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Abstract 27 

Short-term, localised climatic variations can rapidly alter species’ geographic ranges 28 

and population sizes, but little is known about how they affect genetic diversity. We 29 

investigated the relationship between weather and range-wide genetic diversity in a 30 

marsupial, Bettongia gaimardi, using dynamic species distribution models (SDMs). 31 

Genetic diversity was lower in parts of the range where the SDM predicted high 32 

variability in suitable weather conditions over the period 1950–2009. This is likely an 33 

effect of lower population sizes and extinction-recolonisation cycles in places with 34 

highly variable weather. Spatial variation in genetic diversity was better predicted by 35 

variability in weather than by long-term climate averages. Our results illustrate the 36 

importance of weather in driving population dynamics and species distributions on 37 

decadal time-scales and thereby affecting genetic diversity. Modelling the links 38 

between changing weather patterns, species distributions and genetic diversity will 39 

allow researchers to better forecast biological impacts of climate change. 40 

  41 
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Introduction 42 

Genetic diversity plays a crucial role in allowing species to persist under, and adapt 43 

to, future climate change (Pauls et al. 2013). In turn, climatic conditions can have 44 

large effects on the magnitude and spatial distribution of genetic diversity within 45 

species, which often reflect fluctuations in the geographic ranges of species over 46 

long periods of time. For example, during the Quaternary ice ages many taxa 47 

experienced cycles of contraction to refugia (areas with stable and favourable 48 

environmental conditions), followed by expansion during warmer periods, resulting in 49 

genetic signatures of greater diversity in refugial areas, and lower diversity in areas 50 

of recolonisation (Hewitt 1996, 2000). Although these effects of long-term, historical 51 

climate on genetic diversity are well documented across many taxa, we know much 52 

less about the effects of short-term weather, defined here as climatic variables over 53 

periods of several months to several years, on genetic diversity. Developing better 54 

models of the relationship between weather and genetic variation will be critical for 55 

predicting species responses to rapidly changing weather regimes and mitigating 56 

genetic losses in the near future.  57 

Climate change is having substantial effects on not just mean conditions but 58 

variability in weather, with increases in extreme climatic events and associated 59 

impacts observed globally (IPCC 2014), and changes in inter-annual variability of 60 

rainfall in Tasmania since 1975 (Grose et al. 2010). Weather variability, as well as 61 

changes to mean weather conditions, may have an important influence on genetic 62 

diversity. For example, Cobben et al. (2011) simulated the effect of three different 63 

scenarios of temperature increase on neutral genetic diversity in a species with 64 

moderate dispersal abilities. Although loss of genetic diversity occurred under all 65 
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scenarios of temperature increase, scenarios with higher weather variability had 66 

greater losses of individuals and genetic diversity. In addition, high weather 67 

variability appeared to prevent full occupation of habitat even at times of optimal 68 

weather, leading to greater genetic drift and thus reduced genetic diversity (Cobben 69 

et al. 2011). Weather fluctuations can affect genetic diversity very rapidly, depending 70 

on the generation times and adaptive capacity of species. For instance, experimental 71 

increases in the intra-annual variability of precipitation caused significant loss of 72 

genetic diversity in a prairie grass species over a 10-year period (Avolio et al. 2013). 73 

The predictability of weather variation may also have important consequences for 74 

adaptation and evolutionary potential. Variation in offspring size differs between 75 

sticklebacks undergoing a regime of predictable temperature variation and those 76 

under a stochastic variation regime, suggesting different resource allocation 77 

strategies are being triggered by different regimes (Shama 2017).  78 

Species distribution models (SDMs, also called ecological niche models) can provide 79 

a useful tool for predicting the relationship between weather and species occurrence 80 

(Reside et al. 2010; Bateman et al. 2012b; Fancourt et al. 2015; Bateman et al. 81 

2016), and hence may be useful for modelling genetic diversity in weather-sensitive 82 

species. SDMs have typically used long-term (e.g., 30- or 50-year) means of climatic 83 

variables as predictors of distribution, providing a static representation of geographic 84 

distribution (Elith et al. 2006). However, short-term weather variables, such as 85 

average temperature or precipitation values in the 1 – 3 years preceding a species 86 

record (Bateman et al. 2012b; Fancourt et al. 2015), or seasonal measures (Bennie 87 

et al. 2013; Hereford et al. 2017), can also be used to make SDMs. These dynamic, 88 

weather-based SDMs can better account for temporal variation and extreme weather 89 

events that affect the persistence and abundance of species over shorter time-scales 90 
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than long-term climatic models (Bateman et al. 2012b). By modelling the relationship 91 

between occurrence records of a species and temporally-matched weather 92 

variables, and then projecting the SDM over consecutive time periods, average 93 

weather suitability over time can be calculated across the species’ range (Fancourt 94 

et al. 2015; Bateman et al. 2016). Temporal variance in suitability can also be 95 

calculated, allowing identification of areas where weather suitability has fluctuated 96 

over time, and, conversely, areas that have always been suitable. Weather-based 97 

SDMs have been shown to be useful for defining species distributions (Bateman et 98 

al. 2012b; Bateman et al. 2016), characterising and predicting short-term fluctuations 99 

in abundance over time (Fancourt et al. 2015), and predicting range shifts (Bennie et 100 

al. 2013; Hereford et al. 2017). As genetic diversity can be influenced by all of these 101 

processes, weather-based SDMs may provide insight into changes in genetic 102 

variation across space and time. 103 

In this study, we create a weather-based SDM for a threatened, weather-sensitive 104 

marsupial, Bettongia gaimardi (the eastern bettong), and test the ability of both mean 105 

weather suitability and variation in weather suitability since 1950 to predict 106 

population genetic diversity across the species’ range. To distinguish the effects of 107 

weather from the signature of longer-term climatic niche, we also test the relationship 108 

between genetic diversity and climate suitability, modelled using an SDM created 109 

from 30-year climatic means. We demonstrate a strong negative relationship 110 

between genetic diversity of local populations, and the degree of variability of 111 

weather experienced by those populations, along with a smaller influence of mean 112 

weather suitability. We also show that population genetic diversity in this species is 113 

much better predicted by the pattern of weather suitability than by long-term climate 114 

suitability. 115 



6 

Methods 116 

Study species 117 

Bettongia gaimardi is a small (around 1.8 kg) marsupial that currently occurs only on 118 

the 68,000 km2 island of Tasmania, off the southern coast of continental Australia. 119 

The species became extinct in southeastern mainland Australia early in the 20th 120 

century. B. gaimardi occurs in dry, open woodlands and forests in the eastern half of 121 

the island. Its primary food source is ‘truffles’ (i.e., the hypogeous sporocarps formed 122 

by ectomycorrhizal fungi) associated with the roots of many species of native flora, 123 

although other food sources such as fruit and leaves may also be eaten when truffle 124 

production is reduced (Johnson 1994b). As the availability of truffles is linked to 125 

weather patterns, particularly seasonal rainfall (Beaton et al. 1985), we expect the 126 

abundance and distribution of B. gaimardi to be sensitive to weather. In another 127 

closely-related, fungivorous species, Bettongia tropica, weather models have proven 128 

useful for identifying habitat suitability and range edges (Bateman et al. 2012a; 129 

Bateman et al. 2012b). 130 

Genetic sample collection 131 

Ear biopsies were collected from 188 live-trapped or road-killed B. gaimardi 132 

individuals at 17 sites across Tasmania in 2006-2007 and 2015-2017 (Figure 1). 133 

Collections were made under the approval of the University of Tasmania Animal 134 

Ethics Committee (permits A14586 and A14879) and the Department of Primary 135 

Industries, Parks, Water and Environment Animal Ethics Committee (permit 9/2006-136 

08). Numbers of animals sampled at each site are given in Figure 1. We genotyped 137 

individuals using a reduced representation sequencing technique, DArTseqTM 138 

[Diversity Arrays Technology (DArT PLD), Canberra], and obtained 2,748 single 139 
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nucleotide polymorphism (SNP) markers after filtering. DArTseqTM is a proprietary 140 

complexity reduction technique using restriction enzymes targeting low copy regions 141 

of the genome, in combination with next-generation sequencing (Kilian et al. 2012; 142 

Cruz et al. 2013; Melville et al. 2017), and is increasingly being used to generate 143 

datasets for population genomic and phylogeographic studies (Grewe et al. 2015; 144 

Feutry et al. 2017; Melville et al. 2017; Martin et al. 2019). We also sequenced a 145 

~350 bp section of the mitochondrial DNA control region for each individual. 146 

Laboratory protocols and SNP filtering methods are provided in Appendix S1 in the 147 

Supporting Information. 148 

Characterising genetic diversity and structure 149 

We calculated three different metrics of population genetic diversity. We used the 150 

package diversity (Keenan et al. 2013) in the R statistical environment (R Core Team 151 

2017) to calculate allelic richness (AR) and expected heterozygosity (He), averaged 152 

across all SNP loci. AR was rarefied to take into account sample size (El Mousadik & 153 

Petit 1996), and He has been found to be robust to sample size when a large 154 

number of loci are used (Gorman & Renzi 1979). Allelic richness reflects the long-155 

term evolutionary potential of a population, and is more sensitive to the loss of 156 

genetic variation in small populations than heterozygosity, and so the two measures 157 

are complementary (Allendorf et al. 2012). We also calculated haplotype diversity (h) 158 

from the mtDNA data, which is the equivalent of expected heterozygosity for haploid 159 

data, using Arlequin (Excoffier & Lischer 2010). 160 

Populations experiencing high levels of gene flow will exhibit similar levels of genetic 161 

diversity, and would thus not provide effectively independent data points for 162 

investigation. For this reason, we quantified pairwise genetic differentiation (FST) 163 
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between all populations based on SNP genotypes, using the package strataG 164 

(Archer et al. 2017), in R with 1000 permutations to calculate p values. We then 165 

controlled for false discovery rate in the p values using the Benjamini-Yekutieli 166 

correction (Benjamini & Yekutieli 2001). All populations were significantly 167 

differentiated from each other (FST ranged from 0.035 – 0.370, p values 0.045 – 168 

0.009), suggesting that they could be treated as independent samples of genetic 169 

diversity. 170 

Weather and climate models 171 

Records of B. gaimardi across Tasmania were collated from published sources, and 172 

from mammal spotlighting surveys conducted in Tasmania by the Tasmanian 173 

Department of Primary Industries, Parks, Water and Environment (DPIPWE). 174 

Records spanned the years 1961 – 2009. We did not include duplicate samples from 175 

the same locality in the climate model, or samples from the same locality and time 176 

period in the weather model. This resulted in a total of 773 records that were 177 

included in the climate model, and 1043 in the weather model.  178 

For the climate suitability model, climate variables based on long-term climate 179 

means (1961–1990) were derived from ANUCLIM 5.1 (Houlder et al. 2000), using 180 

monthly averages and an 80 m digital elevation model re-sampled from ~250 m 181 

(GEODATA 9 second DEM ver. 2; Geoscience Australia, www.ga.gov.au). The 182 

variables included in the climate model were mean annual temperature (°C), 183 

temperature seasonality, maximum temperature of warmest period (°C), minimum 184 

temperature of coldest period (°C), annual precipitation (mm), precipitation of wettest 185 

quarter (mm), precipitation of driest quarter (mm) and precipitation seasonality. We 186 

used MaxEnt 3.3.2 (Phillips et al. 2006) with default settings (with the exception of 187 
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using all features except threshold) to develop a climate-based model of B. gaimardi 188 

distribution, using 10,000 background points selected at random from a 50 km buffer 189 

around the occurrence points. MaxEnt was selected because it performs well 190 

compared to other individual methods for presence-only species distribution 191 

modelling (Elith et al. 2006) and avoids the added complexity of ensemble-based 192 

approaches, which may substantially influence predictive performance(Hao et al. 193 

2019). This method has been demonstrated to work well for creating weather- and 194 

climate-based SDMs in a closely-related species (Bateman et al. 2012b), and within 195 

the Tasmanian landscape (Fancourt et al. 2015). 196 

The weather models were created following the methodology of Bateman et al. 197 

(2012b). Records of daily temperature maxima, minima and means and precipitation 198 

were accessed from the Australian Water Availability Project (AWAP) (Raupach et 199 

al. 2009). Daily weather data were aggregated into 14 variables: the mean, 200 

minimum, maximum and standard deviation (seasonality) of monthly temperatures 201 

and the sum and coefficient of variation (seasonality) of precipitation for periods of 202 

both 6 and 12 months prior to each occurrence record, and the sum of precipitation 203 

for the wettest and driest quarters for the 12 months prior to the occurrence record. 204 

Given a generation time of about 3 years in B. gaimardi (Burbidge et al. 2016), this 205 

was chosen as an appropriate amount of time to allow for lags between weather 206 

conditions and population response (Bateman et al. 2012b). We developed a model 207 

using MaxEnt with 100,000 background points that were selected from across 208 

Tasmania in proportion to the spatial and temporal biases in the occurrence data. 209 

We then used MaxEnt to project weather suitability for B. gaimardi, based on this 210 

model, at monthly intervals from 1950 – 2009, in each grid cell across Tasmania. 211 
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Based on all of the monthly model projections, we calculated the mean and standard 212 

deviation of weather suitability in each cell in the period 1950 – 2009. 213 

For both the weather and climate models, we used 10-fold cross validation and the 214 

“Area Under the operating Curve” (AUC) criterion to test how transferable the 215 

weather- and climate-based models were in time and space, and the training AUC to 216 

test how well each model represented the current distribution of B. gaimardi.  217 

Testing ability of models to predict genetic diversity 218 

We calculated the centroid of each sampling site in ArcGIS 10.5 by fitting a minimum 219 

convex polygon to the trapping location of individuals in that site. The areas of these 220 

mean convex polygons ranged from 0.007 km2 – 6.24 km2. The centroid of each 221 

polygon was then calculated using the feature to point tool. We then extracted mean 222 

values of the climate and weather variables for the site within a 5 km-radius buffer 223 

around the centroid from the rasters of climate suitability, mean weather suitability 224 

and standard deviation of weather suitability in R. 225 

We built linear models to examine the ability of weather and climate to explain 226 

genetic diversity. We controlled for the effects of sampling year by including this as a 227 

variable in all models, including the null, to account for differences in conditions 228 

between years and the fact that the age and associated DNA degradation of a 229 

sample can affect the genetic diversity detected (Schultz et al. 2018). We built 230 

models with year plus each of the weather and climate variables individually, and 231 

then built two combined models. The first combined model contained year and both 232 

weather variables, and the second contained all variables. The absolute pairwise 233 

correlations among the weather and climate variables were all less than 0.7, so we 234 
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were not concerned about multicollinearity when including these variables in the 235 

same models. 236 

Because the effect of environmental variables on animal behaviour and genetic 237 

variation can vary with spatial scale (Anderson et al. 2010; McGarigal et al. 2016), 238 

we repeated the above regressions using mean climate and weather suitability 239 

values within larger (10 km-radius) and smaller (2 km-radius) buffers around the 240 

centroid of each site. There was no significant relationship between sample size and 241 

genetic diversity that could potentially bias our conclusions (He: Pearson’s r = -0.03, 242 

p = 0.91; AR: Pearson’s r = -0.04, p = 0.88; h: Pearson’s r = -0.08, p = 0.77).  243 

Results 244 

Using 2,748 putatively neutral SNP makers, we found that expected heterozygosity 245 

(He) in 188 individuals across 17 sampled populations, averaged across all SNP loci, 246 

ranged from 0.18 – 0.30, and allelic richness (AR) ranged from 1.41 – 1.70. Thirteen 247 

mitochondrial DNA haplotypes were identified among the sampled individuals. The 248 

number of mitochondrial DNA haplotypes found at each population ranged from 1 – 249 

3, and haplotype diversity (h) ranged from 0.00 to 0.73. 250 

Both the weather-based and the climate-based SDMs provided meaningful 251 

predictions of B. gaimardi distribution (weather model: mean training AUC = 0.815, 252 

mean testing AUC ± s.d. = 0.795 ± 0.013; climate model: training AUC = 0.783, 253 

testing AUC = 0.701 ± 0.021). In the weather model, high probability of presence 254 

was associated with moderate annual precipitation (~ 500mm), minimum 255 

temperature of the coldest month between -2 and 4°C, high temperature seasonality 256 

and low precipitation in the driest quarter (~25 – 100mm), all measured in the 12 257 

months preceding a record (Table S2.1). In the climate model, high probability of 258 
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presence was associated with low precipitation in the driest and wettest quarters, 259 

high maximum temperature of the warmest month (> 20°C), and low precipitation 260 

seasonality (Table S2.2). 261 

Mean weather suitability was highest in the eastern half of Tasmania, where the 262 

climate is relatively dry and warm, corresponding with the known range of B. 263 

gaimardi (Figure 1a). Weather suitability was most variable on the northern and 264 

eastern coasts and in far south-eastern Tasmania (Figure 1b). There was an inverse 265 

relationship between mean weather suitability and weather variability at the genetic 266 

sampling sites (Pearson’s r = 0.69, p = 0.002). Climate suitability was also highest in 267 

the eastern half of Tasmania (Figure S2.1), but there was no significant correlation 268 

between climate suitability and either mean weather suitability (Pearson’s r = 0.19, p 269 

= 0.45) or weather variability at the sampling sites (Pearson’s r = -0.43, p = 0.08). 270 

Each of the three measures of genetic diversity was best predicted by models that 271 

included standard deviation of weather suitability and sampling year. Weather (s.d.) 272 

was significant in each of these models (Table 1). For He and AR, this model had 273 

high adjusted R2 values (He = 0.463, AR = 0.527). For all genetic metrics, the model 274 

containing climate suitability and year ranked lowest, below the null model (year 275 

only). For He and AR, the models containing year and mean weather suitability, and 276 

year and both weather variables, were also within the top model set (ΔAIC = 2). 277 

Adjusted R2 values were substantially lower for haplotype diversity than for the other 278 

two measures (Table 1). 279 

All three measures of genetic diversity decreased as the standard deviation of 280 

weather suitability increased (Table 1, Figure 2). In most models, greater mean 281 

weather suitability was associated with greater genetic diversity, although this 282 
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variable was not significant in any model (Table 1, Figure 2). There was a slight 283 

negative relationship between climate suitability and genetic diversity across all 284 

models, but climate was also not significant in any model (Table 1, Figure 2). The 285 

null model containing just sampling year was significant for AR and He, but not for h.  286 

When the regressions were repeated using weather and climate variables calculated 287 

within larger and small buffers (10 km and 2 km radii) around each sampling site, 288 

there was little difference in the results (Appendix S3). The top-ranked model (year 289 

and standard deviation of weather) and the bottom-ranked model (year and climate) 290 

were the same across all buffer sizes and genetic metrics. The coefficients and 291 

significance of variables were very similar between the 5 km and 10 km scales. 292 

However, when weather and climate values were calculated within the smaller 2 km 293 

buffer, standard deviation of weather suitability was no longer significant for h, and 294 

the null model ranked above the full model and the model containing just year and 295 

mean weather suitability for h (Appendix S3). 296 

Discussion 297 

Biological and conservation implications of links between weather and genetic 298 

diversity 299 

The most likely mechanism by which weather could affect populations of B. gaimardi 300 

is by controlling the availability of their main food source, ‘truffles’ (the fruiting bodies 301 

of ectomycorrhizal fungi). Truffle abundance is strongly influenced by rainfall, soil 302 

moisture and temperature (Johnson 1994a; Bateman et al. 2012a), and is positively 303 

related to measures of fitness in B. gaimardi, such as body condition and growth rate 304 

of pouch young (Johnson 1994b), as well as to their population density (Taylor 305 

1993a). In the closely-related species Bettongia tropica the effects of weather 306 
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conditions on truffle densities may explain lower abundance of the species and 307 

reduced competitive advantage at its southern range edge (Bateman et al. 2012a).  308 

In areas with more variation in weather suitability over time, we found that population 309 

genetic diversity in B. gaimardi was lower. In these areas, conditions may 310 

periodically become unsuitable for B. gaimardi due to insufficient truffle production, 311 

leading to periods of very low population density, and possibly local extinctions and 312 

recolonisations over time. Small population sizes can lead to loss of alleles due to 313 

genetic drift, and reductions in heterozygosity due to inbreeding (Allendorf et al. 314 

2012). Additionally, if local extinction-recolonisation cycles occur due to weather 315 

variability, this is likely to lead to founder effects and bottlenecks causing changes in 316 

allele frequencies and the rapid loss of genetic diversity relative to source 317 

populations (Cobben et al. 2011; Allendorf et al. 2012). During recolonisation, the 318 

leading edges of expanding populations may also have reduced genetic diversity 319 

due to selective pressure on alleles that are linked to neutral diversity (selective 320 

sweeps; Smith & Haigh 1974) or the stochastic effects of genetic drift (allele surfing; 321 

Excoffier et al. 2009). In combination, these effects are likely to lead to much lower 322 

population genetic diversity in areas that have experienced substantial variation in 323 

their suitability due to weather fluctuations over time. Although mean weather 324 

suitability was not significant in any model, it also seemed to have some influence on 325 

genetic diversity in B. gaimardi, as it appeared in models that were within the top 326 

model set for all markers. In areas of lower mean weather suitability, we would 327 

expect generally lower availability of truffles. This would reduce ecological carrying 328 

capacity and lead to smaller population sizes, and hence lower genetic diversity, 329 

than in areas of high mean suitability.  330 
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It is important to note that high average weather suitability need not always be 331 

associated with increased genetic diversity. Depending on life-history traits, 332 

demography and other environmental factors, species and populations may respond 333 

in different ways, or with different magnitudes, to fluctuations in weather. The 334 

interaction between weather suitability and other environmental conditions, such as 335 

fire regimes (Banks et al. 2017), can have large effects on genetic diversity. In 336 

addition, density-dependent dispersal may lead to movement of individuals from 337 

more stable areas with higher-density populations into areas of lower suitability 338 

(Matthysen 2005), which could ultimately lead to greater genetic diversity in these 339 

areas if migrants arrive from genetically divergent sources. For conservation 340 

planning, it is thus critical to consider the effects of weather suitability in conjunction 341 

with anthropogenic and natural stressors and demographic factors that influence or 342 

threaten the species. In the case of B. gaimardi, the amount and quality of the 343 

species’ habitat (open dry sclerophyll forest and woodland) has a substantial effect 344 

on the carrying capacity of an area (Gardiner et al. 2018). In particular, habitat loss in 345 

areas with high average weather suitability may reduce their carrying capacity and 346 

connectivity with other areas, causing losses of diversity.  347 

For species where a positive relationship has been demonstrated between genetic 348 

diversity and weather suitability, areas that maintain high weather suitability with little 349 

fluctuation over time may act as refugia under climate change. Conservation 350 

strategies should thus give high priority to maintaining and protecting populations in 351 

these areas by protecting and restoring core habitat, and improving connectivity 352 

between these regions and more marginal sites. 353 
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Modelling the relationship between genetic variation and weather 354 

This study demonstrated for the first time the potential for weather metrics derived 355 

from SDMs (particularly variation in suitability over time) to predict genetic diversity 356 

across a species’ range. To date, the use of climate models as predictors of genetic 357 

diversity has largely focused on using SDMs based on contemporary and historical 358 

climate means (such as during the Last Glacial Maximum) to examine the effects of 359 

historical and current suitability and distributional shifts on genetic variation (Knowles 360 

& Alvarado-Serrano 2010; Gugger et al. 2013; He et al. 2013; Jezkova et al. 2015; 361 

Lanier et al. 2015; Paz et al. 2019). We have showed that dynamic, weather-based 362 

SDMs were much better predictors of both mitochondrial genetic diversity and 363 

genome-wide SNP diversity in B. gaimardi than were static models of contemporary 364 

climate. This is consistent with observations that models based on long-term climate 365 

means can also underestimate the distributional and demographic impacts of climate 366 

change on species, by failing to identify areas of marginal habitat with frequent 367 

periods of unfavourable weather (Reside et al. 2010; Bateman et al. 2012b). 368 

Species distributions and population dynamics are affected by short-term weather 369 

patterns in a wide range of taxa, such as butterflies (Bennie et al. 2013), plants 370 

(Hereford et al. 2017), carnivorous marsupials (Fancourt et al. 2015), and migratory 371 

bird species (Bateman et al. 2016), and hence weather may also be a good predictor 372 

of genetic diversity in these groups. However, life history traits can moderate the 373 

effects of climatic and weather variables on local colonisation and extinction 374 

dynamics (White et al. 2018) and species distributions (Bateman et al. 2016). Thus, 375 

to determine the broader utility of weather-based SDMs for predicting genetic 376 

diversity, and to further investigate the relationship between genetic diversity and 377 
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short-term weather patterns, similar studies to ours should be conducted on a 378 

phylogenetically-diverse range of species with varying life history traits.  379 

The observed relationship between genetic variation and weather suitability, as with 380 

other environmental variables, is likely to depend strongly on the spatial scales at 381 

which studies take place (Anderson et al. 2010). We tested the relationship between 382 

weather and genetic diversity at three different scales, and found that variation in 383 

weather suitability within all buffer sizes (2 km, 5 km or 10 km radius; ~ 13 km2 ~ 79 384 

km2 and ~314 km2) was a good predictor of genetic diversity. These scales are all 385 

substantially larger than both the average monthly home ranges of B. gaimardi (0.61 386 

km2) in agricultural regions of Tasmania (Taylor 1993b), and the minimum convex 387 

polygons fitted to the trapping locations of all individuals at each site (0.007 km2 – 388 

6.24 km2). This suggests that weather suitability interacts with demographic and 389 

genetic processes occurring at the broader population or meta-population scale. 390 

Thus, it will be important for future studies to consider the appropriate spatial scale 391 

for the calculation of SDMs and the extraction of weather suitability values for a 392 

population, and it may be advisable to test multiple spatial scales.  393 

Future applications: predicting genetic losses under climate change 394 

Understanding and predicting the impacts of global climate change on genetic 395 

diversity will be critical for conserving species and biodiversity (Pfenninger et al. 396 

2012; Pauls et al. 2013). Selective pressures induced by climate change may trigger 397 

micro-evolutionary responses, and the ability of species to survive will be influenced 398 

by their generation time and adaptive capacity relative to the rate and magnitude of 399 

change in climatic means and variability (Pauls et al. 2013). In this study, we 400 

identified very few putatively adaptive SNP loci through outlier analysis (Appendix 401 
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S1), and so, for clarity, we have only examined the relationship between weather 402 

and putatively neutral genetic diversity. However, a valuable extension of this work 403 

will be to examine the relationship between adaptive genetic diversity within 404 

populations and weather suitability and variability. 405 

Species distribution modelling has been previously proposed as a tool to project 406 

losses of genetic diversity due to local extinctions and range shifts under climate 407 

change (Pfenninger et al. 2012). In contrast to the climate-based SDMs commonly 408 

employed, weather-based SDMs can take into account trends and variability over 409 

time-scales more relevant to organism lifespans and generation times (Bateman et 410 

al. 2012b), and thus provide potentially more accurate modelling of genetic diversity 411 

for weather-sensitive species. These models offer a promising new approach to 412 

predicting where losses of diversity may occur in response to changing weather 413 

conditions in the near future and identifying potential climate change refugia, 414 

facilitating longer-term conservation planning and assessments of species’ genetic 415 

risk.  416 
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Tables 

Table 1. Weather and climate models for each of the three genetic diversity metrics. Models 

are ranked on AIC. * = significant values (P < 0.05). Degrees of freedom: a =14; b =13, c =12, 

d =15 

Diversity 

metric Model 

Parameter 

estimate 

 

S.E. 

 

        t P R2 adj. ΔAIC 

Expected 

hetero-

zygosity 

(SNP) 

Year +  

Weather (s.d.) 

0.019 

-0.603 

0.013 

0.252 

 1.396 a 

-2.391 a 

0.184 

0.031 * 
 0.463 0.00 

Year +  

Weather (mean) 

0.033 

0.200 

0.012 

0.102 

2.716 a 

1.961 a 

0.017 * 

0.070 
 0.407 1.70 

Year +  

Weather (mean) + 

Weather (s.d.) 

 0.021 

0.063 

-0.483 

0.015 

0.149 

0.386 

 1.413 b 

0.422 b 

-1.249 b 

0.181 

0.680 

0.234 

 0.430 1.77 

Year +  

Weather (mean) + 

Weather (s.d.) + 

Climate 

 0.024 

0.053 

-0.561 

-0.084 

0.015 

0.151 

0.403 

0.101 

 1.542 c 

0.354 c 

-1.393 c 

-0.826 c 

0.149 

0.729 

0.189 

0.425 

 0.415 2.83 

Year 0.036 0.013 2.770 d 0.014 *  0.294 3.82 

Year +  

Climate 

 0.037 

-0.021 

0.015 

0.110 

 2.497 a 

-0.186 a 

0.026 * 

0.855 
 0.246 5.78 

Allelic 

Richness 

(SNP) 

Year +  

Weather (s.d.) 

0.058 

-1.359 

0.030 

0.572 

 1.907 a 

-2.374 a 

0.077 

0.032 * 
 0.527 0.00 

Year +  

Weather (mean) 

0.089 

0.457 

0.027 

0.230 

3.290 a 

1.983 a 

0.005 * 

0.067 
 0.482 1.54 
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 Year +  

Weather (mean) + 

Weather (s.d.) 

0.064 

0.155 

-1.060 

0.034 

0.337 

0.875 

 1.889 b 

0.461 b 

-1.211 b 

0.081 

0.652 

0.247 

 0.499 1.73 

Year +  

Weather (mean) + 

Weather (s.d.) + 

Climate 

 0.072 

0.130 

-1.277 

-0.232 

0.035 

0.337 

0.899 

0.226 

2.070 c 

0.385 c 

-1.420 c 

-1.026 c 

0.061 

0.707 

0.181 

0.325 

 0.501 2.30 

Year 0.097 0.029 3.295 d 0.005 *  0.381 3.75 

Year +  

Climate 

0.102 

-0.087 

0.033 

0.249 

 3.036 a 

-0.350 a 

0.009 * 

0.731 
 0.343 5.60 

Haplotype 

diversity 

(mtDNA) 

 

Year +  

Weather (s.d.) 

-0.128 

-4.995 

0.113 

2.124 

-1.136 a 

-2.352 a 

0.275 

0.034 * 
 0.182 0.00 

Year +  

Weather (mean) + 

Weather (s.d.) + 

Climate 

-0.095 

-0.231 

-6.243 

-1.112 

0.126 

1.224 

3.265 

0.821 

 -0.758 c 

-0.189 c 

-1.912 c 

-1.355 c 

0.463 

0.853 

0.080 

0.200 

 0.173 1.57 

Year +  

Weather (mean) + 

Weather (s.d.) 

 -0.132 

-0.109 

-5.204 

0.126 

1.259 

3.274 

-1.045 b 

-0.086 b 

-1.590 b 

0.315 

0.932 

0.136 

 0.119 1.99 

Year +  

Weather (mean) 

-0.008 

1.371 

0.105 

0.892 

-0.080 a 

1.537 a 

0.938 

0.147 
 0.023 3.01 

Year 0.014 0.108 0.131 d 0.897 -0.065 3.66 

Year +  

Climate 

0.045 

-0.530 

0.123 

0.916 

0.366 a 

-0.579 a 

0.720 

0.572 
-0.115 5.26 
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Figures 

Figure 1: 
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Figure 2: 
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Legends: 

Figure 1. Mean (A) and variability (B) of weather suitability for Bettongia gaimardi, 

based on monthly projections from 1950 – 2009. Cross hatching shows areas of the 

island that are outside the approximate known range of B. gaimardi. Locations of 

Bettongia gaimardi genetic sampling sites are indicated by red circles, and site 

names are shown in (A). Genetic sample sizes are: BRO = 4, CON = 6, CRE = 6, 

DEN1 = 7, DEN2 = 16, FOR = 12, FRA = 26, GRA = 26, GRO = 5, LEB = 19, LH = 5, 

MAC = 13, OAT = 9, POW = 9, SPG = 7, STP = 6, TG = 12. 

 

Figure 2. Marginal effects of mean weather suitability, standard deviation of weather 

suitability (i.e., variability) and climate suitability for the three genetic diversity 

metrics, from the regressions containing that variable + year. Dashed lines show 

95% confidence intervals. Grey points indicate actual values of sampled populations. 

 


