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Abstract
Food web structure and dynamics depend on relationships between body sizes of 
predators and their prey. Species‐based and community‐wide estimates of preferred 
and realized predator–prey mass ratios (PPMR) are required inputs to size‐based size 
spectrum models of marine communities, food webs, and ecosystems. Here, we clar‐
ify differences between PPMR definitions in different size spectrum models, in par‐
ticular differences between PPMR measurements weighting prey abundance in 
individual predators by biomass (rbio) and numbers (rnum). We argue that the former 
weighting generates PPMR as usually conceptualized in equilibrium (static) size spec‐
trum models while the latter usually applies to dynamic models. We use diet informa‐
tion from 170,689 individuals of 34 species of fish in Alaskan marine ecosystems to 
calculate both PPMR metrics. Using hierarchical models, we examine how explained 
variance in these metrics changed with predator body size, predator taxonomic reso‐
lution, and spatial resolution. In the hierarchical analysis, variance in both metrics 
emerged primarily at the species level and substantially less variance was associated 
with other (higher) taxonomic levels or with spatial resolution. This suggests that 
changes in species composition are the main drivers of community‐wide mean PPMR. 
At all levels of analysis, relationships between weighted mean rbio or weighted mean 
rnum and predator mass tended to be dome‐shaped. Weighted mean rnum values, for 
species and community‐wide, were approximately an order of magnitude higher than 
weighted mean rbio, reflecting the consistent numeric dominance of small prey in 
predator diets. As well as increasing understanding of the drivers of variation in 
PPMR and providing estimates of PPMR in the north Pacific Ocean, our results dem‐
onstrate that that rbio or rnum, as well as their corresponding weighted means for any 
defined group of predators, are not directly substitutable. When developing equilib‐
rium size‐based models based on bulk energy flux or comparing PPMR estimates 
derived from the relationship between body mass and trophic level with those based 
on diet analysis, weighted mean rbio is a more appropriate measure of PPMR. When 
calibrating preference PPMR in dynamic size spectrum models then weighted mean 
rnum will be a more appropriate measure of PPMR.
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1  | INTRODUC TION

Body size is the principle factor structuring biomass, numerical abun‐
dances, trophic levels, and predator–prey interactions in marine and 
freshwater ecosystems (Dickie, Kerr, & Boudreau, 1987; Trebilco, 
Baum, Salomon, & Dulvy, 2013). In most instances, predators feed 
on smaller‐bodied prey (Barnes, Maxwell, Reuman, & Jennings, 
2010; Brose, Jonsson, et al., 2006; Cohen, Pimm, Yodzis, & Saldana, 
1993). Predator‐to‐prey body mass ratios (PPMR) are particularly 
relevant for understanding regularities in the size structuring of 
predator–prey interactions in food webs and can vary based on indi‐
vidual‐ or species‐level attributes of predators (Barnes et al., 2010; 
Brose, Jonsson, et al., 2006; Nakazawa, Ushio, & Kondoh, 2011; 
Reum & Hunsicker, 2012). Importantly, food web structure and dy‐
namics, as represented in a variety of size‐based modeling frame‐
works, are sensitive to the PPMR of predators (e.g., Brose, Williams, 
& Martinez, 2006; Law, Plank, & Kolding, 2016; Otto, Rall, & Brose, 
2007), which suggests PPMR offers a useful metric for functionally 
characterizing predators.

Size spectra describe the abundance of individuals in a food web 
as a function of body size (Sheldon, Prakash, & Sutcliffe, 1972). The 
first size spectrum models were developed to explain remarkably 
consistent size spectra slopes in pelagic food webs (Sheldon et al., 
1972; Sprules & Barth, 2015), with recent extensions developed to 
investigate human and environmental impacts on marine ecosys‐
tems (e.g., Blanchard et al., 2014; Jacobsen, Burgess, & Andersen, 
2017; Jennings & Blanchard, 2004; Jennings & Collingridge, 2015; 
Rochet & Benoît, 2012). Broadly, size spectrum models can be di‐
vided according to whether they provide equilibrium (static) predic‐
tions of size spectra or model system processes and size distributions 
dynamically (Blanchard, Heneghan, Everett, Trebilco, & Richardson, 
2017). The two approaches, however, conceptualize PPMR differ‐
ently, with implications for how PPMR should be calculated from 
empirical diet data.

A central premise in all size spectrum models is that the size of 
prey consumed is linked to the size of predators, although specif‐
ics of implementation vary among models (Andersen, Jacobsen, & 
Farnsworth, 2016; Blanchard et al., 2017; Guiet, Poggiale, & Maury, 
2016). In dynamic size spectrum models, predation is modeled mech‐
anistically and within a given time increment is either fully or partly a 
function of prey densities and the prey size preference of the preda‐
tor (Benoît & Rochet, 2004; Hartvig, Andersen, & Beyer, 2011). Prey 
size preferences are usually modeled using a log‐normal selectivity 
function, or feeding kernel (Andersen et al., 2016). Prey mass at the 
peak of the feeding kernel is defined by a “preferred PPMR” param‐
eter, which reflects the behaviorally and morphologically mediated 
prey choice of the predator when presented with prey of many sizes, 
and a second parameter controls the feeding kernel width (Andersen 

et al., 2016). The “realized PPMR” (i.e., PPMR based on ingested prey) 
of predators is emergent in the models and may change with pred‐
ator size and prey relative abundance (Hartvig et al., 2011). Direct 
estimation of preferred PPMR is challenging because this requires 
knowledge of realized PPMR and the size composition and abun‐
dance of encountered prey (Floeter & Temming, 2003; Tsai, Hsieh, 
& Nakazawa, 2016; Ursin, 1973, 1974). Alternatively, it may be 
possible to approximate preferred PPMR with a simple offset from 
realized PPMR. For instance, simulation studies suggest preferred 
PPMR may be ~60% of mean realized PPMR (Hartvig et al., 2011). 
This approximation has been used to estimate preferred PPMR from 
diet‐based estimates of realized mean PPMR for species in multispe‐
cies size spectrum models calibrated to real ecosystems (Blanchard 
et al., 2014).

In static size spectra models, species identity is ignored and ag‐
gregate community biomass is indexed by body size (Blanchard et 
al., 2017). The models define PPMR as a realized community‐wide 
mean that is constant across predator sizes. Consequently, PPMR 
sets the prey size class that supports production in a given preda‐
tor size class (e.g., Borgmann, 1987; Sheldon, Sutcliffe, & Paranjape, 
1977; Thiebaux & Dickie, 1992; Thiebaux & Dickie, 1993). Since 
these models characterize the transfer of energy from prey to pred‐
ators, empirical estimates of realized community‐wide mean PPMR 
need to account for the energetic contribution of differently sized 
prey to predator diets. Estimates of realized community‐wide mean 
PPMRs, which reflect the energetic contribution of prey to preda‐
tor diets, have been estimated from community‐wide relationships 
between body mass and trophic level with nitrogen stable isotope 
methods (Al‐Habsi, Sweeting, Polunin, & Graham, 2008; Jennings & 
Blanchard, 2004; Jennings & Mackinson, 2003; Jennings, Pinnegar, 
Polunin, & Boon, 2001; Jennings, Pinnegar, Polunin, & Warr, 2002; 
Reum, Jennings, & Hunsicker, 2015) and have been used to param‐
eterize equilibrium size spectrum models (Jennings & Blanchard, 
2004). Realized community‐wide mean PPMR influences food chain 
length, transfer efficiency, and size spectrum slopes (Jennings & 
Warr, 2003; Jennings et al., 2001; Jennings, Warr, & Mackinson, 
2002). The few available empirical estimates of realized community‐
wide mean PPMR are based on stable isotope analyses rather than 
diet data, largely because PPMR estimates of individual predator–
prey events (i.e., “individual‐link PPMR”; Nakazawa et al., 2011) are 
rarely available for all species in a community due to the intensive 
sampling required.

Existing studies of PPMR based on diet data have focused on ana‐
lyzing patterns in individual‐link PPMR (e.g., Barnes et al., 2010; Brose, 
Jonsson, et al., 2006; Klecka & Boukal, 2013; Nakazawa et al., 2011; 
Reum & Hunsicker, 2012) which is related to realized PPMR in dynamic 
size spectrum models (Hartvig et al., 2011; Tsai et al., 2016). At the 
level of an individual predator i, the realized mean PPMR (rnum

i
) is:

K E Y W O R D S

body size, ecosystem, food web, piscivory, size spectrum, trophic level
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where M is the body mass of the predator and m is the body mass 
of individual j = 1, 2, …, n prey observed in the predator stomach. 
The mean of rnum

i
 for any defined group of individual predators is 

the mean of the rnum
i
 values for all predators in the group weighted 

by the relative abundance of prey observed in each individual 
predator.

The dependence of rnum
i
 on prey numerical abundance, coupled 

with the higher numbers of small relative to large prey in size‐
based food webs (Trebilco et al., 2013), implies that rnum

i
 does not 

reflect the contribution of different sizes of prey to the energy in‐
take of a predator and is therefore less appropriate for generating 
estimates of realized community‐wide mean PPMR in static size 
spectrum models. This would be addressed by recognizing prey 
contributions to diet in terms of biomass (rbio

i
), where rbio

i
 is calcu‐

lated as follows:

where w is the total biomass of all prey recovered from preda‐
tor i. Here, energy and mass are assumed to be related by a mass–
caloric conversion factor and are regarded as equivalent (e.g., 
Thiebaux & Dickie, 1993). An equivalent expression of Equation 2 
is simply the predator mass divided by the average body mass of 
individual prey (i.e., “individual predator PPMR,” Nakazawa et al., 
2011). That is,

While rnum
i
 is the average of individual‐link PPMRs, rbio

i
 is the ratio 

between predator mass and the average prey mass. To arrive at an 
estimate of mean PPMR that reflects the energetic contribution of 
differently sized prey for a group of individual predators, the con‐
stituent rbio

i
 values need to be weighted in a manner that accounts 

for differences in the relative total biomass of prey in the individual 
predators.

To compare rbio
i
 and rnum

i
, consider a 1,000‐g predator with stom‐

ach contents comprising two fish of 25 g and two krill of 0.1 g. The 
corresponding rbio

i
 and rnum

i
 values will be 79 and 5,020, respectively, 

with rbio
i
 heavily weighted downward by the larger prey. This gen‐

eral pattern also holds for the weighted means of rbio
i
 and rnum

i
 for 

predators within a given group. The measures convey different but 
complementary information, but rbio

i
 has received considerably less 

attention in diet‐based studies of PPMR.
Here, we use diet data for 34 species of fish predators from 

Alaskan marine ecosystems (Livingston et al., 2017) to estimate 
mean rnum and mean rbio. Specifically, we used hierarchical models 
to examine how mean rnum and mean rbio changes with predator 
body mass. Dynamic size spectrum models suggest that mean rnum 

should exhibit an overall positive increase with predator body 
mass and a secondary, nonlinear scaling due to oscillations in the 
relative abundances of small and large‐bodied prey (Hartvig et 
al., 2011). The models predict oscillatory behavior in the scaling 
of biomass with body mass, whereby traveling waves propagate 
down the size spectrum, reflecting the growth of individuals into 
successively larger size classes (Law, Plank, & James, 2009). The 
relative encounter rates of small and large‐bodied prey within the 
feeding kernel of predators changes with predator size, resulting 
in nonlinear patterns in community‐wide mean Rnum with body 
mass (Hartvig et al., 2011). In cross‐system studies using empirical 
diet data, individual‐link PPMR appears to increase linearly with 
predator body sizes on log–log scales (Barnes et al., 2010; Brose, 
Jonsson, et al., 2006; Nakazawa et al., 2011) and nonlinearity, 
while tested for infrequently, has been observed in one intensively 
sampled food web (Reum & Hunsicker, 2012). In addition, we eval‐
uated how predator taxonomic resolution and spatial resolution 
account for variance in mean rnum and mean rbio. Previous anal‐
yses have shown considerable variation in individual‐link PPMR 
across taxonomic groupings (Naisbit, Kehrli, Rohr, & Bersier, 2011; 
Nakazawa et al., 2011), but variation with spatial scale has received 
little attention. We use the fitted hierarchical model to produce 
a preliminary estimate of community‐wide mean rbio to compare 
with realized community‐wide mean rnum and describe implications 
for food web analysis and size‐based food web modeling.

2  | MATERIAL S AND METHODS

2.1 | Diet data

Diet data used in this study described the stomach contents of fish 
collected during the NOAA Alaska Fisheries Science Center (AFSC) 
groundfish trawl surveys. The surveys have been conducted annu‐
ally in the Eastern Bering Sea (EBS) since 1979 and biennially or tri‐
ennially around the Aleutian Islands (AI) and in the Gulf of Alaska 
(GoA) since 1993 and 1984, respectively (Livingston et al., 2017). At 
each station, fish brought on board were sorted according to spe‐
cies and sex, weighed, enumerated, and individuals were measured 
for length to the nearest cm to enable estimation of population size 
structure within survey strata in each region. The number of indi‐
viduals sampled for length for a species was dependent on the size 
range of that species in the haul, up to a maximum of 300 individuals 
(for details see Stauffer, 2004).

Species selected for stomach contents analysis varied interan‐
nually. “Core” commercial species, including walleye pollock, Pacific 
cod, arrowtooth flounder, Pacific halibut in all three ecosystems, 
and Pacific Ocean perch and Atka mackerel in the GoA and AI, are 
sampled in every survey. Three to five non‐core species are sampled 
in each survey on a rotating basis, with the aim of rotating through 
all commercial or ecologically important species over a 5‐year pe‐
riod (Livingston et al., 2017). Individuals chosen for stomach con‐
tent analysis were selected to span a wide body length range given 
the available fish (Livingston et al., 2017). After they have been 
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individually weighed and measured their stomach contents are pre‐
served in 10% buffered formalin for subsequent processing in the 
laboratory. All sampling is performed from May to September, with 
most individuals (92%) sampled in June, July, and August.

In the laboratory, the stomach contents of each individual pred‐
ator were sorted to the lowest possible taxonomic level and by life 
history stage, and in most cases were individually weighed and 
measured. Prey digestion level, based on a visual assessment of the 
percentage of intact prey body mass, was also recorded (Livingston 
et al., 2017). Large numbers of smaller prey (e.g., copepods, amphi‐
pods, euphausiids) were not always weighed and measured individu‐
ally, and aggregate weights and counts were recorded. The diet data 
described are available through an online database maintained by 
NOAA Alaska Fisheries Science Center (https://access.afsc.noaa.
gov/REEM/WebDietData/DietDataIntro.php). Additional details on 
the survey methods and diet collection protocols are available else‐
where (Livingston et al., 2017).

Records of prey that were largely digested (<75% intact) were 
excluded. However, when length data were available for digested in‐
dividual fish and crab prey, the corresponding undigested mass was 
estimated using species‐ and life history‐specific length–weight rela‐
tionships estimated from weight and length measurements of largely 
undigested prey (>75% intact; JCP Reum, unpublished data). If no indi‐
vidual prey body measurements were recorded, they were estimated 
in one of two ways. First, if total mass and count information were 
available (64% of records), we calculated mean body mass by dividing 
the total recorded weight by number of individuals. This approach was 
predominately applied to data for small‐bodied invertebrates (e.g., co‐
pepods, amphipods, euphausiids). Second, if total weight for each prey 
species and/or life history stage were recorded but count and length 
information were not (19% of records), we made the simplifying as‐
sumption that individual body mass was the same as mean mass calcu‐
lated from records with both total mass and count. This assumption is 
similar to those made in other studies of prey size (e.g., Tsai et al., 2016) 
and was required because there has been little focus in many large‐
scale diet studies on acquiring individual body size measurements 
for small‐bodied prey. Although authors have reasonably cautioned 
against using mean body sizes of either predators or prey to calculate 
PPMR (Nakazawa, 2015, 2017; Nakazawa et al., 2011), we believe the 
benefits outweigh the risks in our analysis because body mass vari‐
ation in the prey categories for which we had to estimate individual 
body mass was low (much less than an order of magnitude). Discarding 
these records would lead to a systematic underestimation of the im‐
portance of small‐bodied prey in predator diets (e.g., Jacob et al., 2011).

For predators, individual body mass was not always recorded 
(46%). In these cases, body mass was estimated using species‐spe‐
cific length–weight relationships fitted to individual length–weight 
data from the survey (JCP Reum, unpublished data). Once the pre‐
ceding approaches had been applied to the raw diet data, the data 
used for this analysis comprised records of individual predator mass, 
classified by species and the body mass or estimated body mass of 
the prey recorded in their stomachs, classified by life stage and to 
the lowest possible taxonomic resolution.

We calculated weighted means of rnum and rbio for all predator 
species within a defined body mass class (log10 body mass intervals 
of 0.1) and subregion within the EBS, AI, or GoA. Records were ag‐
gregated at this level because stomach content data are noisy given 
the partly stochastic nature of prey encounters over short periods of 
time and because our main goal was to resolve spatial and size‐based 
shifts in PPMR at the population level. Subregions within the EBS, AI, 
and GoA were based on ecosystem subregions and fisheries man‐
agement zones and were used to assess potential spatial variation 
in PPMR.

Weighted mean rnum for all i = 1, …x predators in any defined 
group (Rnum) was calculated as follows:

where N is the sum of all prey observed in the group. These esti‐
mates of Rnum thus account for small variations in individual predator 
body masses within a body mass class and are weighted by the rela‐
tive number of prey recorded in each individual predator. Weighted 
mean rbio for all predators in any defined group (Rbio) was calculated 
as follows:

where

That is, pi is the specific total prey mass (g prey g predator
−1) ob‐

served in predator i relative to the sum of specific total prey masses 
observed for all predators in the same group. The weighting based 
on specific total prey mass standardizes for energetic importance 
given small variations in individual predator body sizes within the 
predator body mass classes and extends the same prey biomass 
weighting approach used for rbio

i
 (Equation 2) up to a group‐level 

mean estimate. The mean predator body mass for individuals in each 
predator body size class was also calculated as a weighted average 
(following the same weighting method used for Rnum or Rbio) for use 
as a predictor variable in the statistical analysis. Rnum or Rbio were cal‐
culated only for species, size class, and subregions with diet records 
from a minimum of ten individual predators.

2.2 | Statistical analysis

Rnum and Rbio were modeled using a linear mixed effects model with 
a nested random effects grouping structure where subregion was 
nested in region, region within species, species within families, and 
families within orders. Because the phylogeny is known for only a 
subset of predators in the diet data set, taxonomy was used as a proxy 
for phylogeny (e.g., Naisbit et al., 2011). A nested grouping structure 
was used to account for taxonomic nonindependence in the data 
set (e.g., Blackburn & Duncan, 2001; Sunday, Bates, & Dulvy, 2011) 

(4)Rnum=
∑x

i=1
rnum
i

×
ni

N

(5)Rbio=
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i=1
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and because we sought to explicitly estimate the proportion of vari‐
ance in Rnum and Rbio associated with each taxonomic level (Reum & 
Marshall, 2013). The family and order of each predator was obtained 
from the Integrated Taxonomic Information System (www.itis.gov; 
accessed March 2017). The fixed effects terms included a linear and 
quadratic predator body mass predictors. At each model level, vari‐
ance components corresponding to the intercepts and slopes for the 
linear and quadratic predictor variables were estimated. The model 
included a quadratic body mass term to account for potential non‐
linear relationship between Rnum or Rbio and predator body mass as 
suggested by other empirical studies (Reum & Hunsicker, 2012) and 
theoretical models (Hartvig et al., 2011). Preliminary analyses indi‐
cated that centering and scaling the linear and quadratic log10‐trans‐
formed predator body mass predictor variables obviated the need to 
estimate the full variance–covariance matrix for the random effects 
(Zuur, 2009). Consequently, at each level of nesting, the random in‐
tercept and slope coefficients for the linear and quadratic predictor 
variables were assumed uncorrelated and normally distributed.

Prior to model fitting, the response variables (Rnum and Rbio) 
were log10‐transformed to better conform to assumptions of nor‐
mality. The models were fitted under a Bayesian framework using 
the statistical library “brms” (Bürkner, 2017) for the “R” software 
program v. 3.3 (R Development Core Team, 2015). The library 
utilizes the software package “Stan” which employs Hamiltonian 
Monte Carlo and its extension, No‐U‐Turn Sampler. The algo‐
rithms produce samples that are much less autocorrelated and 
are generally more efficient at reaching convergence than more 
commonly used algorithms (Bürkner, 2017). For the fixed effects 
parameters, normal prior distributions were used with a mean and 
variance of 0 and 3, respectively. A half‐Cauchy prior was placed 
on the standard deviation of each random effect, with location 
and scale parameters set to 0 and 10, respectively (Gelman, 
2006). A half Student t prior was used for the residual variance, 
with shape and scale parameters equal to 0.001 (Gelman, 2006). 
Three MCMC chains were run in parallel for 1,550 simulation it‐
erations with a burn‐in of 50 iterations. A thinning interval of 3 
was selected to reduce autocorrelation in the posterior draws, 
resulting in 1,500 posterior distribution samples of the model pa‐
rameter estimates from which median parameter estimates were 
calculated, and 95% highest posterior density (HPD) credible in‐
tervals were constructed. To ensure convergence, traceplots of 
the chains and diagnostic values 

�

√

̂R

�

 were visually inspected, 
where values close to 1 (<1.2) suggest convergence (Gelman et al., 
2014). With the fitted models, we examined the relative impor‐
tance of each level of nesting in terms of prediction improvement. 
This was performed by evaluating the Bayesian R2 or “explained 
variance” (Gelman & Pardoe, 2006) of the model using only the 
fixed effects coefficients for prediction and then with addi‐
tional random effects coefficients associated with successively 
lower levels of nesting. The Rnum and Rbio values submitted to the 
analysis, along with R code describing the statistical model, are 
electronically archived (Reum 2018, https://doi.org/10.6084/m9.
figshare.7210046.v2).

2.3 | Community‐wide mean PPMR

Community‐wide mean PPMRs for the EBS, AI, and GoA (i.e., mean 
PPMR for the sampled communities) were calculated from preda‐
tor species, size class, and subregion Rbio as follows. First, the fitted 
hierarchical model was used to predict Rbio (̂Rbio) across size classes 
and subregions for each predator species. For clarity, we use the 
subscripts a, b, c, and d to index size class‐, species‐, region‐, and 
subregion‐specific estimates. Second, for each size class and preda‐
tor species, region‐level estimates (Rbio

a,b,c
) were obtained through 

weighted averaging of subregion‐level predicted values. For d = 1, … 
y subregions, Rbio

a,b,c
 was calculated following:

where qa,b,c,d represent the proportional contribution of predator 
species to total community biomass within a given size class, region, 
and subregion:

B is the time‐averaged biomass density (kg/km) for a given 
body mass class, predator species, region, and subregion based on 
bottom trawl survey data. Time‐averaged biomass densities were 
used in the calculation because diet data were also pooled across 
years.

Third, for b = 1, … z predator species, community‐wide Rbio esti‐
mates for each predator size class and region (Rbio

a,c
) were calculated 

as follows:

where qa,b,c is the proportional contribution of predator species to 
total community biomass within a given size class and region:

The community‐wide mean Rbio was resolved for each preda‐
tor body mass class to evaluate potential size‐dependent nonlin‐
earities. If insufficiency of diet data precluded subregion‐specific 
predictions (that is, ̂Rbio

a,b,c,d
 in Equation 7), then predictions gener‐

ated for the region were used instead ( ̂Rbio
a,b,c
). If region‐level pre‐

dictions were not feasible, then predictions were generated for 
the species ( ̂Rbio

a,b
). Overall, subregion to species‐level predicted 

Rbio values were estimated for 90% to 95% of the fish biomass in 
each region. For the remaining 5% to 10% of fish biomass, family‐
level Rbio was estimated. Uncertainty described by the posterior 
distributions from the hierarchical model was propagated to the 
community‐wide mean Rbio estimates. For comparative purposes, 
we repeated the preceding methods with the Rnum hierarchical 
model.

(7)Rbio
a,b,c

=
∑y

d=1

̂Rbio
a,b,c,d

×qa,b,c,d

(8)qa,b,c,d=
Ba,b,c,d

∑y

d=1
Ba,b,c,d

(9)Rbio
a,c

=
∑z

b=1
Rbio
a,b,c

×qa,b,c

(10)qa,b,c=
Ba,b,c

∑z

b=1
Ba,b,c
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3  | RESULTS

Diets from 170,689 individual predators were included in the analy‐
sis, from 34 fish species in 10 families and six orders (Supporting 
Information Table S1). Collectively, fish predator body masses 
spanned ~4 orders of magnitude (Figure 1). Rnum values were ap‐
proximately an order of magnitude higher than Rbio, but individual 
values were up to four orders of magnitude higher (Figure 2). Low 
Rbio and Rnum values were generally associated with predator diets 
containing a high proportion of fish (Figure 2).

For both Rbio and Rnum models, MCMC chains converged, were 
well‐mixed, and exhibited low autocorrelation (<0.05). Posterior pre‐
dictive checks and visual inspection of the residuals and fitted values 
indicated that the data were adequately described by the models.

Overall, Rbio tended to vary with predator body mass in a nonlin‐
ear, dome‐shaped manner, but the fixed effect slope coefficients for 
both the linear (median and 95% HPD credible interval: 0.02 and −0.37 
to 0.36) and quadratic (−0.16 and −0.46 to 0.20) predator body mass 
predictors did not differ from zero (Figure 3). Order‐ and family‐level 
relationships were relatively similar to the fixed effect relationships, 
but variation at the species level was substantially greater (Figure 3). 
Across species and size classes, Rbio ranged from approximately 101.5–
104.5 (32–31,000) and within a single intermediate predator body 
mass class (102.5 g) Rbio values spanned approximately two orders in 
magnitude (Figure 3). Species and size classes that fed heavily on fish 
generally showed the lowest mean Rbio values (Figure 3). Linear and 
quadratic slope coefficients differed from zero for three and seven 
species, respectively (Supporting Information Figures S1 and S2). The 
predicted range in species Rbio values increased relatively little with 
inclusion of region‐ and subregion‐level coefficients (Figure 3).

Mean predicted Rnum was higher than Rbio and tended to increase 
more linearly with predator body mass, but the fixed effect linear 
(median and 95% HPD credible interval: 0.18 and −0.26 to 0.57) and 
quadratic slopes (−0.12 and −0.47 to 0.57) also did not differ from 
zero (Figure 3). Variation in predicted Rnum was similar to that in Rbio 
at order‐ and family‐levels and species‐level variation was also nota‐
bly higher, ranging from ~102–104.8 (100–63,000; Figure 3). Linear 
and quadratic slope coefficients differed from zero for four and six 

F I G U R E  1  Overview of body masses of individual fish predators 
sampled from Alaskan marine ecosystems. Open gray circles: body 
mass of individual predators; black closed circles: mean body mass 
of all individual predators

F I G U R E  2  Comparison of Rbio and 
Rnum for predators within the same body 
mass class, species, and subregion. Color 
code corresponds to the proportion of 
fish in diets by (a) biomass and (b) number: 
yellow, <10%; light blue 10%–50%; 
dark blue >50%. Black diagonal line 
corresponds to the 1:1 line
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species, respectively (Supporting Information Figures S1 and S2). As 
for Rbio, inclusion of region‐ and subregion‐level coefficients only 
modestly increased the range of predicted values (Figure 3).

Evaluation of Bayesian R2 also highlighted the relative impor‐
tance of species‐level coefficients in accounting for variation in 
the data (Figure 4). For Rbio, the fixed effect “explained” only 10.4% 
of variance, with inclusion of order‐ and family‐level coefficients 
increasing this to just 15.2% and 24.6%, respectively. But, at the 
species level, R2 improved substantially to 69.5%. Further including 
region‐ and subregion‐level coefficients only added another 0.3% 
and 5.7% to R2, respectively. Similar changes in R2 with level of anal‐
ysis were apparent for the Rnum model (Figure 4).

Relationships between community‐wide mean Rbio and predator 
body mass were slightly domed shaped in all three regions, with peak 
values occurring at a predator body mass near 103 g (Figure 5a–c). 
The decrease in community‐wide mean Rbio at larger predator sizes 
coincided with higher proportions of fish (>0.20) in predator diets 
(Figure 5d–f). Uncertainty in the community‐wide Rbio increased to‐
ward the upper and lower extremes of the predator body size ranges 
(Figure 5a–c), partly because of higher prediction uncertainty result‐
ing from lower data coverage at the predator body mass extremes. 
Typically, median community‐wide mean Rnum was 0.5–1 order of 
magnitude higher than community‐wide mean Rbio across regions, 
but showed a similar curvilinear pattern (Figure 5a–c).

4  | DISCUSSION

The metrics Rbio and Rnum provide complementary insights into preda‐
tor–prey interactions and the PPMR. Results show that Rbio < Rnum, 

consistent with the numeric dominance of small prey in predator diets, 
and implying that the metrics are not substitutable. When developing 
models based on bulk energy flux or comparing diet and stable iso‐
tope‐based measures of realized PPMR, Rbio will be a more appropriate 
measure of PPMR. When calibrating preference PPMRs in dynamic 
models, then Rnum will be a more appropriate measure of PPMR. For 
the Alaskan food webs, community‐wide mean Rnum exceeded Rbio 
by 0.5–1 orders of magnitude. Consequently, equilibrium predictions 
of food chain length and the unexploited size spectrum slope (e.g., 
Jennings & Blanchard, 2004; Jennings & Mackinson, 2003) will be 
under and over‐estimated, respectively, if community‐wide mean Rnum 

F I G U R E  3  Top panel: Predicted relationships between log10 predator body mass and mean R
bio for Alaskan marine fish predators 

according to order, family, species, region, and subregion. Color code corresponds to the average proportion of fish in predator diets by 
weight: yellow, <10%; light blue, 10%–50%; dark blue >50%. Bottom panel: Predicted relationships between log10 predator body mass and 
mean Rnum. Color code corresponds to the average numerical proportion of fish in predator diets. Black line corresponds to mean body mass 
relationship (fixed effect). A horizontal dashed gray line is overlaid at Rbio and Rnum = 103 to aid comparisons

F I G U R E  4  Bayesian explained variance (R2) of the model, 
sequentially adding in higher levels of nested random effects. Error 
bars indicate the 95% highest posterior density credible intervals
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is used in place of Rbio. For instance, selecting a PPMR of 104 instead of 
103 increases the predicted unexploited biomass of large (104–104.1 g) 
relative to small (10–101.1 g) predators by ~12% and decreases the 
predicted relative trophic level of 10 kg predators by 0.25 (Jennings 
& Blanchard, 2004; Reum et al., 2015). The consistent difference in 
Rbio and Rnum at multiple levels of aggregation underscore the need to 
select the form that best matches how PPMR is conceptualized within 
a particular size‐based modeling framework.

Both Rbio and Rnum were related to predator body mass and vari‐
ation emerged primarily at the species level. This suggests that indi‐
viduals of the same size are likely not always interchangeable across 
species and that changes in species composition will modify commu‐
nity‐wide mean PPMR. From an exploratory perspective, this further 
suggests that predator traits expressed primarily at the species level 
(e.g., habitat preferences, morphology, foraging behavior), rather 
than Family or Order, are likely to have the largest influence on prey 
selection patterns and thus PPMR. In contrast, region and subregion 
explained substantially less variation in PPMR, which indicates spa‐
tially structured variables that relate prey availability or vulnerability 
(e.g., temperature, benthic substrate type) may have only a relatively 
minor influence on PPMR, at least over the spatial scales considered 

in the analysis. Low relative variation in PPMR over space suggests 
species may be usefully aggregated into functional groups partly 
based on PPMR (e.g., Hahm & Langton, 1984, Hansen, Bjornsen, & 
Hansen, 1994) for the purpose of developing dynamic trait‐based or 
functional size spectrum models of these systems (Andersen et al., 
2016; Blanchard et al., 2017).

A strength of this study is that PPMR was defined for region‐
ally discrete communities which would also be defined as commu‐
nities for developing size spectrum models. A general prediction 
of dynamic size spectrum models is that community‐wide mean 
Rnum (or Rbio) will vary with predator body mass in a nonlinear man‐
ner over body mass ranges of approximately three to four orders 
of magnitude but exhibit an overall increasing trend over larger 
ranges (Hartvig et al., 2011). Interestingly, a roughly dome‐shaped 
relationship emerged in all three regions for predators spanning 
approximately four orders of magnitude, similar to observations in 
one other system (Reum & Hunsicker, 2012), which lends support to 
these predictions. However, it is unclear to what extent the trends 
observed here can be extrapolated or are influenced by the predator 
sizes and species included in the analysis. In stable isotope studies, 
nonlinear relationships between community‐wide mean Rbio and 

F I G U R E  5   (a–c) Community Rbio and 
Rnum for Aleutian Islands, Eastern Bering 
Sea, and Gulf of Alaska. Solid gray lines 
indicate median Rbio; gray band indicates 
the 5th and 95th uncertainty intervals. 
Black solid line corresponds to median 
Rnum; dashed lines indicate the 5th and 
95 uncertainty intervals. Uncertainty 
is based on prediction errors from 
the fitted species and region‐specific 
Rbio or Rnum body mass relationships. 
(d–f) Proportional contribution of fish to 
predator diets at the community level by 
biomass (gray line) and numbers (black). 
Diet proportions are weighted according 
to predator biomass
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body size are implied by nonlinear body size–trophic level relation‐
ships, and this has been observed in at least one plankton food web 
(Chang et al., 2014). Despite the conceptual consistency with diet‐
based estimates of community‐wide mean Rbio, nonlinear relation‐
ships from fish‐dominated communities have not been apparent in 
stable isotope data (e.g., Reum et al., 2015), although the statistical 
power to resolve subtle nonlinearity may be low given other sources 
of uncertainty (Reum et al., 2015). In general, trends in PPMR with 
body mass and their spatial and temporal ubiquity in food webs are 
not well understood and are perhaps best addressed by a study that 
applies a number of the available techniques to the same community 
over the same time‐period.

For dynamic size spectrum models, direct estimation of the pre‐
ferred PPMR of predators requires information on diet composition 
as well as the size composition and abundance of encountered prey 
(Hartvig et al., 2011; Tsai et al., 2016). Given the complexities of esti‐
mating the latter quantities in the field, preferred PPMR is measured 
more precisely in experiments (e.g., Ursin, 1973), but these closed 
environments are likely to introduce artifacts (e.g., poor represen‐
tation of predator and prey refuges, effects of changing light quality 
and turbidity, etc.). Moreover, such experiments would need to be 
conducted with many species and body size classes to provide pref‐
erence functions which could realistically be applied to communities. 
A more feasible approach might entail estimating preferred PPMR 
parameters within size spectrum models. To calibrate multispecies 
size spectrum models to real food webs, parameters controlling the 
scaling of species abundances are estimated using biomass data 
(Blanchard et al., 2014), and the approach could be easily extended 
to estimate preferred PPMR by fitting to Rnum data as well. Such es‐
timates, however, may have potential biases based on how well Rnum 
values derived from stomach content data accurately represent the 
average prey composition of predators.

Similar to other analyses of PPMR based on stomach contents 
(e.g., Brose, Jonsson, et al., 2006, Barnes et al., 2010), our study has 
important caveats. Our analysis used prey collected from stomach 
samples that in some instances were partially digested, potentially 
upwardly biasing estimates of Rbio and Rnum. We attempted to min‐
imize the level of bias by estimating undigested prey masses with 
length data when possible and limiting analysis to prey that were 
largely intact (>75%). In addition, we assumed that the relative abun‐
dances of differently sized prey in predator stomachs are propor‐
tional to the rates at which they are consumed. If digestion rates are 
slower for large‐bodied prey compared to small‐bodied prey, they 
may be overrepresented in the diet data, artificially lowering both 
Rbio and Rnum. Prey digestion rates may also vary by prey type and 
body composition, but in the absence of information on species‐spe‐
cific prey digestion rates it is difficult to identify the magnitude of 
these error sources. While nitrogen stable isotope estimates of com‐
munity‐wide mean Rbio can avoid some of these issues by integrating 
assimilated prey over longer time periods, they are also sensitive to 
assumptions regarding the trophic fractionation of nitrogen stable 
isotopes (Jennings, 2005; Reum et al., 2015). Finally, our analysis was 
limited to fish predators which are gape‐limited and that spanned 

~4 orders of magnitude in body mass. The PPMR patterns observed 
for this groups may not be indicative of patterns in other taxonomic 
groups or body size classes.

Empirical estimates of community‐wide mean Rbio are needed to 
parameterize size‐based food web models when realized PPMR is an 
input (e.g., Borgmann, 1987; Jennings & Blanchard, 2004; Jennings & 
Mackinson, 2003), and Rnum is needed to calibrate or test model pre‐
dictions in cases where preferred PPMR is an input (e.g., Blanchard et 
al., 2014; Hartvig et al., 2011). Our analysis adds to a body of work that 
has sought to clarify how PPMR is defined within different size‐ and 
species‐based food web modeling paradigms (e.g., Gilljam et al. 2011; 
Nakazawa, 2015;Nakazawa, 2017; Nakazawa et al., 2011; Tsai et al., 
2016) and highlights the need to collect and aggregate empirical diet 
data at appropriate scales with regard to size spectrum theory. The 
quality and size of our data set (>106 individual predators) is among 
the largest available for any region, and a future research priority is 
to develop predictive models of Rbio and Rnum based on predator traits 
such as feeding mode, morphology, or habitat preference (e.g., Gravel, 
Poisot, Albouy, Velez, & Mouillot, 2013). Given the intensive sampling 
required to assemble diet data sets, such models would be particu‐
larly valuable for parameterizing multispecies size spectrum models 
in data‐poor systems. That said, the implications of species‐level vari‐
ation in PPMR for community structure, productivity, and system re‐
sponses to pressures such as fishing are only beginning to be explored 
(e.g., Law et al., 2016) and also warrant further study.
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