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Abstract

In marine management, fish stocks are often managed on a stock-

by-stock basis using single-species models. Many of these models are

based upon statistical techniques and are good at assessing the cur-

rent state and making short-term predictions; however, as they do

not model interactions between stocks, they lack predictive power on

longer timescales. Additionally, there are mechanistic multi-species

models that represent key biological processes and consider interac-

tions between stocks such as predation and competition for resources.

Due to the complexity of these models, they are difficult to fit to data,

and so many mechanistic multi-species models depend upon single-

species models where they exist, or ad hoc assumptions when they

don’t, for parameters such as annual fishing mortality.

In this paper we demonstrate that by taking a state-space ap-

proach, many of the uncertain parameters can be treated dynami-

cally, allowing us to fit, with quantifiable uncertainty, mechanistic

multi-species models directly to data. We demonstrate this by fit-

ting uncertain parameters, including annual fishing mortality, of a

size-based multi-species model of the Celtic Sea, for species with and

without single-species stock-assessments. Consequently, errors in the

single-species models no longer propagate through the multi-species

model and underlying assumptions are more transparent.

Building mechanistic multi-species models that are internally con-

sistent, with quantifiable uncertainty, will improve their credibility

and utility for management. This may lead to their uptake by being

either used to corroborate single-species models; directly in the advice

process to make predictions into the future; or used to provide a new

way of managing data-limited stocks.

Keywords: Bayesian Statistics; MCMC; Mechanistic models; Multi-

species modelling; Uncertainty quantification; State-space approach;

1 Introduction

Food security has been highlighted as one of the major global chal-

lenges, with fisheries and aquaculture identified as key contributors to

addressing this challenge (FAO, 2009; Frid & Paramor, 2012). Cur-

rently the majority of fish stocks are managed using single-species

models (SSMs), such as the state-space assessment model (SAM)
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(Nielsen & Berg, 2014) and projections are made to assess the util-

ity of management decisions. Interacting stocks, which may compete

with or predate on one another, can make conventional single-species

management difficult (Tyrrell et al., 2011; Quárou & Tomini, 2013;

Farcas & Rossberg, 2016). Alternatively a multi-species or whole ecosys-

tem approach could be adopted to account for these interactions (Pikitch et al.,

2004; Link et al., 2011; Plagányi et al., 2014). There are several multi-

species models (MSMs) ranging from statistical models (e.g. Stochas-

tic MSM (SMS) Lewy & Vinther, 2004), to more mechanistic-based

models (e.g. mizer; Scott et al., 2014) or whole ecosystem models (e.g.

StrathE2E; Heath, 2012).

SSMs and statistical MSMs are often used to describe the current

and recent status of the system, and to make short-term forecasts.

They aim to learn about the system by fitting many ‘tuning parame-

ters’, parameters that are adjusted to make the model look like the ob-

served system (Plagányi et al., 2014; Brynjarsdóttir & O’Hagan, 2014).

On the other hand, mechanistic models, sometimes called process-

based models, are based on the theoretical understanding of the rel-

evant ecological processes (Cuddington et al., 2013). They gener-

ally model the behaviour of the system through differential equations

and/or a series of rules or algorithms. They prioritise realism over

reality, often explaining why things happen rather than describing

what happened (White & Marshall, 2019). Many of the parameters

are treated as ‘input variables’, with values taken from other sources

(Brynjarsdóttir & O’Hagan, 2014), leaving fewer ‘tuning parameters’

that represent processes that are either too complex or not known,

e.g. recruitment. For example, in mechanistic size-based MSMs, the

predator-prey mass ratio is an ‘input variable’, coming from other

studies (e.g. Hatton et al., 2015), whereas in statistical MSMs it is

treated as a ‘tuning parameter’ and learned from data (e.g. ICES,

2017a) (see Supplementary material S5 for an illustrative example

of ‘tuning parameters’ and ‘input variables’). As mechanisms and

physical laws are time invariant and more robust than statistical cor-

relations, mechanistic models are better at predicting outside the

immediate domain in which they were fitted, such as in the future

(Connor et al., 2017; Cuddington et al., 2013).

Often mechanistic MSMs are fitted to, or rely on inputs from,

SSMs (e.g. Blanchard et al., 2014; Mackinson et al., 2018). A common

example is instantaneous fishing mortality values that are taken from
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SSMs, to drive fishing dynamics in MSMs (e.g. Spence et al., 2016;

Speirs et al., 2016). In some ecoregions, fishing mortality values from

SSMs either do not exist for all species or only qualitative patterns are

reported. In studies with MSMs, fishing dynamics for species without

fishing mortality values from SSMs are added using ad hoc methods

(Thorpe et al., 2015). Further, as models are simplifications of reality

and often the fishing mortality is treated as a ‘tuning parameter’,

the fishing mortality values lose their interpretation outside of the

fitted model (Rougier & Beven, 2013). Thus they are not the same as

the true instantaneous fishing mortality values but instead are model

specific. For example statistical MSMs, that are often used to generate

natural mortality values for SSMs, have different fishing mortality

than the SSMs (e.g. North Sea Cod in SMS and SAM; ICES, 2017a,

2018b), despite being fitted to the same data and having a similar

representation of the population structure. Fitting MSMs to SSMs

or taking inputs from them can lead to circularity in results as errors

propagate through the models (Brooks & Deroba, 2015).

In MSMs, fitting fishing can be a challenging task. Recent software

advances (e.g. ADMB (Fournier et al., 2012)) have meant that statisti-

cal MSMs, designed with tractability in mind, are relatively easy to fit.

For mechanistic-based MSMs, fitting using traditional methods can be

a difficult task. Evaluating the output of a model for a particular set

of inputs can often be done only by running the model, which can take

anything from a few seconds to a few hours. This means that fitting a

large number of uncertain parameters, such as fitting fishing mortality

for each year, can be a difficult task. Furthermore, for these models

to be any use to support management, outputs need to be reported

with robust estimates of uncertainty (Harwood & Stokes, 2003).

Parameter uncertainty has previously been explored in MSMs to

explore a handful of parameters (Thorpe et al., 2015; Mackinson et al.,

2018). Spence et al. (2016) fitted a size-based model of the North Sea

using a Bayesian framework, which we adopt here (Bayes, 1763), using

Markov chain Monte Carlo (MCMC) to sample from the posterior dis-

tribution (Metropolis et al., 1953; Hastings, 1970). Adding dynamical

parameters, such as annual fishing mortality, makes the uncertain pa-

rameter space very large, making it difficult to explore. However, we

may be able to consider the model as a state-space model, a common

approach in SSMs (see Aeberhard et al., 2018, for a recent review). In

state-space models, the ‘state’ of the system is updated using a Markov
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process, known as the process model, and there are some noisy, possi-

bly incomplete, observations of the ‘state’, defined by an observation

model. State-space models have a specific dependence structure (see

Figure 1), with the observations of the past and present being condi-

tionally independent given the unobserved state, a structure that can

be advantageous when fitting the model (Zucchini et al., 2016).

There are many methods of fitting non-linear state-space models

including Extended Kalman Filers (Evensen, 2003; Wan & Van Der Merwe,

2000), MCMC methods (Jonsen et al., 2005) and using the Laplace

approximation (Tierney & Kadane, 1986) to integrate out the unob-

served states (Skaug & Fournier, 2006). Spence et al. (2018) used par-

ticle filters (Gordon et al., 1993; Liu & Chen, 1998) to update a few

years of fishing rates in two MSMs, but for longer periods of time this

method is not practical. This is due to the likelihood being largely

dominated by the process model and not the observation model which

leads to poor mixing of the MCMC (Fasiolo et al., 2016). In this pa-

per we develop an MCMC algorithm that sequentially updates each

dynamical parameter and improves the mixing of the MCMC.

In many cases the only way of evaluating the likelihood of param-

eter values is to run the model. Running mechanistic models can be

slow so ideally one would want to parallelise the model when fitting

to data; however this is difficult for MCMC, as iterations need to be

done sequentially (Jacob et al., 2011). Some MCMC algorithms have

been developed that take advantage of parallel computing (Cui et al.,

2011; Calderhead, 2014), whereas others reduce the number of times

that the model needs to be run. The delayed-acceptance MCMC al-

gorithm (Sherlock et al., 2017) uses a fast approximation of the like-

lihood, possibly using a statistical model, before deciding whether or

not to run the mechanistic model. Due to the high dimensionality

of this problem, fitting accurate fast approximations of the likelihood

can be difficult, but for many of these problems there are some pa-

rameters that affect only part of the likelihood. Here we introduce a

second new MCMC algorithm that runs several proposals in parallel

using the mechanistic model and then combines them to give a single

proposal that has an increased chance of being accepted.

In this paper we fit fishing mortality and other uncertain parame-

ters of a multi-species size-based model for the Celtic Sea, without

the use of SSMs. We compare stock-assessments made using the

MSM with those developed using SSMs. Although demonstrated on
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a multi-species marine model, this problem is not unique to MSMs

and methods demonstrated here can be used for fitting mechanistic-

based models of intermediate complexity, e.g. individual-based mod-

els (Railsback & Grimm, 2011), especially when there are dynamic

parameters. In Section 2 we define state-space models, describe the

multi-species size-based model, the data and the fitting procedure as

well as the two new MCMC algorithms. In Section 3 we describe the

results of the fitted model and we conclude with a discussion in Sec-

tion 4. We also demonstrate the fitting procedure with a simulation

study using another mechanistic MSM (Spence et al., 2020b) in the

Simulation study.

2 Methods

In this section we describe how we can treat the MSM as a state-

space model. We introduce the MSM used in this study, the uncertain

parameters, which include fishing mortality for each species for each

year, and the data to which the model was fitted. We then describe

the steps used to sample from the posterior distribution using Markov

Chain Monte Carlo (MCMC).

2.1 State-space model

Let Mt be the state of the MSM at time t. Then

Mt|Mt−1 ∼ h(Mt−1,φt,θ),

where φt are dynamical parameters at time t and θ are static parame-

ters. h(·) is known as the process model. We do not observe the state

directly but at time t we observe yt, where

yt|Mt ∼ g(Mt,σ
2),

and σ2 are static parameters. g(·) is known as the observation model.

Figure 1 represents this model as a directed acyclic graph (DAG).

Process model

The process model h(·) used here is the deterministic multi-species

size-based model, mizer (Hartvig et al., 2011; Scott et al., 2014), and

the state of the model, Mt, is a collection of the density of all species,
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Figure 1: A directed acyclic graph of the state-space model.

Ni(m), and the background resource, NR(m) at all weights, m at time

t (see Supplementary material S1 for details). Mizer was developed to

represent the size and abundance of all organisms from zooplankton

to large fish predators in a size-structured food web. Some species

are represented by species-specific traits and body size while others

are represented solely by body size. The core of the model involves

ontogenetic feeding and growth, mortality, and reproduction driven

by size-dependent predation and maturation processes. The smallest

individuals in the model do not eat fish belonging to the fish popula-

tions, but consume smaller planktonic or benthic organisms which we

describe as a background resource spectrum. Fish grow and die ac-

cording to size-dependent predation and, if mature, recruit new young

which are put back into the system at the minimum weight. As well

as the predation and background mortality, the fish in the model also

experience fishing mortality.

In this study we fit mizer for 17 species, shown in Table 1, in

the Celtic Sea, ICES (International Council for Exploration of the

Seas) areas 7e-j. A description of the model can be found in the

Supplementary material (S1) along with the parameter values.

In mizer there are a number of uncertain parameters to estimate.

The carrying capacity of the background resource spectrum, κ, is un-

certain, with a relatively uninformative prior distribution given by

ln(κ) ∈ [0, 40] uniformly (see Table 2). Recruitment follows a density-

dependent process with the maximum number of recruits of the ith

species being Rmax,i, which is also uncertain. We specified a relatively
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uninformative prior distribution as ln(Rmax,i) ∈ [0, 50] uniformly (see

Table 2), for all i. The fishing mortality of the ith species of weight

m at time t was

φt,iqi(m),

where qi(m) is the catchability of species i at size m, normalised so

that maxm(qi(m)) = 1, and φt,i is the fishing rate (values for qi(m)

are shown in the Supplementary material (Figure S1)). The model

was run from 1991-2014 (t = 1, . . . , 24) and the fishing rate for each

species for each year was also uncertain with φt,i ∈ [0, 1.5] uniformly

for t = 1, . . . , 24 and for all i.

The model can be sensitive to its initial state, when t = 0, and so

the model was projected for 300 years to a stationary state, a process

known as spin-up, with a fixed fishing rate φ0,i for each species prior

to running for t = 1, . . . , 24. As in Spence et al. (2016) we treated the

spin-up fishing rates as additional parameters with φ0,i ∈ [0, 1.5] uni-

formly for all i (see Table 2). We consider θ = (lnκ, lnRmax,1:17, φ0,1:17)
′

to be ‘static’ parameters and the fishing rates, φ1:24,1:17 to be ‘dynam-

ical’ parameters (with 1:17 meaning i = 1 . . . 17).

In addition to the commercial fishing mortality, we included survey

fishing mortality. The catchability of the survey vessel was taken

from Walker et al. (2017) and the fishing effort for the survey effort

taken from DATRAS (ICES, 2017b). By including the survey fishing

mortality we are able to fit the model to data from survey.
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Table 1: The species in the Celtic Sea mizer model
i Common name Latin name

1 Atlantic herring Clupea harengus

2 European sprat Sprattus sprattus

3 Atlantic cod Gadus morhua

4 Haddock Melanogrammus aeglefinus

5 Whiting Merlangius merlangus

6 Blue whiting Micromesistius poutassou

7 Norway pout Trisopterus esmarkii

8 Poor cod Trisopterus minutus

9 European hake Merluccius merluccius

10 Monkfish Lophius piscatorius

11 Atlantic horse mackerel Trachurus trachurus

12 Atlantic mackerel Scomber scombrus

13 Common dab Limanda limanda

14 European Plaice Pleuronectes platessa

15 Megrim Lepidorhombus whiffiagonis

16 Common sole Solea solea

17 Boarfish Capros aper

Observation model

At time t, we observe catches in tonnes, y, made up of those by

commercial vessels, wt for t = 1, . . . , 24 (1991-2014), and those by

the International Bottom Trawl Survey (IBTS), zt for t = 7, . . . , 24

(1997-2014), with |wt| = |zt| = 17. We take

lnwt ∼ N(ln c(Mt),Σc)

where c(Mt) is the commercial catch from the process model and Σc

is a diagonal matrix with elements σ2
c . Similarly we take

ln zt ∼ N(ln s(Mt),Σs)

where s(Mt) is the survey catch from the process model and Σs is

a diagonal matrix with elements σ2
s . The ith elements of c(Mt) and

s(Mt) are denoted c(Mt)i and s(Mt)i and defined in equations S3 and

S4 in the Supplementary material respectively. The likelihood of the
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Table 2: The uncertain parameters.
Parameters Dimensions Units Prior Notes

lnRmax,1:17 17 ln(vol−1grams−1year−1) U(0, 50) Natural log of the maximum recruitment

for each species

ln κ 1 ln(grams−λ−1vol−1) U(0, 40) Natural log of the carrying capacity

of the resource spectrum

φ0,1:17 17 year−1 U(0, 1.5) The fishing rates during the spin-up

period for each species

φ1:24,1:17 17× 24 = 408 year−1 U(0, 1.5) The fishing rate for each species

for each year

σ2
s,1:17 17 Unitless Inv −Gamma(2, 2) The variance of the error on

the natural log survey catches

σ2
c,1:17 17 Unitless Inv −Gamma(0.1, 0.1) The variance of the error on

the natural log commercial catches
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model is

l(y|θ, φ1:24,1:17,σ
2
c ,σ

2
s ) =

17∏

i=1

24∏

t=1

N(ln(wt,i)| ln(c(Mt)i), σ
2
c,i)

×

24∏

t=7

N(ln(zt,i)| ln(s(Mt)i), σ
2
s,i),(1)

where wt,i, zt,i, σ
2
c,i and σ2

s,i are the ith element of wt, zt, σ
2
c and

σ2
s respectively, and N(a|d, e) is a normal density with expectation

d and variance e evaluated at a. Table 2 summarises the uncertain

parameters.

2.2 Data

Landings data were extracted from ICES (ICES, 2017c) and discards

were estimated as a percentage of the retained biomass (Heymans et al.,

2016; Anon, 2015). All discards were assumed to have been removed

from the living stock in the process model, such that all discards are

assumed to have died. As only discards and no landings were recorded

for poor cod and Norway pout, we fixed the variance of the commer-

cial catches, σ2
c,7:8 = (4, 4)′ (Farnsworth et al., 2014). We extracted

the IBTS survey data from DATRAS (ICES, 2017b) from 1997 until

2014 (t=7,. . . ,24).

2.3 Fitting the model

The model was fitted in a Bayesian framework so that we could quan-

tify the uncertainty in the model parameters using probability. As

the likelihood was intractable we were required to sample from the

posterior distribution. Although a suitable Markov Chain with sta-

tionary distribution equal to the posterior would eventually converge

to the posterior distribution, this would take a long time. To speed

the process up we aimed to start the Markov chain close to the high-

probability region of the posterior distribution. To find these start-

ing values we used history matching to reduce the parameter space

(Vernon et al., 2014).

Markov Chain Monte Carlo

The posterior distribution was explored using MCMC. Due to the

high dimensionality of the parameter space, mixing efficiently was dif-
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ficult and so we developed two extensions of the delayed-acceptance

MCMC algorithm of Sherlock et al. (2017) that take advantage of par-

allel computing and explore the posterior distribution in an efficient

way.

The first extension, which we refer to as the marginal-delayed-

acceptance MCMC (MDA-MCMC), is shown in Algorithm 1. It is

Algorithm 1 An iteration of the marginal-delayed-acceptance MCMC al-

gorithm (MDA-MCMC). The current parameters θ, are divided into N + 1

disjoint sets with the ith set being denoted θi, having the likelihood evalua-

tion li(y|θ) and proposal distribution fi(·|θi). p(θ) is the prior and l(y|θ) is

the full likelihood. We define ∧ to be the minimum, i.e. a ∧ b = min(a, b).

θ′′ ← θ

for i in 1 : N do

θ′
i
∼ fi(·|θi)

θ′′
i
← θ′

i
with probability

αi(θ, θ
′
i) = 1 ∧

p(θ′
i)li(y|θ

′
i, θ−i)

p(θi)li(y|θ)

end for

θ ← θ′′ with probability

1 ∧
p(θ′′)l(y|θ′′)

p(θ)l(y|θ)

×
∏

{i:θ′′

i
6=θi}

fi(θi|θ
′
i)

fi(θ′
i|θi)

×
αi(θ

′′, θi)

αi(θ, θ′
i)

×
∏

{i:θ′′

i
=θi}

1− αi(θ
′′, θ′

i)

1− αi(θ, θ′
i)

understood that when moving in lower dimensions it is possible to

make larger moves (Neal & Roberts, 2006); here we propose several

moves in smaller dimensions and check their suitability before trying

to make the move itself. For each iteration the parameter set is divided

into N+1 disjoint sets with N of the sets each having some likelihood

function, li(·), associated with it. This algorithm attempts to update

the parameters in the first N sets whilst holding the parameters in

the N + 1 set, which may be empty, fixed. N of the parameter sets
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are each updated by one iteration of the Metropolis-Hastings MCMC

algorithm, keeping the other parameters fixed, with its own likelihood

function. If the current model run is saved, this would cost N new

model evaluations (N + 1 if not) that could be done in parallel and

so could, in terms of clock time, take one model evaluation. The

output from each of the N MCMC algorithms is used as a proposal

for the main MCMC algorithm. This then takes a further two new

model evaluations which could be performed in parallel. Using the

acceptance rates described in Algorithm 1 leads to a Markov Chain

with the correct stationary distribution, a proof of which is in the

Supplementary material (S3).

The second extension, which we call particle-delayed-acceptance

MCMC (PDA-MCMC), is shown in Algorithm 2. In PDA-MCMC

the fishing rates for each year are sequentially updated using the

Metropolis-Hastings algorithm. Once the algorithm has updated for

each year of the model, the new fishing rates are used as a proposal

for the MCMC update. This requires five model runs, which could

be as quick as two model runs in terms of clock time (as the four of

the model runs could be parallelised) and leads to a Markov Chain

with the correct stationary distribution, a proof of which is in the

Supplementary material (S3).

To sample from the whole posterior distribution we used a ran-

dom walk Metropolis-within-Gibbs algorithm with proposal variances

tuned from a pilot run. At each iteration we performed four types of

updates:

1. Update lnRmax,1:17 and φ0,1:17 together using the MDA-MCMC

algorithm with N = 17. The ith set was {lnRmax,i, φ0,i} with

li(y|θ) =

24∏

t=1

N(ln(wt,i)| ln(c(Mt)i), σ
2
c,i)×

24∏

t=7

N(ln(zt,i)| ln(s(Mt)i), σ
2
s,i)

and the full likelihood, l(y|θ) being l(y|θ, φ1:24,1:17,σ
2
c ,σ

2
s ) from

equation 1. The 18th set, which does not get updated at this

step, was {ln (κ), φ1:17,1:24,σ
2
c ,σ

2
s}.

2. Update φ1:24,1:17 using the PDA-MCMC algorithm. We used

eight proposals in parallel using parallel MCMC as in Cui et al.

(2011). We set

kt(Mt) =

17∏

i=1

N(ln(wt,i)|c(Mt)i, σ
2
c,i)
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Algorithm 2 An iteration of the particle-delayed-acceptance MCMC algo-

rithm (PDA-MCMC). Let Mt = h(Mt−1, φ1:17,t, θ) be the model run up until

time t, with M0 being its initial state and kt(Mt) be a likelihood evaluation

of this model. The static parameters are θ, the current fishing rates are

φ1:17,1:24 and f(·|φ1:17,t) is the proposal distribution. The full likelihood is

l(y|φ1:17,1:24) and p(φ1:17,1:24) is the prior. We define ∧ to be the minimum,

i.e. a ∧ b = min(a, b).

Q0 ← M0, φ
′′
1:17,1:24 ← φ1:17,1:24

for t in 1 : 24 do

φ′
1:17,t ∼ f(·|φ1:17,t)

M ′
t ← h(Mt−1, φ

′
1:17,t, θ) and Mt ← h(Mt−1, φ1:17,t, θ)

Q′
t ← h(Qt−1, φ

′
1:17,t, θ) and Qt ← h(Qt−1, φ1:17,t, θ)

φ′′
1:17,t ← φ′

1:17,t and Mt ←M ′
t with probability

αt(φ1:17,t, φ
′
1:17,t) = 1 ∧

p(φ′
1:17,t)kt(M

′
t)

p(φ1:17,t)kt(Mt)

end for

φ1:17,1:24 ← φ′′
1:17,1:24 with probability

1 ∧
p(φ′′

1:17,1:24)l(y|φ
′′
1:17,1:24)

p(φ1:17,1:24)l(y|φ1:17,1:24)

×
∏

{t:φ1:17,t 6=φ′′

1:17,t}

f(φ1:17,t|φ
′
1:17,t)

f(φ′
1:17,t|φ1:17,t)

×
1 ∧

p(φ1:17,t)kt(Qt)

p(φ′

1:17,t)kt(Q
′

t)

α(φ1:17,t, φ
′
1:17,t)

×
∏

{t:φ1:17,t=φ′′

1:17,t}

1− 1 ∧
p(φ′

1:17,t)kt(Q
′

t)

p(φ1:17,t)kt(Qt)

1− α(φ1:17,t, φ
′
1:17,t)
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for t = 1, . . . , 6 and

kt(Mt) =

17∏

i=1

N(ln(wt,i)|c(Mt)i, σ
2
c,i)N(ln(zt,i)|s(Mt)i, σ

2
s,i)

for t = 7, . . . , 24.

3. We updated lnκ and lnRmax,1:17 by proposing several alter-

natives and moving between them using Calderhead’s parallel

MCMC algorithm (Calderhead, 2014).

4. We updated σ2
c and σ2

s using Gibbs samplers.

For a description of Cui et al.’s and Calderhead’s parallel MCMC see

the Supplementary material (S2).

3 Results

The MCMC algorithm was run for 20,000 iterations, dropping the ini-

tial 10,000 as burn-in. The convergence of the MCMC was checked

visually by examining the traceplots of the parameters (see Supple-

mentary material (S4) for traceplots and results of the history match-

ing).

3.1 Posterior distributions

Figure 2 shows the variance parameters for the catches and the sur-

vey. The variance parameters describe the estimated distribution of

the error around the observed catches as well as the model’s inability

to predict them. The variance parameters for the catches were much

lower than for the survey, particularly for pelagic species, suggesting

that the model does a much better job of fitting to commercial catches

than the survey data. The model does a good job of capturing the

catches of most fish with the exceptions of horse mackerel and blue

whiting. This can also be seen in Figure 3 where we show the me-

dian, 10th percentile and 90th percentile of the modelled commercial

catches compared to the observed landings (see Supplementary mate-

rial (Figure S16) for a the same plot for the survey catches).
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Figure 2: Violin plots showing the marginal posterior distribution for the

variance parameters. The top plot shows the variance associated with the

catch and the bottom shows the variance associated with the survey. Blue

whiting’s variance term for the catch was large and therefore was omitted

from the plot. In the top plot, we fixed σc = 2 for Norway Pout and poor

cod so they have been omitted from the results.
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Figure 3: The median modelled commercial catches (solid black line), the

10th and 90th percentiles (dotted black lines) and the observed catches (grey

line) for 15 of the 17 species. Norway pout and poor cod have been omitted as

the model was not fitted to their landings. The downward spike in landings

in 1999 for cod, haddock, whiting and monkfish was caused by the French not

reporting landing of these stocks in that year in the dataset (ICES, 2017c).

Figure 4 shows the posterior φ1:17,1:24 values for each of the species

except Norway pout and poor cod. It also shows the fishing mortal-

ity values from the ICES stock-assements, which use SSM, for cod,

haddock, whiting, hake, megrim and herring. The cod, haddock and
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whiting assessments are for the Celtic Sea (ICES, 2018a,c,g), whereas

the hake, megrim and herring assessments are for a larger region than

our study (ICES, 2018d,e,f). With the exception of haddock, the

φ1:17,1:24 values from this study seem to follow, at least qualitatively,

that of the assessment fishing mortality.
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Figure 4: The median value of the fishing rates (solid black line), and the

10 and 90 percentiles, (dotted black lines) for 15 of the 17 species. Norway

pout and poor cod have been omitted as the model was not fitted to their

landings.

Figure 5 shows the marginal posterior distribution of the fishing

rate during the spin-up period, φi,0. Many of the posterior distri-

butions are similar to their prior distributions, e.g. herring, sprat,

however some of the posteriors are quite different from their priors.

The fishing rates for cod and horse mackerel are low, which means

that when the simulation starts in 1991, cod and horse mackerel will
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be in a nearly unfished state whereas hake and monkfish, which have

quite high fishing rates in the spin-up period, start the simulation in

an exploited state.
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Figure 5: The marginal posterior distributions of the fishing rate during the

spin-up period, φ0.

3.2 Spawning stock biomass

Figure 6 shows the median, 10th percentile and 90th percentile esti-

mates for cod, haddock, whiting, hake, herring and megrim spawn-

ing stock biomass (SSB). It also shows the SSB estimates from ICES

stock-assessments. The cod assessment and the mizer model agree

towards the end of the time period. The whiting single-species and

multi-species estimates are similar. Both hake assessments show an

increase in SSB at about 2005 which coincides with a reduction in the

fishing rate at around the same time, as shown in Figure 4; this is also

visible in the stock-assessment. In addition the qualitative patterns
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in herring and megrim seem similar in both the MSM and the SSM.

The MSM predicts different SSB for haddock than the SSM.
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Figure 6: The median modelled SSB (solid black line), the 10 and 90 per-

centiles (dotted black lines) and SSB estimates from single-species ICES as-

sessments for cod, haddock, whiting hake, megrim and herring (grey line).

The hake, megrim and herring assessments cover more area than the model

does and therefore is plotted on a different scale.

4 Discussion

In this study we fitted the multi-species size-based model of Blanchard et al.

(2014) with 17 species in the Celtic Sea, a mechanistic model of in-

termediate complexity, using novel techniques to address the high di-

mensionality of the problem. We also demonstrated these methods in

a simulation study with three species using the model of Spence et al.

(2020b), also a mechanistic MSM (see Simulation study).
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4.1 Mechanistic models

We found that the model was able to recreate demersal survey catches

and commercial catches. The model was not able to recreate the

survey data for pelagic fish. This is understandable as the IBTS survey

is not so good at sampling pelagic and flatfish and therefore the noise is

much greater (Walker et al., 2017). Our approach gives an idea about

the magnitude of the observation uncertainty in the IBTS survey. We

could further reduce uncertainty in the model by fitting to additional

surveys, for example acoustic surveys.

For most of the stocks with full assessments, we get similar SSB and

fishing rates, however for haddock both are qualitatively and quanti-

tatively different. In the SSM model the recruitment rates of haddock

are unpredictable (ICES, 2018c), something that is not captured by

the MSM model here, which suggests that the SSB in SSMs is recruit-

ment driven. Stochastic recruitment has been included in some MSMs

(e.g. Blanchard et al., 2014; Thorpe et al., 2017), but more work is re-

quired to explore this.

Although there is such a thing as a true fishing mortality, using it

as a ‘tuning parameter’, as done in this study and in many SSMs, de-

stroys its true meaning (Rougier & Beven, 2013). For example, in the

model we fitted in this study, only the fishing rates were used to drive

the dynamics. Therefore, the fishing rates implicitly have information

about all things that drive the dynamics of the species, e.g. environ-

ment, recruitment or migration. Although many SSMs account for

dynamic recruitment (e.g. Stock Synthesis Methot & Wetzel, 2013),

their fishing mortality also imply dynamics caused by interactions be-

tween different species, which is explicit in MSMs. Therefore taking

fishing mortality values from other models and using them as ‘input

variables’ (e.g. Thorpe et al., 2015; Spence et al., 2016; Speirs et al.,

2016), can lead to systematic biases in the model (Brooks & Deroba,

2015) and so should be done with caution, however there are circum-

stances when it might actually be desirable. For instance it may be

necessary to save on computational effort or one may want the fishing

rates to represent the fishing mortality generated by stock assessments

rather than the actual fishing mortality on the stock as it is possible

to calculate this and manage to it (e.g. Spence et al., 2020a).

A common requirement of fisheries models is to assess the current

state of a stock. SSMs and statistical MSMs, with many ‘tuning pa-

rameters’, are good at doing this when there is a lot of data. However,
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by fitting mechanistic MSMs directly to data, we free the model from

the assessment-induced biases and could therefore contribute to the

assessment processes. The natural mortality rates from mechanistic

models could be used as ‘input variables’ to SSMs in regions where

there is a lack of data (e.g. stomach contents data), making statistical

MSMs impractical. For example, results from this Celtic Sea model

could be used to generate natural mortality rates that could be used

as inputs to SSMs, as currently natural mortality inputs for many of

the Celtic Sea assessments come from a theoretical study (Lorenzen,

1996). For regions where statistical MSMs already exist, mechanistic

MSMs could be used to corroborate or validate them, increasing our

confidence in their results, to suggest an alternative or as part of an

ensemble model.

Mechanistic models have been increasingly used as strategic tools

when considering how populations, communities and ecosystems re-

spond to management or environmental changes (Pikitch et al., 2004;

Collie et al., 2016). They are developed with ecological and biologi-

cal theory, through ‘input variables’ and processes within the model.

Therefore, as this theory develops the mechanistic models become

more like reality. As mechanisms and physical laws are time invari-

ant and more robust than statistical correlations, mechanistic MSMs

should enable us to make better long-term predictions as interac-

tions between different species and different processes will be more

explicit (Connor et al., 2017; Cuddington et al., 2013). This should

lead to improved strategic management, for example in setting long-

term targets and reference points, e.g. multi-species maximum sustain-

able yield. Improvements in our understanding of responses to new

conditions, such as warming oceans, can readily be included in these

models (e.g. Serpetti et al., 2017) and the types of actions that can be

tested and implemented can be increased, e.g. spatial planning using

spatially explicit mechanistic models (e.g. Ecospace Walters et al.,

1999).

Before this study, fitting MSMs to species that did not have full

assessments with absolute values of the fishing mortality was not pos-

sible without making strong assumptions about their fishing mortality

values. This would be particularly the case for species with limited

data (Quárou & Tomini, 2013). The methods of fitting dynamical pa-

rameters introduced and demonstrated here could lead to an increase

in the number of mechanistic models for regions where there is not
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a great amount of information, hence increasing their utility and the

strategic management of these areas. This could either be by sharing

fishing rates between models, for example a LeMans model for the

Celtic Sea could use fishing rates from this study, or directly fitting

the dynamical parameters for the mechanistic model.

In addition, mechanistic models could be used to manage data-

limited stocks or in areas of the world where there are many species

and building a MSMs is computationally expensive or managing at the

level of individual species is impracticable. The methods developed

here to find dynamical parameters could be useful when fitting trait-

based models, where groups of species with similar traits are grouped

together (Barnett et al., 2019).

4.2 Developing the role of mechanistic models

Whilst mechanistic models are potentially powerful tools, their use

to date in the advisory process has been limited. Here we suggest

some improvements that should make them more useful to fisheries

management.

In this work the state of the system at the beginning of the sim-

ulation, M0, was determined by running the model for 300 years

with a fixed fishing mortality φ0,1:17, known as the spin-up period

(Spence et al., 2016). This led to the model starting in a stationary

state, something which may not be true and can have an effect on the

results of the model, particularly at the beginning of the simulation.

For example, cod was probably not in a stationary state in 1991, as

prior to the model large landings were reported in 1988-1990 (ICES,

2018a). It is not possible to create the effect of these high landings

using the spin-up period, and our fitted model is therefore unable to

pick up the dynamics at the beginning of the time series. The fitted

model found that the spin-up fishing mortality for cod, φ0,3, was low

(Figure 5), which lead to over-estimating the SSB (Figure 6) and the

fishing mortality (Figure 4) in the early part of the simulation.

More work is required calibrating the initial state of mechanistic

MSMs. In this study we initialised the model by running it model

to equilibrium with a fixed fishing mortality. This meant that the

system was in equilibrium at the beginning of the simulation which

may not be true. One may run some dynamics, say ten years, before

calibration, however it would not have been possible here as we do

not know the fishing mortality rates for 1981-1991; alternatively one
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could run the fishing mortality time series backwards before starting

to fit the data, as done in climate modelling (Stouffer et al., 2004).

A common approach in other fisheries models is to treat the initial

states as uncertain, i.e. treating the density for each species and the

background for all sizes in mizer as uncertain parameters. We believe

this would be the ideal solution, however it would lead to an imprac-

tically large number of parameters. A more practical solution may

be to use ecological theory from other studies, such as fishing effects

on the size-spectrum (e.g. Zhang et al., 2018), to parameterise, with

only a handful of parameters, the initial state of the model. These

parameters would then be calibrated to the data as well.

In this work we used the default fishing selectivity in mizer (Scott et al.,

2014). Other fishing selectivity functions, such as logistic or dome

shaped, may lead to different results, however we do not believe that

the results would greatly change here. In the future we would like

to include fisheries information, such as effort and catch by fleet or

metier, and possibly by size, when fitting these models. In addition

information from external studies about the selectivity of different

fishing gears could be included, with the selectivity of each gear on

each species being the ‘tuning parameters’ (e.g. Walker et al., 2017).

One may anticipate that this may follow a dynamic stochastic process,

such as an auto-regressive model, as the spatial distribution of species

will not change that quickly, thus incorporating more information in

the model.

With mechanistic MSMs it is not straightforward to perform con-

ventional model validation. In the study here it was not possible to

compare the model forecasts with independent out-of-sample data, e.g.

the survey and commercial catches in 2015-2019, as the fishing rates,

the inputs that are used to drive the dynamics that led to these data,

are uncertain. Furthermore, due to the time taken to fit these models

it is not practical to perform one-step-ahead analysis (Berg & Nielsen,

2016) or cross-validation tests. Instead we demonstrated through

residual analysis that the conditionally independent assumptions are

not violated (see Supplementary material (S4)). There are many other

methods that could be used for model validation (e.g. posterior pre-

dictive checks, see Gelman et al., 2013, for more details); for a recent

review of these methods see Conn et al. (2018).
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4.3 Quantifying uncertainty

For models to be useful for management it is important that uncer-

tainty is quantified (Harwood & Stokes, 2003). By fitting the model

in a Bayesian framework we were able to quantify the uncertainty in

the model. This is a difficult problem using conventional MCMC due

to the complexity of the model, and the increased dimension of the

uncertain parameters caused by fitting fishing mortality. We believe

that this is a major reason why this has not previously been done.

SSMs and statistical MSMs take advantage of recent software devel-

opments and are fitted using algorithms that exploit gradients, such as

Hamiltonian Monte Carlo (Neal, 2010) or Reimann Manifold MCMC

(Girolami & Calderhead, 2011). However, for more mechanistic-based

models, this may be impractical or even impossible. In this paper we

have demonstrated a method of exploiting the stucture of the model

to use an MCMC algorithm to fit a mechanistic model.

For mechanistic-based models, where the model needs to be run to

evaluate the likelihood, it is advantageous to use parallel computing,

running several likelihood evaluations at once, to speed up the fitting

process. The problem here is that MCMC is a sequential algorithm

and therefore difficult to run in parallel (Jacob et al., 2011). In this

paper we introduce two novel variations of the delayed-acceptance

MCMC algorithm (Sherlock et al., 2017). The MDA-MCMC algo-

rithm is designed to use parallel computing and is motivated by at-

tempting to move many parameters at once, accepting the good moves

whilst rejecting the bad ones. We believe that the MDA-MCMC would

be most useful when sets of parameters, or transformations of the pa-

rameters, affect different parts of the likelihood. This could be ex-

plored using variance-based sensitivity analysis (Saltelli et al., 2008)

prior to running the algorithm. As the MDA-MCMC algorithm makes

moves in smaller dimensions, the proposals can be larger in the pa-

rameter space. We recommend the proposals are large so that the

resulting in acceptance probabilities, in the first part of the algorithm,

are either 0 or 1. This would mean that the accepted points result in

large improvements in the full likelihood.

Similarly the PDA-MCMC is motivated by proposing moves in a

large number of dynamical parameters but efficiently accepting only

the good moves. If one was going to fit the dynamical parameters by

hand, one might wish to change the fishing rates one year at a time

and to run that model for one year. The PDA-MCMC algorithm does
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just that but in such a way that the stationary distribution of the

Markov chain is the posterior distribution. An alternative would be

to change one year at each iteration of the MCMC chain, therefore

requiring 24 model runs all of which are required to be done sequen-

tially, whereas using the PDA-MCMC algorithm it only requires five

model runs, most of which can be run in parallel. This therefore leads

to more efficient use of computational effort when updating dynamical

parameters such as annual fishing rates. The PDA-MCMC algorithm

can also be flexible when deciding which of the dynamical parameters

are changed. In the study in the manuscript we attempted to change

all of the dynamical parameters at once, however in the Simulation

study we only changed a handful of dynamical parameters at a time,

something that we found led to better mixing. The PDA-MCMC al-

gorithm is also useful when the state of the model is dependent on

the entire past and/or is stochastic. To do this one would require

Mt to include the whole of the past. If the model was stochastic,

we recommend treating the stochastic elements as additional param-

eters, as in Spence & Blackwell (2016) allowing better exploration of

the dynamical parameter space. These two algorithms are not specific

to MSMs, or even mechanistic models, but are applicable to a wide

range of MCMC problems.

4.4 Conclusion

We have demonstrated a method of fitting mechanistic MSMs directly

to data without using SSMs. By using novel techniques we were

able to fit a model of intermediate complexity in a high-dimensional

parameter space with quantifiable uncertainty. Furthermore, by fit-

ting mechanistic MSMs directly to data, we free the model from the

assessment-induced biases, which may lead to a greater reliability and

trust in mechanistic models, increasing their utility in the management

process.

Although demonstrated on two multi-species marine models, this

methodology is readily generalisable for fitting models of intermediate

complexity (with a typical run time of 1 second to a few minutes),

when there are a significant number of uncertain dynamic parameters.

It is therefore likely to find wide applications throughout science.
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