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Early warning signals of recovery in complex
systems
Christopher F. Clements1, Michael A. McCarthy2 & Julia L. Blanchard 3

Early warning signals (EWSs) offer the hope that patterns observed in data can predict the

future states of ecological systems. While a large body of research identifies such signals

prior to the collapse of populations, the prediction that such signals should also be present

before a system’s recovery has thus far been overlooked. We assess whether EWSs are

present prior to the recovery of overexploited marine systems using a trait-based ecological

model and analysis of real-world fisheries data. We show that both abundance and trait-

based signals are independently detectable prior to the recovery of stocks, but that combining

these two signals provides the best predictions of recovery. This work suggests that the

efficacy of conservation interventions aimed at restoring systems which have collapsed may

be predicted prior to the recovery of the system, with direct relevance for conservation

planning and policy.
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In the 1990s one of the most iconic regime shifts occurred
when cod and other groundfish stocks in the Northwest
Atlantic collapsed and led to a moratorium on fishing that has

lasted 30 years, with few signs that the system is recovering1. This
failure to recover is thought to be an example of the phenomenon
of hysteresis, where a system can display multiple stable states
under the same or similar environmental conditions2–5. In
practical terms this means that a system’s state can be a function
not only of the current environmental conditions but also of its
previous state2–5. Classic examples of this come from freshwater
lakes, characterized by states with either clear-water and macro-
phytes, or turbid-water and plankton;4 reverting a system from a
turbid to clear-water state is demonstrably difficult6. The transi-
tion between these two states, which is often abrupt, is referred to
as a tipping point, and here we will use this to describe the point
at which a system rapidly changes either by passing through a
bifurcation point in the classic mathematical sense, or via a period
of strong non-linearity7. The need to try and avoid these abrupt
transitions between alternative states, typified by the collapse of
populations which then exhibit hysteresis, has helped drive the
development of so called generic early warning signals to predict
the collapse of ecological systems (Early Warning Signals of
Collapse, henceforth EWSCs) in the face of global environmental
change8.

Thus far EWSCs have largely been derived from the theory of
critical slowing down (CSD), whereby a system exhibits a
decreasing ability to return to its previous state after a pertur-
bation, driven by a decline in its resilience in the region of a
tipping point7–9. In practical terms, this decline in the resilience
of a system can be inferred from changes in readily measurable
statistics of an abundance time series; as a system approaches a
collapse the autocorrelation should increase, as should variance
and a suite of other statistical moments5,10. Such generic EWSCs
have been shown to be present prior to the collapse of a range of
non-biological and biological systems10–17. However, recent work
has shown that such methods are highly susceptible to poor data
quality and the low signal to noise ratio of biological systems18–21,
driving the development of trait-based EWSCs, where shifts in
the mean and distribution of a fitness related phenotypic trait
such as body size can help predict the collapse of populations and
communities11,12,22. Such trait-based methods have been pro-
posed as being more robust to the ubiquitous incomplete sam-
pling which occurs when monitoring wild populations12,18, as
they track shifts in the mean of a sample, rather than assuming
the sample directly reflects the true state of the system (as with
population count data)5. These abundance and trait-based tools
give hope that the collapses of populations, communities, and
ecosystems may be predicted prior to their occurrence. However,
one overlooked fact is that such signals are predicted to be present
regardless of the direction from which the tipping point is
approached – i.e. warning signals are expected to be present
before both the collapse and the recovery of complex systems7.
No work has assessed whether these predicted signals of recovery
are seen in realistic population dynamic data, or what role any
potential signals may play in the management of populations and
communities in the face of continued anthropogenic forcing of
the global biosphere. Moreover, it is not known whether pre-
viously developed trait-based warning signals (which are not
derived from bifurcation theory) would also be present prior to
the recovery of a system.

While the collapse of populations and communities is of pri-
mary concern for conservation biologists given global declines in
biodiversity, early warning signals prior to the recovery of a
system (henceforth EWSRs) have the potential to play a critical
and unique role in assessing the effects of conservation inter-
ventions and management decisions. Measuring the effectiveness

of a conservation intervention is critical to ensure limited
resources are not wasted on a management strategy which is
having no positive impact on the intended target. Moreover, the
risk of further collapse, the extinction of a population, or loss of
function of an ecosystem, must be minimised by reducing the
time the system spends in a collapsed phase. However, predicting
the efficacy of management strategies is hampered by the com-
plexity of biological systems, and thus developing generic EWSRs
could offer many of the same advantages which drove the
development of classic EWSCs; they may act as generalisable
pattern-to-process methods, requiring relatively little data on a
system to predict its future state5. This would be of particular
interest for the management of complex communities and eco-
systems, where monitoring and understanding the interactions
between large numbers of populations simultaneously may be
impractical, but where the assessment of key species (either of
commercial interest, or which are known to play important roles
in the functioning of the system) may not only be feasible but
already being undertaken. This points to one of the key advan-
tages of EWSRs over classic EWSCs: the utility of EWSCs in
predicting the collapse of real-world systems is often hampered
by the quality and availability of the data18,19, as typically
populations are monitored when they are already highly threa-
tened or declining, and thus warning signals are less relevant.
However, populations which have already collapsed are likely to
be carefully monitored, especially in high economic sectors such
as fisheries, and thus developing generic methods to predict the
recovery of such systems as management interventions are
enacted takes advantage of this, removing a key limitation of
traditional EWSCs methods18,19. Such generic signals may be of
particular utility for developing nations, where complex and
expensive mechanistic models of fisheries may be absent, but
measures of a system’s health such as the size of individuals in the
population may be collected from fish markets11,23. As such,
EWSR have the potential to add to the toolbox of methods to help
inform conservation funding and prioritisation in a wide variety
of systems.

Here we use a previously developed multi-species size spec-
trum model of the North Sea to simulate the recovery of an over-
harvested system when fishing pressure is released24. This model
realistically predicts the effects of harvesting and interspecific
interactions on the abundance and trait dynamics of this marine
fish community24, while allowing multiple outcomes (populations
that recover vs. those that do not) to be readily generated. We use
in silico experiments to first implement the recorded historic
fishing pressures between 1967 and 2010 across all species,
leading to large declines in the biomass of many of the species,
and then subsequently reduce fishing pressure to zero at various
rates. Given the wide economic importance of Atlantic cod
(Gadus morhua) and issues surrounding the collapse and recov-
ery of cod stocks, in our analyses we focus on the North Sea
where cod has declined for much of the past four decades.
Reductions in fishing mortality rates have led to some signs of
recovery in recent years, however according to stock assessment
and biological reference levels the North Sea cod stocks still
remain “outside safe biological limits”. Additional methods to
assess whether this system is likely to recover further would help
provide a greater evidence base for fisheries management. Here
we assess, whether, when fishing pressures on the system are
relaxed, abundance and trait-based warning signals predict non-
linear transitions of recovering of cod stocks. We show that both
abundance and trait-based signals are independently detectable
significantly prior to the recovery of cod, but that combining
these two independent measures of the stability of a system
provides the best predictions of recovery. To supplement this
simulation-based approach we also analyse two real-world cod
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stock survey time series from the International Council for the
Exploration of the Sea (ICES). One of these cod stocks (in the
North Sea) is purportedly recovering from a period of over
exploitation and displays EWSRs. The second stock, from the
Western Baltic, is in contrast not thought to be recovering, a
supposition supported by our analysis where it shows no EWSRs.

Results
Simulated data. Reductions in fishing pressures altered the tra-
jectories of cod population recoveries, with the recovery of
populations often lagging behind the change in fishing pressures
and thus the populations displaying non-linear dynamics (Figs. 1
and 2). On average the recovering populations displayed over-
compensatory dynamics, especially where the rate of decline in
fishing pressure was rapid, leading to a dramatic increase and
then decline in the biomass and mean body size as the pressure
on the system was released (Fig. 1).

As the pressures on the system declined, the abundance and
size-based metrics increased compared to both their historic base
line, and the control populations (Fig. 3). Of the 15 metrics tested,
those which included some measure of trait dynamics alongside
abundance-based measures of stability had the strongest signals
of recovery, with the strength of the signal typically peaking
simultaneously with the cessation of fishing (Fig. 3). The

maximum strength of the signal observed was proportional to
the rate at which fishing pressures declined.

Critical to indicators being useful in real world scenarios is
their ability to predict approaching recoveries before they
occur. When the maximum strength of signals between 2040
(the time when fishing pressures began to be reduced) and the
recovery point of each population (as calculated by piecewise
regression analysis, Fig. 2) were compared to those populations
which didn’t recover there were clear and marked differences
between the treatments. Specifically, those populations which
recovered showed on average stronger signals than those that
didn’t (Fig. 4a, Supplementary Fig. 4). For the metric which had
the greatest difference in mean strength between the recovery
and non-recovery populations (a combination of first order
autoregressive coefficient, coefficient of variation, and the
standard deviation of size – AR(1)+ CV+ SD size) the mean
signal strength between 2040 and the recovery time of each
population was significantly greater than the 2σ threshold
proposed by Drake & Griffen14 (Fig. 4a). In those simulations
which did not recover the mean maximum signal strength
remained below this threshold level over the period of time
between 2040 and 2090 (Fig. 4a).

This marked difference in the mean metric strength between
the non-recovery and recovery populations generated a high
number of true positive (TP) warning signals of recovery (Fig. 4b,
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Fig. 1 Projected cod population dynamics and recovery times under various rates of decline in fishing pressures. The model predicts significant increases in
(a) mean biomass, (b) mean body size, (c) σ size as fishing pressures decline, with recovery times (d) changing approximately linearly with the rate of
decline in fishing pressure. Each line represents the mean of 300 simulations
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Fig. 2 Example time series of cod recovery. The recovery point (vertical solid black line) was calculated by fitting a piecewise constant model with a single
break point (horizontal black lines). The time at which fishing pressure begins to decrease (2040, vertical dashed black line), and the time at which fishing
pressure declines to zero (vertical maroon line) are also shown. The purple box highlights the training data period used in the warning signal calculation,
while the yellow box highlights the period over which warning signals of recovery were searched for (after fishing pressure has begun to decline, but prior
to the population recovering)
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Supplementary Fig. 5). At the slowest rate of decline in fishing
pressure the metric AR(1)+ SD size displayed TP EWSR in over
86% of simulations, and false positive (FP) signals in only 13% of
the non-recovery populations. These EWSRs were detectable up
to 46 years prior to the recovery of some populations, although
the majority of such signals occurred closer to the recovery point
than this (Fig. 4c).

Previous work has suggested that in noisy real-world time
series multiple consecutive signals may provide more reliable
predictors of an approaching tipping point, as the system
becomes increasingly unstable and thus should exhibit increas-
ingly frequent warning signals11. This was supported by the
mean number of consecutive EWSRs generated in the recovery
populations when compared to those which do not recover,
where populations with the slowest rate of change in fishing
pressure on average produced warning signals at a 2σ threshold
in 8 consecutive years prior to their recovery (Fig. 5a,

Supplementary Fig. 6). If a consecutive signal approach was
implemented, and thus an EWSR was considered present when
the metric crosses a 2σ threshold for 2 or more consecutive
years, TP EWSRs were still produced in a high proportion of
simulations (up to 83%), while FP signals were present in only
7% of the non-recovery simulations (Fig. 5b). Consecutive
signals were not detectable as far in advance of the recovery
point as the single signal approach (Figs. 4c and 5c), however
they were none-the-less present up to 45 years prior to recovery
in the slowest rate treatment (Fig. 5c).

Increasing the amount of training data available prior to the
cessation of fishing increased the proportion of TP, and decreased
the number of FP, signals (Fig. 6, Supplementary Fig. 7). Both the
single and consecutive signal approach showed very similar
trends as the amount of training data increased, with the single
signal approach showing both higher TP and FP signals than the
consecutive signal approach.
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Fig. 4 Efficacy of single warning signals in predicting the recovery of cod populations. a Metric with the greatest difference between the signal strength in
the non-collapse and collapse time series, the greatest mean strength across all rates of decline, and the highest mean signal strength in any single rate of
change (AR(1)+CV+ SD size) of EWSR between the start of the decline in fishing pressure (2040) and the recovery time of each time series. Error bars
show 1 SE. b Metric with the greatest difference between the proportion of time series showing false positive signals at a 2 sigma threshold (orange bars)
and proportion of time series showing true positive signals (blue bars) – AR(1)+ SD size. c Distribution in time of EWSR at a 2 sigma threshold for the
metric AR(1)+ SD size
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The 2σ threshold proposed for determining the presence of
warning signals14 performed well in comparison to other
threshold values, typically producing low FP ratios and high TP
ratios when either a single signal, or consecutive signal approach
was taken (Fig. 7). Of the 15 metrics tested AR(1)+ SD size
produced the best TP to FP ratio across the thresholds tested
(Fig. 7).

Fisheries survey data. The North Sea cod stock has shown sig-
nificant historic downward trend, with corresponding declines in
both the mean size and SD body size of the population (Fig. 8a).
Although the SSB has increased since 2006 it remains below
historic levels. This increase has occurred concurrently with
increases in the mean size, and (although to a lesser extent) SD
size of individuals in the population (Fig. 8a). While the SSB is
increasing slowly this population is generally considered to be
showing signs of recovery25 and our analysis corroborates this,
with signals detectable in multiple consecutive years from 2011
onwards in 3 of the 15 metrics, all of which included some
measure of size (Fig. 8a).

The Western Baltic Sea’s population dynamics are less clear,
with the SSB, mean size, and SD size showing significant
interannual fluctuations, and no significant increases in any of
these three measures (Fig. 8b). The metric dynamics also show
significant variation, although the 2σ threshold is not crossed
during either the training or assessment periods (Fig. 8b). These
results seem to support the published view that the Western Baltic
stock is not recovering26.

Discussion
While work on EWSCs has grown rapidly5, the theoretical pre-
diction that warning signs precede the recovery of complex sys-
tems has been overlooked. However, given the current losses of
biodiversity and degradation of ecosystem structures and func-
tions worldwide, predicting whether a system might recover given
a conservation intervention may provide a key quantitative tool.
We suggest that pattern-to-process methods based on recently
developed theory may offer one potential solution to this issue,
providing generalizable signals of recovery which require rela-
tively little data or understanding of the underlying structure of a
system to calculate. Such signals may be of particular use for
developing nations, where a deep understanding of the com-
plexities of their exploited ecosystems may be lacking.

We show that, prior to the simulated recoveries of cod,
abundance-based and trait-based EWSRs are independently
detectable, but that the most reliable signals occur when these two
signal types are combined (Figs. 3–5). Moreover, these signals are
detectable in a real-world system which is thought to be reco-
vering (Fig. 8a) and are absent from one which is not (Fig. 8b).
This finding supports previous work on the collapse of biological
systems which has suggested that combining multiple signals
(both trait and abundance) into a single metric of risk reduces the
chances of FP signals7,11,12,14, which are often driven by chance
fluctuations in the data caused by stochasticity or poor data
quality18. In marine systems such as those simulated here
including trait shifts as a warning signal of either collapse or
recovery is particularly relevant, as populations are highly size
structured27. That being said, the use of shifts in body size as a
measure of increasing or decreasing stability in non-marine sys-
tems also has significant theoretical support, as many organism’s
survival, fecundity, and response to environmental conditions
and density dependency are determined by body size28–30. This in
turn affects demographic rates and a population’s ability to
withstand future pressures exerted upon it, or recover from past
stressors30–33.
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Fig. 5 Efficacy of consecutive warning signals in predicting the recovery of cod populations. a Mean maximum number of consecutive EWSR for the metric
with the highest mean maximum number across all the recovery simulations (blue bars, AR(1)+ SD size) at a 2σ threshold. While those populations which
did not recover did show some EWSR (orange bar), they typically did not show them in consecutive years, whereas those populations that did recover
showed signals at a 2σ threshold in – on average – 6 consecutive years across the recovery treatments (horizontal black line). b Proportion of populations
showing EWSR in at least 2 consecutive years at a 2σ threshold. Error bars show 1 SE. c Distribution in time of EWSR based on 2 consecutive signals at a 2σ
threshold for the metric with the biggest difference in the number of consecutive signals between recovery and non-recovery treatments (AR(1)+ SD size,
Fig. 5). EWSR were detectable – where change in the pressures exerted upon a system is slow – up to 43 years prior to the recovery of the populations
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However, as with EWSCs, a key issue with the utility of
EWSRs is their detectability. Historic work in the EWSCs lit-
erature shied away from providing quantitative decision-making
frameworks, concentrating instead on proof-of-concept correla-
tive studies analyzing data on systems which were known to have

collapsed e.g.16, meaning that not only were such methods
impractical for predicting real-world collapses, but were also
susceptible to the ‘prosecutors fallacy’34. Consequently, for
EWSCs/EWSRs to be useful the literature must strive to move on
to frameworks through which clear signals can be achieved5. One
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such approach was developed by Drake & Griffen14, whereby an
EWSC was determined to be present when the value of a metric at
a given time point exceeded its running mean by more than two
standard deviations – effectively a 97.5% confidence level12.
Employing such a method for the detection of EWSRs appears to
have merit, as while FP signals do occur, they are proportionally
low when compared to the TP signals (Figs. 4b and 7).

However, the simulation data we analyze here represents a
best-case scenario. Real world data are considerably more noisy,
driven by incomplete sampling and the movement of
organisms12,18. In practical terms, noisy data may lead to
increased FP and false negative (FN) signals, meaning a system’s
future trajectory may be incorrectly identified, leading to wasted
resources or worse the further collapse or total extirpation of the
system. One option would be to alter the threshold σ value,
attempting to balance the economic, political, and ecological costs
of a FP or FN signal. However, there is little objectivity in
choosing a new threshold. Recognized issues such as the Romeo
effect35, where a population or species is assumed to be lost or
unsavable leading to the removal of funding and its subsequent
committal to extinction when in reality it could have been saved,
is a clear example of both the dangers of misidentifications of
signals, and potential benefits of using reliable quantitative
methods to inform conservation planning. In reality the 2σ
threshold previously suggested appears to perform well compared
to other threshold values (Fig. 7), and thus arbitrarily altering this
value may offer little benefit.

An alternative method to solve this issue of reliability in the
face of noisy data may be to use signals in consecutive years as a
measure of the loss of stability of a system11 (Fig. 5). Given that
the majority of FP signals are generated from chance fluctuations
in the data, such an approach has merit (Fig. 5b), as multiple
consecutive signals suggest that a system has not only moved
beyond its historic baseline, but that it is continuing to do so in
response to some external pressure. Our results suggest that two
consecutive signals can predict an approaching recovery of cod
stocks, and that using this approach significantly decreases the FP
signal rate (Figs. 5 and 6).

To assess whether such signals may be detectable in real-world
recovery cases we analyse two systems, one which is thought to be
recovering and one which is not, to assess whether EWSRs are
present (Fig. 8). Using the methods developed in the simulation
study we show that multiple consecutive signals are detectable in
the ‘recovering’ system, while no signals are detectable in the ‘not
recovering’ system (Fig. 8). Based on these results we would
predict that the North Sea should show continued future recovery
over the next decades, assuming that pressures on the system are
not once again increased, although the strength of this signal of
recovery only just passed the 2σ threshold in 3 of the 15 metrics
(Fig. 8a). It should be noted that the time series used for training
the methods in the real-world data analysis are shorter than the
best-case scenario presented in the simulation study (15 years for
the North Sea, and 9 years for the Western Baltic), and thus are
likely to be more susceptible to variation in the data (Fig. 6). The
choice of window size is also likely to alter these results, an issue
with many different warning signal approaches e.g. 10, and thus
while such signals appear to support the results of the modelling,
they should not be treated as conclusive proof that such signals
exist in real-world systems. In particular, the absence of recovery
signals does not prove that no recovery is occurring in the
Western Baltic, as recovery in the immediate future cannot be
ruled out.

As with all predictive methods the quality of the data available
will drive the reliability of EWSRs18, and a critical component of
data quality is the length of the time series available. Our results
demonstrate that with data covering a collapse period of a similar

length to that observed in real world cod stocks (~30 years)1

reliable signals of recovery can be generated (Fig. 6 and Supple-
mentary Fig. 7). However, this might be considered a best-case
scenario, as in many instances’ conservation data are limited both
temporally and spatially (Fig. 8b). While the abundance-trait
methods we propose perform well when the amount of training
data for the methods is high (>20 years), when the amount of
training data is low the methods perform poorly (Fig. 6), a finding
in line with previously published work on EWSC11,12. The
requirement for relatively long (20 year) data has and continues
to be a significant issue for the use of classic EWSC5,18. However,
EWSR may not be limited in the same way, as monitoring of a
system often occurs when degradation of the system is observed.
That being said the analysis of short time series should still be
treated with caution.

The results presented here must be set in the context of pre-
vious work which has highlighted the limitations of CSD based
methods for predicting tipping points20. Boerlijst et al.20 high-
lighted the inability of CSD based methods to predict the collapse
of a number of ecological models, suggesting that to correctly
predict the collapse of a system a detailed knowledge of the
mathematical structure of any potential bifurcation is needed.
Chief amongst these concerns may be that CSD will only occur in
the direction of the dominant eigenvector, which, in their
example, may occur in only the juveniles of a population, which
may not be monitored (for example in marine fish stocks)20. In
our analyses we assess the presence of CSD and trait-based
indicators only in individuals above 10 g, typically the minimum
sized individual monitored during marine stock surveys24. Thus
we are able to show that in this system weak CSD based signals
are present, as well as strong ones in the trait-based metrics.
However, although subsequent work has shown that in fact a
mathematical bifurcation need not occur to produce CSD based
warning signals7, the fact remains that some biological systems
may not exhibit CSD and its associated warning signals prior to
their collapse21. Trait-based warning signals, which are not
shackled by bifurcation theory5, may well solve many of these
issues, but only in systems where body-size is inherently linked to
the demography of a population, as in the one we present here.

In conclusion, we show that the recovery of complex systems
can be predicted by early warning signals based on both the
statistical moments of biomass data and the dynamics of body
size, but that combining such signals into a single metric pro-
duces the most reliable signals of recovery. Such abundance/
biomass and trait-based metrics are widely generalizable, as they
make few assumptions about the underlying structure and
function of the system, and as such could provide a key tool in the
restoration of degraded systems.

Methods
Multispecies size spectrum model. Interactions between species in fisheries play
a critical part in the dynamics of the system as a whole, with interspecific and
intraspecific interactions driven by the size of individuals in the populations, and
thus their ability to prey or be preyed upon24. Here we employed a previously
developed multispecies dynamic size spectrum model of the North Sea with 12
interacting species and a background resource community, which has been shown
to provide realistic size spectra and population dynamics24. This is a dynamic
continuous time and size model based on the McKendrick von Foerster equations
which is discretized for numerical approximation using finite upwind differencing
methods24. The timestep was discretized at 0.1 years to ensure the integration
routine was satisfactory, and size was discretized to 100 size classes. We analyzed
and present yearly outputs from the model to reflect the yearly monitoring of
fisheries stocks. We then focused on assessing the recovery dynamics of replicate
cod populations for EWSRs. Although the underlying model is deterministic (and
is available in the R package ‘mizer’36), as in Blanchard et al.24 we use the stochastic
version that includes a log-normal error term on the recruitment for all 12 fish
species. The model outputs included abundance and biomass of each species and
their body size distributions through time, however in the analyses we considered
only the dynamics of cod. When calculating abundance, biomass, and the change
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in mean body size of a population through time we only considered individuals
larger than 10 g in our calculations. This was to ensure that the observed dynamics
of the system match those which could be observed when surveying this system in
the real world, where 10 g is typically the minimum size caught during fish
surveys24.

Change in fishing pressures. In line with Blanchard et al.24 a burn-in period of
300 years (between 1667 and 1967AD) was used to ensure the model reached
equilibrium before carrying out time-varying fishing simulations. After this period,
fishing was implemented at recorded historic levels for all of the 12-species in the
model between 1967 and 2010 (Supplementary Fig. 1)24. To provide an example of
an overexploited marine system, we held fishing pressures constant between 2010
and 2040 (at 2010 rates), producing a 30 year ‘collapse period’ where cod do not
recover, similar to that observed in real-world systems1. Subsequently, we simu-
lated a range of post collapse scenarios (2040 onwards), where fishing pressures
either remain constant (producing a persistent collapsed community) or decreased
linearly across all species until fishing pressures reached 0, which allowed the
system to recover from collapse (Supplementary Fig. 1). Because the rate at which
pressures on a system changes can alter the prevalence of EWSCs37, we simulated
five different rates of decline in the strength of fishing pressure (2%, 2.25%, 3.3%,
5%, and 10% per year declines in the 2010 level of fishing pressure, equivalent to
declining to no fishing linearly over a 10, 20, 30, 40, or 50 year period). Each of
these six treatments (5 recovery and one control where fishing pressures were held
at 2010 levels) were simulated 300 times over a period from 1667 to 2200, giving a
total of 1800 simulations, of which 1500 recover and 300 do not (Fig. 1, Supple-
mentary Figs. 1 and 2). To avoid any artefacts of the data generation process, these
1800 simulations were split into three groups of equal size containing 100 simu-
lations of each of the 6 rates of change in fishing pressure, and the stochastic
simulations were initialized with the random number generators set at differing
start points. We then focus our search for early warning signals solely on the
simulated dynamics of cod (Fig. 1), presenting the full community dynamics in the
supplementary information (Supplementary Figs. 1, 2 and 3).

Calculating recovery times and EWSRs. For the EWSRs analysis, we focused
solely on the simulated dynamics of cod (Fig. 1). For each of the 1500 simulated
cod populations where fishing pressures declined over time, we calculated the point
at which a population was considered to have recovered, estimated by fitting
piecewise constant models with a single break point (Fig. 2)38. We then assessed
whether EWSR occurred in the simulated cod populations. For populations which
recovered we looked for signals between 2040 (when fishing pressures began to be
reduced) and the estimated recovery point of the population, thus any signals
detected in this period could be considered to predict the recovery of the popu-
lation as they occurred prior to its observed recovery (Fig. 2). For those populations
which were subjected to constant fishing pressures we assessed whether any false
positive (FP) EWSRs occurred over a 50-year period between 2040 and 2090
(equivalent to the longest time series where populations recover, rate of change=
0.02).

We assessed the presence of two types of EWSRs: (1) signals calculated from
biomass time series which are based on the theory of CSD, and (2) recently
developed trait-based early warning signals which assess trends in the body size of
individuals in a population5,11,12.

CSD suggests that a range of summary statistics calculated from the abundance
or biomass time series of a population will show strong trends as the system
approaches a tipping point10. These statistics include the coefficient of variation
(CV), first order autoregressive coefficient (AR(1)), autocorrelation at first lag
(ACF1), return rate (rr), and density ratio (DR). Strong trends in these in the
direction expected by theory have preceded transitions between alternate states in a
range of systems10,14,16,18. However, many of these metrics show strong
collinearity18, so here we assessed the suitability of one noise based metric (CV)
and one memory based statistic (AR(1)) to predict the recovery of populations, as
the combination of these two types of signal has been proposed as a robust method
for predicting the future state of a system7. CSD theory suggests that both CV and
AR(1) should increase as a system approaches a tipping point10.

An alternative suite of previously suggested warning signals are trait-based
measures of stability, such as shifts in the mean body size or standard deviation of
body size of a population11,12. Because body size determines the survival and
fecundity of many species28–30, shifts in the traits of a population offer an excellent
alternative measure of stability to abundance-based measures derived from CSD12.
Trait-based signals may be particularly relevant to marine systems, where not only
do pressures such as fishing alter the size distribution of harvested populations,
with cascading effects to the stability of the system39, but body-size also determines
an individual’s position in the foodweb24. Previous work on overharvested marine
systems has shown that declines in the mean size (mean size) and standard
deviation of size (SD size) of a population predicts its collapse11. Because of this we
consider increases in mean size and the SD size of the simulated cod populations as
warning signals of their recovery.

Thus, in total we assess the efficacy of four population-level metrics to predict
the recovery of the overharvested cod stocks in our model, two based on trait
dynamics (mean size, SD size), and two based on biomass dynamics (AR(1), CV).
These four metrics were assessed both independently, and by combining multiple

indicators into a single metric of risk by summing them at each time point, as in
Drake and Griffen14. Thus in total we tested 15 different metrics, composed of
every unique combination of one to four indicators.

In line with previous work11,12,14 we assessed the presence of warning signals by
normalizing each indicator (CV, AR(1), mean size, SD size) independently by
subtracting the running average of that indicator from the value of that indicator at
time t, and dividing it by the running standard deviation. Thus, each statistic at
time tðŵtÞ was calculated as

ŵt ¼
wt � �w1:t

sd w1:tð Þ ð1Þ

where �w1:t is the mean of a statistic from times 1 to t, and sd(w1:t) is the standard
deviation over the same period, where t ≥ 2. Where multiple indicators were
combined into a single metric, the values for each indicator to be included were
summed at each time point, giving a composite EWSR12,14. To minimize the effects
of noisy data generating erroneous warning signals, we take an approach similar to
that of Dakos et al.10 by using a 30 year training period for the model (from 2010 –
the start of the collapse period when fishing pressures are fixed – to 2039 – the year
prior to fishing pressures being reduced, Fig. 2). Data from this training period
were included in the analysis, but any warning signals generated were disregarded.
Our analysis thus assessed whether the release of fishing pressures generated
EWSRs using training data from a lengthy collapse period. We also assessed the
sensitivity of our results to the length of this training data.

We present several analyses of these normalized indicators. First, we present
the ŵt values at each time point to show how the indicators change as the
strength of fishing pressures is decreased (Fig. 3). Note that this does not
indicate whether these signals precede the calculated recovery points but rather
displays their behavior as the system recovers and stabilizes. Second, we show
the mean value of ŵt (averaged across replication populations in each treatment)
between the start of fishing pressure decline and the recovery of the populations
for the best composite metric (Fig. 4a). Thirdly, we show the proportion of
populations which show warning signals of recovery using the method described
by Drake and Griffen14 where a warning signal is considered to be present when
ŵt > 2 (i.e. when the value of a normalized indicator exceeded its running mean
by two standard deviations) (Fig. 4b), and the distribution of these warning
signals prior to the recovery of the simulated populations (Fig. 4c). Fourthly, we
show the efficacy of using signals at a 2σ threshold in two consecutive years
(previously identified as a robust method for noisy data11) as EWSRs (Fig. 5a),
the proportion of populations which show EWSRs in consecutive years (Fig. 5b),
and the distribution of these EWSRs prior to the recovery of populations
(Fig. 5c). Fifthly, we show how the amount of training data available to the
method alters the reliability of single signal and consecutive signal approaches
(Fig. 6). To do this we vary the amount of data from 2 years (the minimum
required to calculate a signal, see Eq. (1)) to 30 years (corresponding to including
data from 2010 to the year before fishing pressures begin to decline – 2039 – in
the analysis). Finally, to assess the suitability of the 2σ threshold proposed by
Drake and Griffen14, we show the Receiver Operator Characteristics for a range
of threshold values from 0.01 to 6σ for both the single and consecutive signal
approaches (Fig. 7).

ICES cod survey data. To compliment the simulation analyses described above we
applied our metrics to two cod stock time series from (a) a previously over-
harvested stock which is thought to be slowly recovering – the North Sea, and (b) a
control stock which is still being exploited and purportedly shows no signs of
recovery – Western Baltic Sea (Fig. 8). To do this we combined data from two
sources. Firstly, body size data on individual fish came from the ICES Database of
Trawl Surveys (DATRAS), and from this individual data we calculated mean size
and SD size per year over the surveyed period. Secondly, we took estimates of
Spawning Stock Biomass (SSB) – which is used to assess the health of fisheries
stocks – from the ICES Stock assessment database. We then assessed the biomass,
mean size, and SD size data for EWSRs using the methods outlined above. In the
North Sea stock, we limited our analysis to the year 1989 onwards, as this was the
first year that the SSB was classified by ICES as being outside safe biological limits,
and thus the analysis mimicked the analyses of the collapse period carried out in
the simulation study. In the Western Baltic stocks, we used the same rationale and
analyzed only data from 2001 onwards. In both cases we used half the available
data for training the method (from 1989 to 2004 in the North Sea, and 2001 to
2010 in the Baltic Sea), and assessed the second half of the time series for EWSR
(Fig. 8a, b).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All simulations were carried out using a stochastic version of the Mizer package in R36.
Original simulation outputs are available on request from the corresponding author. ICES
stock data are publicly available through the ICES data portal (http://ecosystemdata.ices.
dk/). Code to carry out analyses is publicly available on https://github.com/chrit88/EWSR-
Nature-Communications-2019.
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