑥ଷ       𝑢஺ 𝑦

𝑌 = 𝑓 𝑋ଵ, 𝑋ଶ, … , 𝑋ே

𝑢஻(𝑥ଵ) 𝑢஻(𝑥ଶ)

𝑢஻ଵ(𝑥ଷ)

𝑢ீ(𝑋ଵ)

𝑢ீ(𝑋ଶ) Y = 𝑓 𝑋𝒊          𝑌, 𝑢ீ 𝑌

𝑢ீ 𝑋ଷ

estimates/measurementsoutput quantity    input quantities

Type A uncertaintyType B uncertainty
general uncertainty

𝑢஺(𝑦)

𝑦 = 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥ே)

Figure 2: Overview of the concepts and processes of uncertainty analysis, structured by three main stages, for General

Uncertainty Analysis and Detailed Uncertainty Analysis. The example illustrates N = 3 independent input quantities

Xi.

troubles and errors, and why they exist; advises when improved instruments or procedures are needed

to reduce uncertainty, while minimising cost; and reveals which parameters contribute most to the

uncertainty in results, thereby focusing attention on critical measurements and key procedures which

govern the overall experimental uncertainty [36]. All these uses permit access to otherwise inaccessible115
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Figure 3: Working principle of the Wave Swell Energy Oscillating Water Column Wave Energy Converter, the case

study technology used as the subject of this research (prototype shown, adapted from [35]).

information about an experiment before it begins, saving time, money, and resources [30]. This section

describes the principles of GUA and our application of it, according to the three-stage UA structure

presented in Figure 2.

4.1. Stage 1a. Formulate: Define the measurand

To define the measurand(s) of the experiment is to describe, mathematically, what is being mea-120

sured. In most cases a measurand Y is not measured directly but is a measurement model: Y =

f (X1, X2, . . . , XN ) (the Xi’s may themselves be lower-level measurands). For this experiment, to

define the measurands a simple sketch of the intended experiment was created (Figure 4). The sketch

shows the processes and parameters of the experiment. Xi’s are assembled into the measurand func-

tions (boxed equations). The following equations describe the mathematical model of incident waves,125

the WEC, and their interaction.

Beginning with incident waves, assuming linear wave theory with regular long-crested two-dimensional

waves of elevation ηinc, angular frequency ω, and water depth h, propagating toward the OWC WEC

in a constant direction, the regular wave power PWr
per unit length in general water depth is

PWr =
1

8
ρwgH

2cg (1)

where H is the incident wave height, ρw the water density, g the gravitational acceleration, and cg the130

group velocity. Group velocity cg is calculated from wave celerity c and wave number k,

cg =
c

2

[
1 +

2kh

sinh(2kh)

]
(2)

where

c =
ω

k
(3)
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𝜌௔

Valves (upstroke = open)

Figure 4: Simple sketch of the OWC WEC experiment in regular waves, showing all the defined measurands and input

quantities on which they depend.

with k determined through an iterative process by solving the dispersion relationship

ω2 = gk tanh(kh) (4)

The total average irregular wave power PWi in finite water depth for a given spectrum is

PWi
=

1

2
ρg2

∫ ∞
0

Ch(ω)S(ω)
dω

ω
(5)

where S(ω) is the power spectral density function and Ch(ω) is a correction that modifies the wave135

power in deep water to wave power in finite water depth [37]:

Ch =

(
1 +

2kh

sinh(2kh)

)
k0
k

(6)

where k0 = ω2/g is the wave number in deep water (h > 1
2λ). For a given spectrum, the significant

wave height Hm0 is

Hm0 = 4
√
m0, (7)

and various wave period statistics of energy period Te, zero up-crossing period Tz, and mean wave

period Tm01 are respectively:140

Te =
m−1
m0

, Tz =

√
m0

m2
, Tm01 =

m1

m0
(8)

with the spectral moments defined as

mn =

∫ ∞
0

S(ω)ωndω (9)

7



where n = −1, 0, 1, 2, . . .

Pneumatic power P , henceforth ’OWC power’, is derived from the differential air pressure p mea-

sured inside the OWC chamber, and air volume flow rate q displaced by the motion of the inner145

free-surface. In regular waves,

P =
1

T

∫
pq dT (10)

where T is the characteristic wave period. There are two key methods of deriving q in Equation 10;

subsection 4.6 describes these methods and presents an example of how GUA was used to choose which

method would result in the least uncertainty.

P in irregular waves is the same as Equation 10 except T is the time vector of the whole irregular150

wave timeseries.

Capture width ratio CW is the top-level measurand that relates P to PW as a function of the

characteristic width B of the WEC:

CW =
P

PWr,i
B

(11)

It is worth noting that although PW assumes linear waves, even it is not always the case, it is

mostly used to non-dimensionalise of P , whereas the calculation of P includes nonlinearities.155

Figure 4 also shows hydrodynamic wave loads imposed on the OWC WEC, to be measured using a

six-component force balance. The six load measurands are surge force Fx, sway force Fy, heave force

Fz, roll moment Mx, pitch moment My, and yaw moment Mz. This work focuses only the important

components of Fx, Fz, and My.

160

4.2. Stage 1b. Formulate: Identify uncertainty sources

There are many possible sources of measurement uncertainty (see [31] for a generic list). A broader

perspective on experimental uncertainty reveals yet more uncertainties (Table 1). All uncertainties

should be considered and the relevant ones evaluated. Cause-and-effect diagrams are useful here

(Figure 5) [38]. These diagrams effectively account for the general uncertainties uG(Xi) in the Xi’s165

and show their relative influences on the overall uncertainty in Y .

4.3. Stage 1c. Formulate: Evaluate standard uncertainty

To evaluate standard uncertainty requires assigning PDFs – Gaussian (normal), rectangular (uni-

form), etc. – to the Xi on the basis of available knowledge, and assigning instead a joint PDF to

those Xi that are not independent [31]. Available knowledge can include previous measurement data,170

experience with similar experiments, or reference materials. Often a simple normal PDF is assigned

at this pre-experiment stage [30].

8



Table 1: Potential sources of uncertainty in a typical wave energy converter experiment.

Parameter Uncertainties

Scaling Non-similitude of Froude and Reynolds numbers; structural materials; PTO sim-

plification; air compressibility; nonlinear waves; water depth truncation; sharp

corners and narrow funnels on models [18, 15, 39, 9, 40].

Model Geometry, articulations; construction; installation; hydrostatics; moorings; PTO

(friction, limitations, control); elasticity/nonlinear deformations [15, 28, 9].

Instrumentation nonlinearity, hysteresis, calibration, noise; sensor positions; influence on model

motions [15, 41].

Laboratory Wave generation/control (higher-order waves, transverse non-uniformity, input-

measured discrepancy); boundaries (wave reflections, blockage); limited run du-

rations; initial conditions (residual waves, turbulence) [18, 15, 28].

Fluid properties Viscosity; density (change in buoyancy, mass distribution, pressure/forces, tem-

perature; surface tension; wave breaking [18, 42, 15, 43].

Data reduction

and analysis

Model definition, idealisation, assumptions; test definition; propagation of uncer-

tainty for measurands [44, 30].

Human factors Experiment setup; calibrations; judgement under uncertainty; measurement

reading error; data analysis and reporting [15, 45].

ଵܺ ܺଶ

ܺே

)ீݑ ଵܺ) (ଶܺ)ீݑ
(ேܺ)ீݑ

ܻ = ݂( ଵܺ, ܺଶ,… , ܺே)

Causes

Effect ݃ ܪ

௪ߩ

(݃)ீݑ (ܪ)ீݑ
(௪ߩ)ீݑ ௐܲ = ଵ

଼ ଶܪ௪ߩ݃ ௚ܿ

ܿ௚
)ீݑ ௚ܿ)

General case                                                            Wave power example                                   

Figure 5: A cause-and-effect diagram used to identify uncertainty sources in a measurand Y , where Xi are input or

influence quantities upon which Y depends, and uG(Xi) is a general uncertainty associated with Xi. Example is for

N=3 independent Xi.

4.4. Stage 2. Propagate: Determine combined uncertainty

To determine combined uncertainty requires uncertainty propagation, whereby the PDFs of the Xi

are propagated through a measurand function to produce an estimate and PDF of Y . Propagating175

PDFs can be implemented either analytically, using the ‘law of propagation of uncertainty’ based on

a first-order Taylor series approximation (i.e., the Taylor Series Method (TSM) or GUM uncertainty
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framework [31]), or statistically by performing random sampling from PDFs using, for example, the

Monte Carlo method (MCM) [29, 30]. The MCM is a practical alternative to the TSM. It has value

when linearisation of the measurand provides an inadequate representation, or the PDF for Y is non-180

linear and departs appreciably from a normal PDF or a scaled and shifted t-distribution. Further,

the MCM directly propagates uncertainty through measurand functions and so does not contain ap-

proximations (therefore errors) which the TSM does; often reduces the analysis effort; and is more

reliable when an estimate of Y and its associated uncertainty are approximately of the same magni-

tude. For these reasons the MCM has become the primary method for uncertainty propagation in185

many engineering fields [30]. The MCM, therefore, is the focus of this work. It is especially useful

in this application, and probably most WEC experiments, because the experiment is characterised

by multiple time-dependent nonlinear processes – nonlinear waves inducing nonlinear motions of the

OWC internal free surface which interacts with a nonlinear PTO.

Figure 6 shows the process of the MCM in GUA, presenting an example where a measurand Y190

depends on two input quantities X1 and X2 such that Y = f(X1, X2). The method, however, is general

for measurands with any number of inputs. A description of the method and its implementation follows.

First, assumed nominal values are input for each quantity X1,nom and X2,nom, as well as their as-

sumed general uncertainties uG(X1) and uG(X2). Each uG is a unique value encompassing uncertainty

components, and is assumed to be the standard deviation of the assumed PDF, which is typically nor-195

mal but other distributions can be assumed based on better knowledge. Then, at each iteration j,

uG(Xi) is multiplied by a randomly sampled number drawn from the assumed PDF (varying about 1),

and added to the nominal values of each quantity to obtain the “measured” values X1(j) and X2(j).

From these measured values the result of the measurand Y is calculated. This sampling process is

repeated M times to obtain a PDF for Y . The output of the MCM is the standard deviation of the200

PDF of Y , taken as the general uncertainty uG(Y ). An appropriate value for M is determined by cal-

culating the standard deviation of Y at each iteration and stopping the process when a converged value

is reached ([22]). A converged value to within 5% is considered to give an acceptable approximation

of uG(Y ) (M ≈ 5,000 is typically sufficient).

At this pre-experiment stage, a sensitivity analysis may be performed through a series of simulations205

over a range of nominal values and uncertainties within the expected parameter space of the experiment.

Here, one input quantity is subject to random sampling at a time, while the other quantities remain

constant. The analysis reveals the relative importance of uG(Xi)’s on uG(Y ), thereby yielding insights

into which parameters contribute most to the overall uncertainty, valuable information that informs

the subsequent experiment design phase.210
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Input nominal values of 𝑋ଵ,௡௢௠ and 𝑋ଶ,௡௢௠

Input uncertainty values 𝑢ீ(𝑋ଵ) and 𝑢ீ(𝑋ଶ)

Run simulation j = 1: M iterations 

Assume 𝑢ீ(𝑋ଵ) and 𝑢ீ(𝑋ଶ) are the 
standard deviations of their PDFs 

and select an error from each source

Calculate measurand
𝑌 j = 𝑓 𝑋ଵ(j), 𝑋ଶ(j)

j = M?

From the distribution of M values of 𝑌 j , 
calculate the standard deviation, 𝑢ீ(𝑌)

No

Yes

𝑋ଵ j = 𝑋ଵ,௡௢௠ + 𝑢ீ 𝑋ଵ j  𝑋ଶ j = 𝑋ଶ,௡௢௠ + 𝑢ீ(𝑋ଶ)(j)

𝑌

Figure 6: Flow diagram of the Monte Carlo method to propagate uncertainty in general uncertainty analysis, showing

an example where the measurand result Y is a function of two input quantities X1 and X2.

4.5. Stage 3. Summarise: Summarise uncertainties

To summarise uncertainties requires using the PDF for Y to obtain: an estimate (the mean) of Y ;

the standard deviation of Y , taken as the general uncertainty uG(Y ) associated with Y ; and a coverage

interval k containing Y with a specified probability, which gives the expanded general uncertainty

UG = kuG(Y ) (Figure 2). To facilitate experiment planning and subsequent phases, these estimates215

and uncertainties should be presented in tables or graphs in the form Xi ± uG(Xi) and Y ± UG.

The procedure for determining an MCM coverage interval for Y , even if the PDF is asymmetric, is

as follows. First, sort the vector of Y values that form the PDF from smallest to largest. Then, for a

chosen coverage probability pc, the lower bound of the coverage uncertainty interval is Ylow = sorted

vector{[(1− pc) /2]M}, with the upper bound Yhigh = sorted vector{[(1 + pc) /2]M}. For example,220

to obtain 95% coverage interval limits (pc = 0.95), Ylow = result number(0.025M) and Yhigh = result

number(0.975M) (i.e., the 2.5% and 97.5% quantiles, with the interval containing 95% of the MCM

results) [30].
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4.6. Example: Using the MCM to determine the best method to derive OWC power

This example demonstrates how MCM was used in GUA to determine which out of two methods225

for deriving OWC power P would result in the smallest uncertainty. It further reveals how the gener-

ated information informed the experimental design needed to achieve the estimated uncertainty. The

example highlights how GUA can be especially helpful in determining whether or not a new procedure

should be pursued in an experiment.

The problem of deriving P is as follows. Referring to Equation 10, P is a function of air pressure230

p multiplied by volume flow rate q. Measuring q in OWCs is challenging because the air flow changes

continuously and rapidly, in both magnitude and sometimes direction. Therefore, q is derived using

two main methods [46]:

Method (a): q is derived through a numerical derivation of air volume displaced from the OWC

internal free surface ηowc oscillations measured using multiple wave probes inside the OWC, hence235

qηowc :

qηowc =

∫ ∫
Sc

dηowc
dt

ds =

∫ ∫
Sc

vs ds (12)

where Sc is the free surface area and vs the free surface velocity.

Method (b): q is derived from measured p and a calibrated orifice (used to simulate the PTO)

characterised by a discharge coefficient Cd, hence qCd
:

qCd
=

p

|p|
CdA0

√
2|p|
ρa

(13)

where A0 is the orifice cross-sectional area, and ρa the density of air, assumed to be 1.2 kg/m3. This240

equation for deriving q from flow through an orifice is according to ISO 5167 [47].

In-situ orifice calibration can be used to determine Cd, which is a two step process. First, we

rearrange Equation 13 for Cd and use data from all regular wave runs (either measurement data

obtained during the experiment or data based on assumed values before the experiment) to calculate

Cd from values of p, qCd
, A0, and ρa. Obtaining qCd

here first requires the use of Method (a), such that245

qCd
= qηowc in the rearranged Equation 13. After, from the regular data set we calculate the mean of

Cd, which is approximately independent of wave height and period. The second step is to simply use

this mean Cd value to derive qCd
using Equation 13. This GUA example demonstrates how Cd can

be derived using data based on assumed values before the experiment, which was necessary to derive

qCd
and enable the comparison of Methods (a) and (b). We present the results of this pre-experiment250

orifice calibration after describing the MCM sensitivity analysis of Methods (a) and (b), as follows.

Two sets of MCM simulations were set up as per Figure 6, one set for Method (a) and one for

Method (b). The first step was to input nominal values of the quantities used to derive P . To ob-

tain such nominal values required developing a simple mathematical model, based on the scale of the
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experiment, selected to be 1:30 based on the wave basin characteristics (location, dimensions, water255

depth, and wavemaker capability) and other practical aspects including model build and instrumen-

tation implementation. The model consisted of an assumed sinusoidal wave profile of 101 data points

representing the free surface elevation inside the OWC, ηowc = Aηowc
sin(kx− ωt) where Aηowc

is the

amplitude. From this profile, q was derived using Equation 12, assuming the cross-sectional area of the

OWC to be Sc = 0.168 m2 (based on previous knowledge). In turn, we derived p from q by rearranging260

Equation 13, and substituting Cd = 0.6 (the theoretical discharge coefficient), air density ρa = 1.2

kgm−3, and orifice area A0 = 0.011 m2 (based on available knowledge). Finally, P was calculated from

P = pq. Figure 7 shows the results from this modelled OWC system, where all profiles are normalised

against their maximums to conveniently graph them together. p and q are negative because the WSE

WEC has a unidirectional flow PTO, described above in section 3 and elaborated on below.265

Figure 7: Profiles of variables, normalised against their respective maximums for one wave period

Nominal values obtained from above and visualised in the profiles of Figure 7 were then input into

two sets of MCM simulations. The MCM was implemented here by subjecting the 101 data points

of the profiles to the random sampling process. That is, at each iteration, every data point has an

assigned uncertainty value which is multiplied by a randomly sampled number. After M iterations,

each data point is an M-by-1 vector that forms a PDF, such that the 101 PDFs for each data point270

form the uncertainty bounds along the profile. From the uncertainty bounds, the uncertainty was

summarised at one point along the profiles – the amplitude. This will become clear once we present

the relevant results below.

In Method (a), sixteen simulations were run consisting of combinations of input uncertainty values

of pressure uG(p) and OWC internal free surface elevation uG(ηowc), across a range of amplitudes of275

OWC internal free surface elevation Aηowc . Figure 8 presents these MCM simulation results, which

show UG(P ) decreased as Aηowc increased. This result was due to the absolute uncertainties of input
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quantities uG(p) and uG(ηowc) being relatively smaller than the amplitudes of those quantities. Also,

UG(P ) was sensitive to a small change in uG(ηowc) (from 1 to 2 mm), whereas an equal relative

magnitude change in uG(p) (from 15 to 30 Pa) barely influenced UG(P ). This result indicates how280

sensitive qηowc
is to a slight departure of sinusoidal linearity in the ηowc profile, induced by free surface

sloshing inside the OWC. The worst case, or highest uncertainty in UG(P ) of 45%, occurred when

Aηowc was smallest, and uG(p) and uG(ηowc) was largest, as expected.

Having gained insight into the strong sensitivity of qηowc to ηowc nonlinearities, this knowledge

can be used in experimental design. For example, the experimental apparatus should include at least285

three but preferably six wave probes installed in the OWC, so the ηowc free surface behaviour is more

accurately captured and averaged.

Figure 8: MCM simulation results of Method (a), showing the sensitivity of general expanded uncertainty UG(P )

in OWC power P to a combinatorial set of input uncertainty values of pressure uG(p) and OWC internal free surface

elevation uG(ηowc), across a range of amplitudes of OWC internal free surface elevation Aηowc .

In Method (b) a similar set of MCM simulations were run. To compare the MCM results between

Methods (a) and (b), we show results in Figure 9 from the best case and worst case as highlighted in

the Method (a) results (Figure 8). In Figure 9 the coloured bands on the profiles are the uncertainty290

distributions for each data point. Inset onto each subplot is a histogram showing the MCM produced

PDF of UG(P ) at the amplitude of P . The titles of the subplots specify the assumed nominal and

uncertainty values for each case. In the Method (b) MCM results there is an additional uncertainty

value assumed for volume flow rate uG(qCd
), which is of approximate equal magnitude to the quantities’

uncertainties seen in Method (a) MCM results.295

UG(P ) was about twice as small in Method (b) MCM results compared to Method (a), for both

the best and worst cases (Figure 9). An explanation of this result is the following. Cd used in Method

(b) is averaged from all the pressure-flow characteristics in the OWC under all wave conditions, and
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Method (a) MCM results

Method (b) MCM results

Figure 9: MCM simulation comparison results, showing for each method the best case (smallest relative uncertainty)

and worst case (largest relative uncertainty). Graph titles specify nominal and uncertainty values (uncertainty values

are ±). Histograms show normalised Pmax, where UG(P ) = 2uc(P ). U(P ) in Method (a) MCM results was higher

than in Method (b) MCM results, therefore, Method (b) is better.

it is approximately independent of wave height and period. Such averaging reduces the uncertainty

in qCd
(therefore P ). Conversely, in Method (a), qηowc is sensitive to the nonlinear sloshing behaviour300

of the ηowc free surface elevation, which depends on wave height and period. Based on these MCM

results, Method (b) clearly produces the least uncertainty and was therefore chosen to derive P in the

experiment.

The general uncertainty value of the orifice discharge coefficient uG(Cd) used in the above MCM

sensitivity analysis for Method (b) was obtained from the pre-experiment orifice calibration procedure.305

Figure 10 shows the results of this calibration, where Cd is plotted against p. The Cd data in this

figure were generated through a MCM simulation, using the same quantity profiles and uncertainty
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values assumed for the main MCM sensitivity analysis described above. These data are representative

of all the regular wave data of the intended experiment. The black data points bounded by red dashed

lines (two standard deviations σ) and p < 200 Pa were included in the calculation of the mean of Cd,310

and its standard deviation equal to the general uncertainty uG(Cd).

Figure 10: Orifice calibration graph showing the Cd-p relationship, and the method to estimate an appropriate value

for Cd within defined limits.

The foregoing example demonstrates but one of the many uses of GUA and the MCM to help plan

an experiment and design some aspects of it. It is exemplary of the process that can be undertaken

when a new procedure is introduced in an experimental investigation. The technical outcomes and

information generated in this GUA are (1) an informed decision on the least uncertainty method to315

derive OWC power, and (2) an enhanced understanding of OWC power sensitivity to a range of nominal

and uncertainty values of its input quantities. Moreover, the knowledge gained in (2) revealed critical

measurements to be made – such as the OWC internal free surface using an appropriate number of

wave probes – and where extra attention may be required to assure the desired uncertainty level is

achieved.320

More broadly, this section argues for the value of GUA, that it is worthwhile because it generates

otherwise inaccessible insights and information which can inform the subsequent design phase and cre-

ate the conditions for a successful, high-quality experiment. It follows that new procedures developed

in a laboratory should be linked to a GUA and, once applied, to a DUA as part of quality control.

If similar experiments using well developed procedures are performed, the previously developed GUA325

could be used. Because WEC testing often brings new complexity (e.g. valves, PTO control, targeted

wave climate), however, a new GUA may often need to be developed. Even if a seemingly similar ex-
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periment is performed, some small changes in parameters (wave properties, different instrumentation

etc.) could change the results of the GUA. Checking that the parameters fit within the boundary of

the developed GUA is important, otherwise redoing the GUA might be necessary. As part of the qual-330

ity control and improvement strategy, a review of procedures and related GUA should be performed

before an experiment.

5. Detailed uncertainty analysis

DUA requires evaluating uncertainties as separate components, propagated through measurands

into the results. It has various uses in all experimental phases: in design, to guide decisions on suitable335

instrumentation or inform the design of new instruments and procedures; in construction, to determine

whether changes in procedure are required to reduce uncertainty; in debugging, to verify operations

of the measurement system and calibrations; in execution, to provide balance checks and monitor

the operation of apparatus; in analysis, to guide the choice of analysis technique; and in reporting,

to quantify the quality of reported results, that is, to provide clear statements of the uncertainty340

associated with each result [36, 30]. Such uncertainty statements enable objective comparison between

similar data sets and allow those who use the results to assess their reliability. This section describes

the principles of DUA and our application of it to the WEC model test experiment, according to the

three-stage UA structure (Figure 2).

5.1. Stage 1a. Formulate: Define the measurand345

Here we assume the measurands of the experiment have already been defined in GUA (subsec-

tion 4.1). The only difference is the measurands y and input quantities xi may now be considered as

an expectation (the result of a measurement), so the notation is lower case: y = f (x1, x2, . . . , xN ).

5.2. Stage 1b. Formulate: Identify uncertainty sources

Identifying uncertainty sources is practically the same process here as in GUA, except now the350

uncertainties of the xi are considered in more detail. Figure 11 shows an example of a cause-and-effect

diagram used to identify uncertainty sources for PW and P .

5.3. Stage 1c. Formulate: Evaluate standard uncertainty

Every xi has a standard uncertainty associated with it, consisting of components evaluated using

two methods: Type A and Type B. Evaluating Type A standard uncertainty uA(xi) requires estimating355

the mean q̄ of n independent observations/repeats qk which are characterised by a PDF,

q̄ =
1

n

n∑
k=1

qk, (14)
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Figure 11: A cause-and-effect diagram used to identify uncertainty sources. Example is of wave power PW and OWC

power P , where the uA(xi) is the Type A uncertainty and uB(xi) the Type B uncertainty.

and the experimental standard deviation of the mean s(q̄),

uA(xi) = s(q̄) =

√√√√√√ 1
n−1

n∑
j=1

(qj − q̄)2

n
. (15)

The general conditions for repeatability are [31, 28]: the same measurement procedure; the same

measuring instrument used under the same test conditions; the same laboratory or field site; and

repetition over a short period of time, roughly one day. The repeats should comprise sequential and360

non-sequential runs.

Evaluating Type B standard uncertainty uB(xi) requires judgement, experience, and all available

information to first identify which of the large number of possible uncertainty sources are significant

and, second, to estimate numerical values for the significant sources. Means other than statistical

analysis are used, but uB(xi) is also characterised by the standard deviation of an assumed PDF.365
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Assigning the uB(xi) PDF, or a set of PDFs as often quantities have several Type B sources, is based

on the scientific judgement of a pool of comparatively reliable information on the possible variability of

xi [31]. As the experimental program progresses so to increases the available uB(xi) information. At

the design phase, the information typically consists of previous measurement data, previous experience

with or general knowledge of the phenomena or process, reference material provided by suppliers in370

terms instrument calibrations and other certificates, and uncertainties assigned to reference data taken

from handbooks. In subsequent experimental phases, the available information increases as apparatus

is assembled, instrumentation installed, calibrations performed, and experimental runs performed [30].

5.4. Stage 2. Propagate: Determine combined uncertainty

To determine the combined standard uncertainty uc(y), identified standard uncertainties of xi’s are375

propagated through the measurand function y. Figure 12 shows the general process of MCM uncer-

tainty propagation in DUA, for any number of measurand levels. First, we input measured nominal

values of each quantity xi,nom, and uB,k(xi). The uA(y) is also input for the top-level measurand y

(in this example, uA(y) is included only for the top-level measurand, however, uA(xi) can be used for

each xi and propagated that way – see [30]). The standard uncertainty components are assumed to be380

the standard deviations of their PDFs. The PDFs for uB,i(xi) are here assumed to be Gaussian, but

others may be used. If two xi’s share a uB , or two xi’s are correlated, a joint PDF can be assigned.

Then, at each iteration j, uB,k(xi) is multiplied by a randomly sampled number from the assumed PDF

(varying about 1), and added to xi,nom obtain the ‘measured’ values xi(j). The top-level measurand

y(j) is then calculated with the included uA(y) term multiplied by a randomly sampled number from385

the PDF, comprised of the repeated observations of y in the experiment. The sampling process is

repeated M times to obtain a PDF for y. The output of the MCM is the standard deviation of the

PDF of y, taken as the combined standard uncertainty uc(y).

5.5. Stage 3. Summarise: Summarise uncertainties

As in GUA, we use the PDF of y to obtain: the mean and standard deviation of y (uc(y)),390

and a coverage interval k, giving the expanded uncertainty U = kuc(y). This summary stage in-

cludes presenting the detailed uncertainties in key quantities and measurands and any other important

uncertainty-related information. The presentation generally consists of uncertainty results presented

in tables or graphs, in the form xi ± uA,B(xi) and y ± U .

The remainder of this section describes the details of the OWC WEC experiment and demonstrates395

how DUA was and could be used at key experimental phases.
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Figure 12: Flow diagram of the Monte Carlo Method to propagate uncertainty in detailed uncertainty analysis. The

example shows the flow of the MCM when there are multiple levels of measurands with one or more input quantities.

5.6. Design, construct, and debug

DUA can inform the design, construction, and debugging phases of an experiment. The design

phase builds on GUA-generated information to specify instrumentation and details of experimental

apparatus. The test plan, parameters, and procedures are identified and decisions made on the data400

to be obtained, and the scope and sequence of conditions and runs. This process can be guided by

Design of Experiment [28]. Technical drawings of the model are also issued for fabrication.

The parameters of this experiment are summarised in Figure 13 and Table 2.

In the construction phase the apparatus is assembled, calibrations carried out, and initial runs

performed. The debugging phase follows, in which unforeseen problems are addressed. The completion405

of these phases is indicated by the apparatus operating as expected and factors influencing uncertainty

in the results well understood. In addition, incoming data are monitored using built in checks to

guard against unnoticed and unwanted changes in the apparatus or operating conditions [30]. DUA

can inform all these processes. The following subsections, however, focus on how DUA was applied to
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instrumentation configurations and the general layout of the model installed in the wave basin. WPph is the phase wave

probe.

assure and quantify the quality of instrument calibrations in the construct phase and throughout the410

experiment.

5.6.1. Example: Evaluating Type B uncertainty from instrument calibrations

For wave probe (WP) calibrations, to evaluate uB(WP ) involved calculating standard error of the

estimate (SEE) of the WP calibration curve:
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Table 2: Parameters of the experiment. Full-scale values given. Apply the Froude scaling law to obtain model-scale

values

Parameter Details

Model Bottom-standing unidrectional flow OWC WEC; 1:30 Froude-scale model

(λ30); body constructed from marine plywood, Perspex, and fibreglass; ori-

fice plate PTO simulator (1:150 orifice/chamber area ratio); valves simulated

with passive flaps (thin, robust plastic sheets), but mass properties not scaled

as prototype material was unknown at the time.

Environment Shallow water wave basin (35m L x 12m W x 0-1m D); 16-element piston-type

wavemeker; vertical walls; passive beach; fresh water (15-20 C); water depth

for experiments = 10 m.

Measurements;

instrumentation;

calibrations

Wave elevation in basin, conductive wave probe, calibrated daily; wave eleva-

tion in OWC, 6 conductive wave probe (see Figure 13 for layout), calibrated

daily; pressure in OWC, 3 x Honeywell Controls TruStability pressure sensor

connected to Ocean Controls KTA-284 instrumentation amplifiers, calibrated

weekly to ±2000 Pa; hydrodynamic loads on model, 6-component force bal-

ance, calibrated before and after each scale experiment.

Data acquisition National Instruments PCI-6254M Multifunction Data Acquisition Card,

recorded on a HP computer, controlled with Labview software. All data ac-

quired at 200 Hz.

Data recording Regular waves: 30 seconds (model-scale); irregular waves: 30 minutes.

Wave conditions Regular waves: H = 1.8, 2.4, 3.0 m, T = 8−15.8 s (kh = 0.41−0.98); irregular

waves (JONSWAP): 15 sea states: Hs = 0.75− 4.75 m, Tp = 7− 19 s.

Model conditions Incident waves without model: all waves; power matrix: operational waves;

loads: operational waves.

us,B = SEE =

√∑
(yj − ŷj)2

M − 2
(16)

where M is the number of calibration points, yj is the calibrate data point, and ŷj is the fitted value.415

Figure 14 shows an example of a wave probe calibration curve, where uB(WP ) = SEE. The

residuals (blue squares) emphasise the variation of each data point (black circles) about the regression

line. The uB(WP ) estimate here forms one component of the multiple uB(xi) components of ηinc

and its related wave parameter quantities of H, T , cg, etc. (see Figure 5). A similar process can be

carried out to estimate uB(xi) for other instruments such as pressure transducers and load cells. For420
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a pressure transducer, however, there is an additional significant uB component to estimate, which is

the pressure calibrator used to calibrate the pressure transducer in the first place. Such an estimate is

based on manufacturers specifications.
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Figure 14: Example of a calibration curve of a wave probe, with included residuals and SEE calculation.

The second, more complex example demonstrates evaluating Type B uncertainty for the six-

component force balance calibrations (balance shown in Figure 13 and described in [48]). The calibra-425

tion method was as follows. To minimise measurement uncertainty the balance was calibrated in-situ.

An end-to-end calibration [13] was performed, with the balance fixed in its measurement position,

sensor cables connected to the DAQ, and submerged. A calibration rig was used to apply known forces

in a designed loading schedule [41], which establishes the calibration matrix K (6x6 matrix of loads

and corresponding voltages) resolved through linear regression. The schedule consisted of externally430

applied forces along the principle X, Y and Z axes to resolve forces, along these axes but at a known

offset to resolve moments, and along these axes but at an offset from two axes for combined loading

which improves the resolved calibration matrix. A single-axis load cell was used as the known/applied

force.

During calibration, to determine if the calibration matrix had been sufficiently resolved with ac-435

ceptable uncertainty, uB(K) was evaluated by calculating the SEE of the externally applied vs mea-

sured/fitted loads. If uB(K) was too large, as indicated by the SEE, an additional combined loading

condition was performed. This process was repeated until uB(K) was acceptable, which for this exper-

iment was uB(K) < 3%. Also, the balance was calibrated before and after the experiment, to generate

a ‘repeat’ data set from which the Type A uncertainty could be evaluated.440

5.7. Execute

In this phase, in which experimental data are collected, the focus shifts to evaluating uA(y) based

on statistical analysis of repeats. A top-down approach may be applied to generate a data set from
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which to calculate uA(y) of the top-level y. If this uA(y) data set cannot be produced directly, for

instance if y is a function of lower-level measurands/quantities xi that are measured/derived in different445

experimental conditions, then the xi upon which y depends can be split up and data sets produced

for the groups of xi. This top-down approach is illustrated in the following examples for regular and

irregular waves, respectively.

5.7.1. Examples: Evaluating Type A uncertainty

The top-level power measurand is CW (Equation 11), which is a function of P (Equation 10), PWr
450

(Equation 1), and B. It was not possible to produce one data set of repeats to calculate uA(CW )

directly, because PWr
required measurements of incident waves at the WEC model location without it

installed, and P required the model to be installed. So, there needed to be two separate uA(CW ) data

sets, one for wave power uA(PWr
) and one for OWC power uA(P ).

Regarding uA(PWr ), a reasonable data set consisted of at least ten repeats n [28] of regular waves455

at several set points and experimental conditions, in this case, several wave periods and wave heights

spanning their respective ranges. An n was considered to be not a regular wave run, but rather an

individual wave within runs, as per the method developed in [22]. (This method effectively reduces

the number of required runs from ten runs to 3-5 runs, thereby saving time and money.) The xi that

significantly contribute to the random variation in PWr are H and cg, both of which are derived from460

ηinc. Thus, the uA(PWr
) data set was produced by 3-5 repeat runs of incident waves at the model

location without it installed. Each set of repeats consisted of a low, medium, and high wave period,

at multiple wave heights. From this data set, uA(PWr ) could be calculated.

The uA(P ) data set was similarly obtained, with the same set of repeat runs, except with the model

installed. A similar uA(y) evaluation process was carried out for the Fx, Fz, and My measurands.465

Figure 15 shows a visualisation of key uA(y) data sets, for one regular wave height. The profiles

show (1) individual waves representing independent repeats n; (2) the several representative set points

of repeats, here with three set points of the lowest, mid, and highest wave period; and (3) how the

variation in the key input quantity ηinc induces a similar variation in all other dependent quantities

of ηowc, p, P , Fx, Fz, and My. Depending on the quantity, the magnitude that is used to calculate470

uA(y) is either an amplitude (as for Fx, Fz, and My), a height (as for ηinc), or an integral (as for p

and P ). Noted, uA(y) or uA(xi) should be calculated whenever more information becomes available

during the experiment. This simple, useful practice allows us to track uncertainties and decide if more

repeats are needed to drive down the uncertainty in the results. All uA(y) results are summarised in

Figure 18.475

Evaluating uA(y) in irregular waves was similar to regular waves. The process involved performing

at least five repeats for five sea states that ranged the tested wave climate (five repeats only due to
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Figure 15: Overlayed wave profiles of individual waves taken from time series data of repeated independent observations.

Plots show three wave periods (lowest, mid, highest) and one wave height. The magnitudes (e.g.., the amplitude, height,

or integral) calculated from each individual wave are input into the Type A uncertainty calculation.

time constraints: irregular wave runs are much longer than regular wave runs). From these data sets

the power-related and load statistics were calculated, and an average taken to ascribe one value for

the entire power matrix and load matrix. These uA(xi) values were then used as input, along with the480

uB(xi), into the Monte Carlo simulations to propagate uncertainty to determine combined uncertainty

uc(y). The next section describes this process and presents its results.

5.8. Analyse and report

Here we first describe the data analysis techniques used in the experiment, then describe and give

examples of DUA applied in these experimental phases. Data were analysed according to the ITTC485

Recommended Procedures and Guidelines [49]. For the regular waves analysis, timeseries data were
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trimmed to include only the ‘stationary’ region, omitting transitional and reflected waves, thereby

avoiding having to perform a reflection analysis (see [50] Fig. 9). A phase-averaging technique was

applied to the trimmed timeseries to reduce the repeating wave cycles into one representative, ’phase-

averaged’ wave cycle [21]. This technique effectively reduces uncertainty and improves results presen-490

tations. For the irregular waves analysis, a Fast Fourier Transform (FFT) was applied to the cropped

timeseries data. Welch’s power spectral density estimate method (pwelch function in MATLAB) was

used to transform time domain data into the frequency domain. Irregular wave parameters (significant

wave height, energy period, etc.) were calculated from the spectral moments of the energy density

spectrum as per subsection 4.1.495

5.8.1. Example: Determining combined uncertainty

uc(y) was determined by propagating uncertainty using the Monte Carlo method. For regular

waves, Monte Carlo simulations were set up as per Figure 12, with one simulation for each regular

wave period and height. The assigned uA(xi) and uB(xi) was unique for each wave period and height,

differing depending on the number of repeats, the instrument calibration corresponding to the data,500

and other uB(xi) sources. The power-related and load measurands were calculated for M = 10, 000

iterations, from which uc(y) was calculated. A 95% coverage interval was applied to the PDFs of

the y’s to obtain the expanded uncertainty U . A similar process was performed for irregular wave

results. The main differences were (1) one MCM simulation per sea state, and (2) for each sea state

the uA(xi) was a unique, averaged value of the repeats from five sea states (as described in the above505

example). The results from the data and uncertainty analyses are shown in Figure 16 for regular

waves and Figure 17 for irregular waves. Figure 18 summarises the uncertainties in key measurands

in a table-like format.

5.8.2. Example: Summarising uncertainties

Regular wave results showed a reasonable level of uncertainty (Figure 16 and Figure 18). The510

largest expanded uncertainty overall was in CW , averaging ±16% with a maximum of ±25%. These

uncertainty levels were expected considering CW is a top-level measurand that is a function of PW and

P , which are themselves functions of many inputs, thereby making CW sensitive to uncertainty due

to its many inputs. These uncertainty results are comparable to similar experiments [21, 22] and to

similar work [19, 20, 51]. The uncertainty in loads of Fx, Fz and My were relatively smaller, averaging515

±6% with a maximum of ±10%. The uncertainty in kh was small, less than ±2%, which is to be

expected for wavemakers that generate highly repeatable wave period. In both regular and irregular

waves, uB tended to be larger than uA.

Uncertainty results in irregular waves are summarised in a power matrix and load matrix (Figure 17)

and in Figure 18 (see figure caption for guidance on reading the plots in Figure 17). The uncertainty520
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Figure 16: Key power and load measurands in regular waves, with error bars representing expanded uncertainty to 95%

coverage interval.

results were similar to those in regular waves, but with CW uncertainty relatively smaller, averaging

±11%. The loads uncertainties were practically the same.

Key causes of uncertainty in CW were measurements used to derive the lower level measurands

(wave power PW and OWC power P ) and PTO modelling. For PW , the critical measurement, therefore

key uncertainty in this measurand, was incident wave elevation. For P , the dominant uncertainties525

were measurements of p and ηOWC used to derive q and, in turn, Cd. Another possible key uncertainty

source in P is the modelling of the valve flaps as robust yet lightweight flaps, whose mass properties

were not froude-scaled to 1:30 scale. It is plausible that this aspect of the PTO modelling may be a

dominant uncertainty in power, if in the prototype the valve flaps have a strong influence on OWC

chamber dynamics. With neither knowledge of the mass properties of the prototype valve flaps nor530

full-scale results to compare with, it was difficult to assign a Type B uncertainty to the modelled

valve flaps. This represents a modelling challenge that requires further research. However, because

uA(P ) was relatively small, this indicates that the simulated valve system was well-designed for the

model-scale tests.
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Figure 17: Key power and load measurands in irregular waves, for a matrix of Hm0 vs kph sea states. Measurands are

dimensionless and normalised by the calculated Hm0 for each sea state. The text in each coloured cell is in the form of

“interpolated value of the measurand (z-axis) ± expanded uncertainty. The white markers indicate the actual Hm0/Te

values, with error bars representing expanded uncertainty to 95% coverage interval. Colour of cells: green represents

greatest magnitude, whether positive or negative.

6. Discussion535

The foregoing sections present a general, comprehensive UA methodology applied to a WEC model

test. The methodology features: a three-stage structure composed of the UA principles, applicable

for both GUA and DUA; the use of cause-and-effect diagrams to identify uncertainty sources; the

use of the MCM to propagate uncertainty; an approach to evaluate Type A uncertainty and a specific

method for regular waves that reduces the number of required repeats, thereby saving time and money;540
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Figure 18: Uncertainty of key measurands shown as box and whisker plots (distributions). For Regular waves, the uA

distribution includes all wave frequencies and heights; the uB distribution includes all instrument calibrations carried

out throughout the experiment and other uB sources; the U distribution includes all standard uncertainties, determined

by the Monte Carlo Method. For Irregular waves, uA is based on five representative sea states, and uB and U were

obtained similarly as regular waves.

descriptions and examples of evaluating Type B uncertainty; and a method for UA in irregular waves.

The methodology thus substantially extends current international guidelines on uncertainty analysis

for WECs [28].

Findings in Figure 14–Figure 18 reveal several implications. The moderate uncertainty in CW sug-

gests that, when extrapolating these results, uncertainty in predictions of prototype power performance545

is considerable. This uncertainty could lead to an ill-designed PTO system or inaccurate MAEP or

LCOE predictions. On the wave power side, the use of linear wave theory to calculate wave power of

the nonlinear waves may have introduced a non-negligible uncertainty into wave power calculations.

This uncertainty could perhaps be reduced by applying an appropriate higher order theory [52], which

may be investigated in future work. Regarding loads, though their uncertainty was relatively smaller,550

extrapolating still equates to an uncertainty of hundreds of tonnes. This uncertainty could lead to
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ill-defined design loads resulting in an under- or over-designed main structure or foundations, thereby

impacting CapEx and OpEx. Summarising, when extrapolating results it is important to consider how

the uncertainty may impact how the results are used; if the uncertainty is deemed too large in a mea-

surand, it may need to be reconsidered, either by further experiments or a more rigorous uncertainty555

evaluation.

Regarding CW , as it is a function of many inputs it is inherently sensitive to uncertainty, suggesting

CW will tend to have the largest uncertainty in WEC experiments. Key uncertainty sources in CW

will likely be those related to incident wave height and power absorbed by the WEC. WEC power

uncertainty arises due to (1) PTO modelling challenges and simplifications (i.e. simple damping560

mechanisms that simulate prototype PTO systems), (2) power not being measured directly but derived

from measured kinematic and dynamic quantities, and (3) the model-prototype power disparity, where

power is scaled by the length scale raised to 3.5 (watts at model-scale equate to hundreds or thousands

of kilowatts at full-scale). Additionally, non-similitude of Froude and Reynolds Re scaling can introduce

uncertainty due to scale effects. To avoid significant viscous effects, Re number should be above critical,565

which for WEC model tests has been estimated to be ∼1e5 [34]. The Re number for this experiment

was estimated to be 1.4e5–4.5e5 (see [53]), suggesting for this model Re was a negligible parameter

causing scale effects. It is currently not clear how to include uncertainty due to scale effects in, for

example, CW uncertainty, which requires a broader experimental uncertainty analysis methodology

(elaborated on below).570

We found that uB tended to be higher than uA. While this may be because uB evaluation is less well

defined, uB can in principle be as quantitatively accurate as uA. Additionally, given the uncertainty of

power-related and loads quantities in irregular waves was similar or slightly smaller than that in regular

waves, predictions of prototype power performance and loads might be better based on irregular wave

results. Finally, we anticipate that experiments with WECs that have nonlinear motions, power, and575

loads will show similar uncertainty levels as those reported here.

More generally, this work argues for the value of UA, because when applied in WEC model tests

the execution and outcomes can improve considerably. For instance, GUA generates virtual experience

of the experiment ahead of time — an integrated grasp of key parameters and uncertainties. These

insights can then be used to design test goals, the test matrix, and other technical components [30].580

These efforts would also identify critical measurements that demand special attention (which the

example in subsection 4.6 demonstrated). Special attention might entail choosing higher-accuracy

instruments, calibrating instruments with more care more often, redundant instruments, ensuring

instrument’s physical geometry and fixture negligibly influence the quantity being measured, and

prioritising uncertainty evaluation of the measurements [28]. Thus GUA confers many benefits by585

permitting access to otherwise inaccessible information about an experiment before it begins. Once
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the experiment does begin, applying DUA provides the means to monitor the ‘health’ of incoming data

and then ascribes uncertainty to the results when they are reported so they can be assessed.

Furthermore, UA is especially important for WEC model tests because WECs uniquely maximise

motions and power but must also survive storms. These characteristics often lead to complex exper-590

iments characterised by strong nonlinearities [54], PTO modelling difficulties [28, 9], and scale effects

[39, 51] among other experimental challenges [12]. Besides this complexity, developers often have tight

budgets, resulting in a limited test matrix. And if troubles delay the experiment (to be expected),

the test matrix could be further reduced, or facility costs increased. It therefore seems prudent to

understand, deeply, the experiment before and as it unfolds. UA is a most effective means to gain595

such understanding. It also increases the chances of an experiment completed on time, to budget, with

high-quality and relevant results that stakeholders can be confident in.

More broadly, while model tests assess a WEC’s hydrodynamic energy conversion and loads, a

WEC technology consists of many subsystems: hydrodynamic conversion, a PTO/generator, means

of survival, energy transformation, offshore operations, environmental aspects, and grid integration600

[7]. Until a full-scale WEC operates for months or years, these subsystems will contain considerable

uncertainty, and the uncertainty will be higher the more inchoate a technology is [26]. To prioritise

UA in model tests, then, is to erect strong foundations on which a WEC technology is built. The

perceived extra investment may yield a strong return on a technology’s commercial viability.

Limitations of the work are the following. The investigation focused on a bottom-fixed OWC WEC605

with a unidirectional flow PTO, and an experiment typical of TRL 1-4. The examples herein are there-

fore rather specific to OWC WECs and similar experiments. UA principles, however, are independent

of application. So although the work focuses on this unconventional technology, it may nevertheless

be informative for future experiments with different WECs. Notwithstanding ITTC’s Uncertainty

Analysis for a Wave Energy Converter publication, which is good foundation, it is clear that further610

research is needed to investigate the unique challenges of WEC-specific UA in a range of experiments

and WECs, including arrays. For example, point-absorbers [19, 20], terminators, attenuators, and

designs with flexible materials.

While we included but a small sample of many UA uses, other references provide other instructive

applications [30, 29]. With uncertainty propagation we focused on the MCM because it is the preferred615

method according to [30], and [29] recommends it for applications relevant to WEC experiments

characterised by multiple nonlinear, time-dependent quantities. The MCM offers advantages due to

its relative ease of implementation especially for phase-averaged quantities (e.g. OWC power) and

its superior accuracy compared TSM which linearises the measurement model and thus may provide

an inadequate representation. However, this work does not substantiate the claimed advantages of620

the MCM over the TSM, which would require a comparison of uncertainty results when propagated
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by the MCM and by the TSM. This is reserved for future work. The irregular wave UA may also

be considered basic, not comprehensive, so dedicated investigations are needed to address identified

irregular wave challenges [55, 56]. To a large degree evaluating uncertainty in the power matrix and

load matrix, based on a reduced set of wave parameters, is not well understood [57, 58, 44, 26]. Further,625

extrapolating model scale data and uncertainty to predict prototype performance and risk is a subject

in need of further investigation [12].

Finally, this work focused more on measurement uncertainty, rather than experimental uncertainty.

Experimental uncertainty includes broader uncertainties such as scale effects and laboratory effects.

Future directions may look at developing a fully experimental UA methodology, including the effects630

of scale and the laboratory.

7. Conclusion

General uncertainty analysis facilitates effective experiment planning and design by assuring the

right test goals are set, the general uncertainties identified and understood, the right instruments,

apparatus, and procedures used, and the right test matrix designed. Detailed uncertainty analysis635

quantifies the quality of results both during the experiment, by providing the means to monitor appa-

ratus and incoming data and determine whether further measures are needed to reduce the uncertainty,

and after the experiment, to ascribe uncertainty to reported results so that those who use the results

can assess their reliability, compare them objectively, and use them confidently. It also identifies un-

certainty components at a more detailed level. The Monte Carlo method for propagating uncertainty,640

which can be applied in both general and detailed uncertainty analysis, is a practical alternative to

the ‘law of propagation of uncertainty’ as it provides better accuracy and reduces analysis effort, so

it will likely become the preferred method. Overall, uncertainty analysis is an indispensable tool for

experimentation.

Uncertainty analysis has already been put to good use in model test experiments of offshore, ship,645

and coastal structures. As our methodology and results demonstrate, it can also be put to good use

in model test experiments of WECs, especially because WECs are more complex systems. Despite

its clear benefits, however, uncertainty analysis has largely been overlooked in WEC model tests.

We anticipate that if uncertainty analysis is embraced and applied in WEC model tests with our

methodology as a template, the execution and outcomes will improve considerably; improvements can650

also be expected in the commercial viability of a WEC technology. Therefore, uncertainty analysis

should be carried out in WEC model test experiments; our methodology demonstrates how to carry

it out and its usefulness in identifying, quantifying, and mitigating uncertainties.

The following recommendations are offered to refine international guidelines on uncertainty analysis

32



for WECs:655

1. Include general uncertainty analysis with an example

2. Include the Monte Carlo Method as an alternative method to propagate uncertainty with an

example

3. Include cause-and-effect diagrams for identifying uncertainty sources with an example

4. Distinguish between general uncertainty analysis and detailed uncertainty analysis, and provide660

guidance for both

5. Define desired uncertainty levels for each Technology Readiness Level stage

6. Define reporting minimums, such as: Type A, Type B, combined standard uncertainty, and

expanded uncertainty, in at least the key measurands
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