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ARTICLE INFO ABSTRACT

Keywords: A direct, robust, accurate and highly sensitive method for oxyhalide species in natural waters, including seawater,

Oxyhalides ) using suppressed ion chromatography coupled with mass spectrometry (IC-MS) is described. The method utilised

I(\)Iatural. and saline waters a high capacity, high efficiency anion-exchange column (Dionex IonPac AS11-HC, 4 mm, 2 x 250 mm), with the
zonation

separation achieved using an electrolytically generated potassium hydroxide gradient, delivered at 0.380 mL
min~!. Applying the method, detection limits for iodate, bromate, and chlorate in seawater after direct sample
injection (20 pL injection volume, samples diluted 10-fold), were 11, 30 and 13 ng L' (ppt), respectively.
Standard addition calibrations to ozonated seawater samples were linear, in all cases R% > 0.999 (n = 10), with
intra-day repeatability of 3.7, 11.2 and 1.8 % RSD (n = 10) for a low-level standard mixture (0.30 pg L Lof iodate,
0.15 pg L~} of bromate, and 1.50 pg L' of chlorate). The method was applied to the analysis of seawater samples
taken pre- and post-disinfection points within a recirculating aquacultural system. Iodate, bromate and chlorate
were detected as the main oxyanionic disinfection by-products, demonstrating the practical utility of the new

Ton chromatography
Mass spectrometry
Ultra-trace determination
Aquacultural industry

method as a valuable tool for monitoring changes to seawater composition following disinfection treatments.

1. Introduction

The process of natural water oxidative disinfection using species such
as ozone (O3) and chlorine dioxide (ClO3), is becoming commonplace
within the various aquaculture industries, specifically to address high
levels of organic contaminants in incoming natural feed waters, and to
eliminate (or deactivate) chlorine-resistant pathogens and microorgan-
isms, particularly when used in conjunction with ultraviolet irradiation.
Ozone in particular is a powerful oxidant and is variously applied to treat
both influent and effluent streams, and in some cases as a continuous
low-level quality control treatment during recirculating aquacultural
systems (RAS) operations [1, 2].

However, the ozonation of natural waters is well known to produce a
variety of oxyanionic disinfection by-products (DBPs), a number of which
are of concern within the aquacultural industry for their known and
suspected impact upon cultured marine organisms. The formation of
bromate from the oxidation of bromide present in natural waters is one
such case, which has received a great deal of attention over the past few
decades, and remains of significant interest today [3, 4]. Indeed, this
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unintended by-product from the use of ozone disinfection is a rather
widespread concern, with reports on its impact and determination across
a range of areas, including food and beverages [5], drinking water [6],
medical products and solutions [7], and treated waste waters [8], to
name but a few. In a similar way, conversion of iodide to iodate following
ozonation is also of significant interest to the aquaculture industry. In a
previous study carried out within our research group [9], the complete
conversion of iodide to iodate after ozonation of the seawater within a
marine aquaculture farm was shown, which could cause undesirable
iodide intake deficiencies in its fish population. It is widely reported that
such deficiencies cause several preventable disorders, in particular those
related with thyroid hormones [10]. For example, likely due to de-
ficiencies in synthesis of thyroid hormones driven by deficiencies in
water iodide concentrations, lower larvae survival and body size of
certain fish, namely, Pacific threadfin (Polydactylus sexlis) has been
observed [11].

Given the above concerns, it is very clear that sensitive and accurate
analytical methods to monitor DBPs generated in seawater are essential
and are necessary to better understand and control marine aquacultural
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environments. For the determination of oxyhalide and ozonation DBPs,
traditional approaches have involved the use of ion chromatography (IC)
with suppressed conductivity and/or post-column reaction with selective
UV/Vis absorbance detection [12, 13]. An early paper comparing various
approaches to the detection of bromate following its separation using IC
was presented by Schminke and Seubert [14]. In this comparison study
inductively coupled plasma mass spectrometry (ICP-MS) was one
detection option applied to the detection of bromate (as Br), proving to
be the most sensitive and rugged method at the time, although rather an
expensive option.

When it comes to the determination of trace concentrations (e.g., low
to sub-pg L) of oxyhalides and other oxyanions in complex environ-
mental sample matrices, which in the case of natural waters typically
means samples of high salinity (e.g. seawater), both sensitivity and
selectivity remain a significant challenge, particularly when using the
standard traditional IC flow-through detectors (e.g. suppressed conduc-
tivity and/or UV/Vis absorbance detection). Efforts to overcome these
limitations have typically involved some form of sample treatment, e.g.
matrix ion removal by barium or silver ion cartridges [15], or more
complex approaches, involving multidimensional separations and com-
plex valving arrangements to help reduce matrix ion loadings on the
analytical column [16]. However, without doubt some of the most
impressive analytical results have been demonstrated when the selec-
tivity of IC is coupled with the combined selectivity and sensitivity of
mass spectrometry (MS). The advantages of coupling modern suppressed
IC systems with MS are many fold. Modern IC is available with electro-
lytic eluent generation e.g. Thermo Fisher Scientific's ‘Reagent-Free
technology’, which in itself is compatible with new generations of
high-performance, high-capacity and high-efficiency 4 pm ion-exchange
resins/columns. In addition, modern eluent suppressors provide low peak
dispersion and act to deliver separated peaks within an MS-compatible
ultrapure water effluent. Modern quantitative MS (e.g., triple
quadrupole-based mass analysers) is now also routinely available, which
provides high sensitivity and selectivity across the low mass range for
small ions, delivering detection limits in the low ppt (ng L-1) range for
target inorganic species. There have been several reviews on the com-
bination of IC-MS published over recent years, where these advantages
and the various applications of the coupled technique are discussed in
greater detail [17, 18, 19].

Herein, we present a new highly sensitive and selective method for
the identification and quantification of iodate, iodide, bromate, bromide,
and chlorate, by direct injection of 10-fold diluted seawater into an IC-MS
system. Merging the advantages of IC and tandem mass spectrometry,
quantification of the target analytes was achieved at ultra-trace levels. To
demonstrate the practicality and validity of the new method, the deter-
mination of targeted oxyanions in seawater samples collected from a
recirculating aquacultural system, pre- and post-ozonation and UV
treatment points was performed.

2. Materials and methods
2.1. Reagents and standards

Simulated seawater (SSW) was prepared by dissolving 24.08 g of
sodium chloride (NaCl, AR, >99.7%) from Chem-Supply (Gillman,
Australia), 9.03 g of sodium sulphate 10-hydrate (NaySO4-10H>0,
>99.0%) from BDH Laboratory Reagents (Poole, England), 0.69 g of
potassium chloride (KCl, >99.5%) from Ajax Chemicals, 0.20 g of sodium
bicarbonate (NaHCO3, 99.7-100.3%) from Sigma-Aldrich (St. Louis,
USA), 0.03 g of boric acid (H3BO3, >99.5%) from Sigma-Aldrich (St.
Louis, USA) in 1008.7 g of DIW in accordance with the concentrations
recommended within the method of Kester et al. [20], here with the
exclusion of sodium fluoride, potassium bromide, magnesium chloride,
calcium chloride and strontium chloride. Acetate, formate, bromate,
bromide, chloride, chlorite, chlorate, nitrite, nitrate, sulfate, carbonate,
phosphate, iodate, iodide and perchlorate stock solutions (1000 mg LY
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were prepared by dissolving appropriate amounts of sodium acetate
(NaOAc, >99%) from Ajax Chemicals (Australia), sodium formate
(HCOONa, >99%) from Sigma-Aldrich (St. Louis, USA), sodium bromate
(NaBrOs, >99.5%) from Hopkin & Williams (London, England), sodium
bromide (NaBr, >99.0%) from Sigma-Aldrich (St. Louis, USA), sodium
chloride (NaCl, >99.7%) from Chem-Supply (Gillman, Australia), so-
dium chlorite 25% solution in water (NaClO,) from Merck (Darmstadt,
Germany), sodium chlorate (NaClO3, >99.0%) from Sigma-Aldrich (St.
Louis, USA), sodium nitrite (NaNO;, AR) from Ajax Chemicals
(Australia), sodium nitrate (NaNOs, >98%) from BDH Laboratory Re-
agents (Poole, England), sodium sulfate 10-hydrate (NaySO4-10H5O,
>99.0%) from BDH Laboratory Reagents (Poole, England), sodium bi-
carbonate (NaHCOj3, 99.7-100.3%) from Sigma-Aldrich (St. Louis, USA),
potassium phosphate tribasic (KsPO4, >97%) from Acros Organics (Fair
Lawn, USA), sodium iodate (NalOs, AR grade) from Hopkin & Williams
(London, England), sodium iodide (NalI, ACS grade) from Sigma-Aldrich
(St. Louis, USA), sodium perchlorate (NaClO4, >98%) from
Sigma-Aldrich (St. Louis, USA). The solutions were kept at 4 °C and
stored in high-density polyethylene (HDPE) containers until use. SSW
diluted 10 times (SSW-DF10) as sample matrix was used to prepare
working and calibrated standards. Working standard solutions of 125 ug
L1 iodate, 125 pg L™! bromate, 250 mg L~ bromide, 125 pg L ™! chlo-
rate, and 75 pg L' iodide were prepared by diluting certain amounts of
stock solutions in SSW-DF10. Calibration standards between 0.015-80 pg
L7! iodate, 0.015-80 pg L' bromate, 0.03-160 mg L' bromide,
0.015-80 pg L ! chlorate, and 0.009-48 pg L ™! iodide were prepared by
appropriate dilution of the working standard solution of 5 anions in
SSW-DF10. Working and calibration solutions were prepared daily.

2.2. Samples and sample treatment

Sampling was carried out by trained staff at 9 different sites within a
recirculating aquaculture system for onshore crustacea production.
Seawater samples were collected in duplicate (A and B) using 1 L high
density polyethylene (HDPE) bottles, which were previously prepared
following a rigorous cleaning protocol, consisting of soaking the bottles
for 3 days in DIW, with rinsing every 24 h. A total of 18 samples was
transported to the analytical laboratory on the same day and stored at 4
°C prior to analysis. All samples were filtered through a nylon syringe
filter (pore size 0.45 pm) to eliminate solid particles and then diluted 10
times using DIW. Sample collection information is detailed within
Table 1. Figure 1 shows the sampling points within a schematic of the
RAS.

2.3. Instrumental

An ICS-5000+ Reagent-Free™ IC (RFIC™) system coupled to an Ion
Max NG source operating in heated-ESI (H-ESI) mode and a TSQ Quan-
tiva™ triple-stage quadrupole mass spectrometer was used throughout.
Figure 2 shows a schematic of the IC-MS system used in this study.
Following sample treatment, e.g., filtration and dilution, 20 pL of sample
was injected using an AS-AP autosampler onto the coupled IonPac AS11-
HC guard (4 pm, 2 x 50 mm) and analytical columns (4 pm, 2 x 250
mm). High purity KOH eluent from DIW was electrolytically generated by
an eluent generator module using an EGC-KOH cartridge. An anion trap
was installed after the eluent generator module to remove trace anionic
contaminants from the eluent. Target analytes were separated at 45 °C
using a KOH eluent, in gradient mode, at a flowrate of 0.380 mL min !
within a total run time of 30 min, including a short cleaning step to elute
strongly retained compounds, and an equilibration step before the sub-
sequent injection. An anion self-regenerating suppressor 500e (AERS®
500e) was used in-line after the column which electrolytically converted
the hydroxide eluent to water. The suppressor was regenerated in
external mode using DIW at 0.4 mL min~! delivered by an AXP pump. A
conductivity detector (CD) was placed after the suppressor and before the
mass spectrometer, to be used as secondary detector. Acetonitrile was
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Table 1. Sample information data.

Sample number Description

Raw seawater

Raw seawater +1° ozone treatment
Post foam fractionator-ozone treatment
Post 1°* contact

Post 2™ contact

Post degasser

Post carbon filter

Culture tank-without UV treatment

N o g b W N E O ©

Pre culture tank-after 10 min UV treatment

added using a second auxiliary pump at a flowrate of 0.12 mL min " into
the IC eluent stream via a mixing tee immediately before the divert valve
to assist in the ionisation at the ESI source. The MS operating conditions
used for the quantification of DBPs, along with chromatographic pa-
rameters of the IC system, are summarised in Table 2 and Table 3.
Detection was achieved in negative ESI and selected reaction monitoring
(SRM) acquisition modes. The SRM mode is the key operating mode for
target compound quantification with a triple quadrupole mass spec-
trometer, describing one single transition from a parent ion to a product
ion and providing highly selective and sensitive detection. SRM

uv
treatment

Sample 5

lr o External regen;rating

High-Pressure

Non-Metallic Pump

Eluent
Generator

K*OH- Anion Trap [ ————————

Column

Culture
vessel

i
1
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transitions used for the detection of target analytes are detailed in
Table 3. SRM acquisition mode provides better S/N ratios than full-scan
acquisition mode due to a significant reduction in the background noise.
As it can be observed in Table 3, as some anions do not fragment further,
‘pseudo-SRM’ transitions, where the precursor ion selected for Q1 was
also monitored as the product ion for Q3, were used. SRM transitions,
collision energy and RF lens voltages were optimised by direct infusion of
individual standard solutions of 10 mg L™! for each anion into the mass
spectrometer using an automatic optimisation software tool. All instru-
mentation and columns were from Thermo Fisher Scientific (Sunnyvale,
USA). Instrument control, data acquisition and processing were via
Chromeleon® 7 Software, version 7.2.6 (10049).

2.4. Validation of the IC-MS method

The method was fully evaluated in terms of its analytical performance
characteristics using standard solutions of iodate, iodide, bromate, bro-
mide and chlorate. Chlorite was not included in this validation as it was
not detected in a previous screening of the RAS samples. Standard so-
lutions were prepared in DIW:SSW at 9:1 ratio to simulate diluted
seawater matrix of real samples. Validation of the IC-MS method
included the evaluation of matrix effects, carry-over, limit of detection
(LOD), linearity and inter- and intra-day repeatability. Matrix effects
were evaluated by comparing the response for a standard solution of the

Foam fraction

Makeup Pump
Acetonitrile O o

l Separation Column

oGP

v Electrolytic Conductivity
Waste l AS11HC-4pum Eluent Detector
Suppressor

Sample Inject

(Autosampler) ~. Divert

'\ J valve

-«
g=- MS
Data waste

Management

Figure 2. Schematic of the IC-MS system used in this study.
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Table 2. IC instrumental parameters and settings.

Column: TonPac AS11-HC (2 x 250 mm), 4 pm

Guard: TonPac AG11-HC (2 x 50 mm), 4 pm

Temperature: 45°C

Injection volume: 20 pL

Eluent: Gradient of KOH:
Time (min) KOH (mM)
0 15
12 15
15 90
20 90
22 15
30 15

Eluent flow rate: 0.380 mL min !

Detector: Conductivity

Data collection rate: 5.0 Hz

Cell temperature: 35°C

Suppressor:
External Water Mode flow rate:

Applied current:

AERS 500e (2 mm)
0.400 mL min !
43 mA

Table 3. MS instrumental parameters and settings.

Make-up solvent
Make-up solvent flow:
Ion source Type:
Ionisation mode:
Spray voltage:

Sheath gas:

Aux gas:

Sweep gas:

Ion transfer tube temp:
Vaporiser temp:

Acquisition mode:

Compound Precursor (Q1) (m/z) Product (Q3) (m/z) Collision Energy (eV)
chloride 35 35 0
nitrite 46 46 0
nitrate 62 62 0
chlorite 67 67 0
bromide 79 79 0
chlorate 83 67 20
sulfate 97 79 24
phosphate 97 79 15
perchlorate 99 83 20
bromate 127 111 20
iodide 127 127 0
iodate 175 159 21

Q1 Resolution (FWHM)
Q3 Resolution (FWHM)
CID Gas (mTorr)

target analytes prepared in DIW with that from a sample prepared in 10-
times diluted SSW. Blank samples injected after the highest calibration
standards and between samples were used to determine carry-over is-
sues. LODs and LOQs were calculated as the concentration providing
signal-to-noise ratios (S/N) equal to 3 and 10, respectively. Intra- and
inter-day repeatability were determined over the same day and across
two different days, respectively, from 10 replicates of a standard mixture
containing 0.30 pg L™! of iodate, 1.44 pg L™! of iodide, 0.15 pg L™! of
bromate, 0.06 mg L ™! of bromide and 1.50 pg L™ of chlorate.

3. Results and discussion

3.1. Optimisation of chromatographic separation

The IonPac™ AS11-HC-4pm column and guard were chosen as being
optimal for this study as it is a column designed specifically to provide
high resolution of a large number of inorganic anions and organic acid
anions from complex samples in one gradient run using an hydroxide
eluent system. This column is a high resolution (4 pm i.d. particle size)
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and high capacity (72.5 peg/column) anion-exchange column. The high
resolution provides better separation and lower LODs due to better peak
shape, whilst the high capacity allows injection of more concentrated
samples or larger injection volumes without overloading the column. The
main limitation of this column is that it can only be use with an IC
capable of operating at 5000 psi or higher [21]. The standard working
flow rate for this column and guard, 0.380 mL/min, which already
generated around 3900 psi, was used throughout the optimisation pro-
cess. Lower pressure could be obtained by reducing the flow rate, but that
could deliver longer run times and poorer peak shapes.

In order to evaluate the selectivity of this column, a separation of 15
anions, namely, acetate, iodate, formate, chlorite, bromate, chloride,
nitrite, bromide, nitrate, chlorate, carbonate, sulfate, phosphate, iodide,
and perchlorate was optimised using various KOH gradients. Column
capacity was tested by injecting up to 400 pL of the above anion mixture.
Figure 3 shows the CD chromatogram obtained for a low-level standard
mixture containing 50 pg L1 of each anion prepared in DIW using the
optimal KOH gradient (Gradient 1), which is shown as a dashed line in
Figure 3. With extremely high concentrations of chloride and sulfate
expected in real samples, optimisation of the chromatographic separation
was focused on obtaining the best possible separation for all the probable
anions present in the aqueous samples, especially between bromate and
chloride, even at the expense of a slightly longer run time. It is important
to note that to achieve this separation the optimal gradient started at very
low KOH concentration (1mM) which may cause unwanted peak
broadening, although this was compensated by the excellent efficiency
provided by the 4 pm i.d. particle size of the stationary phase. It can be
observed that although the injection volume was 200 times greater than
the recommended injection volume for standard 2 mm i.d. columns, the
high capacity of the AS11-HC-4pm column allowed for the injection of
large volumes, whilst preserving peak shapes.

Anticipating the nature of the samples to be analysed, which were
characterised by a high concentration of matrix anions, such as chloride
and sulfate combined with an ultra-trace concentration of targeted
ozonation by-products such as iodate, chlorate, chlorite or bromate, a
compromise regarding dilution factor and injection volume was estab-
lished. Injection volume was reduced to 20 pL and different dilution
factors (DF) for a 20 pL injection volume size were tested, namely, 40, 25
and 10, finding that a DF of 10 was optimal to not overload the column
with chloride, and to also allow the detection of the ultra-trace concen-
trations of targeted oxyhalides.

However, even after reducing injection volume and diluting seawater
samples, when the optimised Gradient 1 was applied to the analysis of the
same standard mixture prepared within DIW:SSW (9:1 v/v), bromate and
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chloride (the former now present in much higher concentration) were
completely co-eluted. In addition, the peak widths for those analytes of
interest eluting before chloride (e.g., iodate, chlorite and bromate)
increased dramatically from sample self-elution, due to the high salt
concentration. Therefore, although Gradient 1 is an excellent example of
the separation achievable using the AS11-HC-4pm column, it was not
directly applicable to the analysis of oxyhalides in diluted seawater
samples. Assuming that no practical separation was indeed possible for
bromate and chloride within the concentration ranges expected in
seawater samples, the objective was to evaluate the extent of the matrix
effect caused by the chloride concentration on the quantification of the
target analytes, namely, bromide, bromate, iodide, iodate and chlorate,
and to maximise the signal for these targeted compounds through the
reduction of peak width generated by Gradient 1. Chlorite was taken out
of the study at this point as it was not detected in any of the samples in
pre-screening.

Consequently, different KOH gradients starting at higher concentra-
tions than 1 mM to improve peak shape were evaluated. SRM traces for
each anion and the values for peak width (at 50% high, min) were used
for evaluation. It was found that peak width for iodate and bromate were
reduced by 88 and 89 %, respectively, when using a gradient starting at
15 mM KOH (Gradient 2). For the targeted anions eluted after chloride
(e.g., bromide, chlorate and iodide) the improvement in peak width was
less significant being 26, 19 and 16 %, respectively. Nevertheless, by
applying Gradient 2, bromate and chloride remained coeluted at the
concentrations found in the real samples, but both peak width and run
time were successfully reduced. To evaluate matrix effects, the response
for a standard solution of the target analytes prepared in DIW and those
prepared in 10-times diluted SSW were compared. Table 4 shows the
absolute matrix effect, calculated as (Area in SSW/Area in DIW)*100,
obtained for iodate, bromate, bromide, chlorate, and iodide. As can be
observed, matrix effects were significant only for bromate, which suf-
fered an approximately 3-times reduction in its response. However, as it
will be detailed in the next section (Validation of the IC-MS), bromate was
still quantifiable at the ultra-trace concentrations expected in the
seawater samples. Although the absolute matrix effect was less extensive
for the rest of the targeted analytes, quantification of all target anions was
carried out using the standard addition method, which is the calibration
method commonly used to overcome this effect.

3.2. Validation of the IC-MS method

Validation of the IC-MS method included evaluation of matrix
effects (already discussed in previous section), carry-over, limit of

CD response (uS)

4.00

2.00r

20 25 30 35 40
Time (min)

Figure 3. CD chromatogram obtained for the analysis of a standard mixture 15 anions, namely, acetate (1), iodate (2), formate (3), chlorite (4), bromate (5), chloride
(6), nitrite (7), bromide (8), nitrate (9), chlorate (10), carbonate (11), sulfate (12), phosphate (13), iodide (14), and perchlorate (15), containing 50 pg L ! of each

anion. Injection volume 400 pL. Dash line: KOH gradient 1.
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Table 4. Analytical Performance of the IC-MS method.

Iodate Bromate Bromide Chlorate Iodide
Absolute matrix effect (%)" 109.1 36.0 100.3 94.1 70.6
LOD (ug L™ 1P 0.011 0.030 0.425 0.013 0.064
LOQ (ug L™H" 0.037 0.100 1.416 0.045 0.210
Calibration curve fit linear linear polynomial, order 2 linear linear
Regression Coefficient (R?) 0.9994 0.9999 0.9990 0.9997 0.9996
Upper limit of calibration (ug L) 5 80 10000 80 24
Number of points 8 10 8 10 7
Repeatability intra-day (% RSD)“ 3.65% 11.24% 3.09% 1.75% 2.44%
Repeatability inter-day (% RSD)" 4.74% 11.43% 5.55% 5.79% 4.97%

# Absolute matrix effect was calculated as (Area in SSW/Area in DIW)*100.

b LODs and LOQs were calculated as concentration providing a S/N > 3 and S/N > 10, respectively.
© This parameter was obtained by injection during the same day of 10 replicates of a standard mixture containing 0.30 pg L~ 'of iodate, 0.15 pg L%, of bromate, 0.06

mg L™}, of bromide, 1.50 pg L7, of chlorate and 1.44 pg L™}, of iodide.

4 This parameter was obtained by injection during two different days of 10 replicates of a standard mixture containing 0.30 pg L™}, of iodate, 0.15 pg L™?, of bromate,

0.06 mg L%, of bromide, 1.50 pg L™}, of chlorate and 1.44 pg L™}, of iodide.

detection (LOD), linearity and repeatability inter- and intra-day.
Validation results are summarised in Table 4. To avoid carry-over
issues, detected as the presence of chloride within blank samples
(DIW) injected between seawater samples, an additional injection of a
blank sample between seawater samples using a quick cleaning
method, which reached a high KOH concentration (run time = 15
min), was applied. In this manner, no carry-over issues were identi-
fied for blank samples injected after the cleaning injection. LODs
were similar or lower to those reported in the literature for the
analysis of these anions in seawater samples by other methods [9, 22,
23, 24]. Upper limits of the calibration curves were set to evaluate
the response linearity range for each targeted analyte. All analytes
presented a calibration curve with a linear fit from the LODs to the
upper limit tested, except for bromide which exhibited a calibration
curve with a quadratic fit. All calibration curves showed regression
coefficients (R?) within the range 0.9990-0.9999. It can also be
observed from Table 4 that both intra-day and inter-day repeatability
were typically below 6%, based upon peak area. Only bromate gave
values around 11%, resulting from its co-elution with chloride.
Nevertheless, repeatability values of under 15% RSD are typically
analytically acceptable at these concentration levels (pg L™!) within a
complex matrix.

Figure 4 shows the SRMs chromatograms for iodate, bromate, bro-
mide, chlorate, and iodide obtained for the analysis of a standard mixture
containing 1.25 pg L' of iodate, bromate and chlorate, 2.5 mg L1 of
bromide, and 0.75 pg L™! of iodide using the new method developed.

3.3. Analysis of aquacultural seawater samples

Table 5 and Figure 5 summarise the results obtained for the analysis
of the samples detailed in Table 1. Quantification was based on the
standard addition method using calibration solutions prepared in SSW.
Concentrations for each sample were calculated as an average of the
duplicates, A and B, taken during the sampling. % RSD obtained for these
duplicates was under 5% in most of the cases, although a higher devia-
tion for some analytes was observed for samples 1A and 1B and for
samples 6A and 6B. Nevertheless, those higher % RSD were always under
15% and the observed irreproducibility can be attributed to the fact that
the RAS is a dynamic system and samples were taken at slightly different
times.

Iodide was only detected in samples 8 and 9 at concentrations of 3.24
and 1.15 pg L1, respectively. The decrease from sample 8 (raw seawater)
to sample 9 (after first ozonation treatment) can be due to oxidation of
iodide to iodate by ozone. However, iodate concentration seems to be
stable throughout all the RAS sample points, without displaying any

significant variations. Although iodide concentration in raw sweater was
below than the expected concentration [25], sample 8 was actually taken
from the lower reaches of an estuarine environment at a depth of 15 m,
where speciation typically favours iodate [26]. While it is known that low
iodide waters can cause deficiencies in fish species [11], there is no ev-
idence that low iodide marine waters have a negative effect on crusta-
cean larval rearing.

Bromate concentration increased from the base level found in sample
8 with a concentration of 1.26 pg L™}, up to 3.82 pug L™ in sample 9, and
in the range from 5.13 to 5.58 pg L™! for the rest of the samples from
different points within the RAS, demonstrating oxidation of bromide to
bromate by ozone treatment. Bromate has been identified as a potential
human carcinogen and is currently regulated at a maximum level within
drinking water of 10 pg L™ in US, China, Canada, EU, Japan and 20 g
L~ in Australia [27]. Butler et al. [28] reviewed bromate ecotoxicity and
summarised that lethal concentrations (LCsg) for bromate ranged from
31 mgL ! to 2258 mg L}, depending on the species investigated, which
included crustaceans, flatworms and juveniles of various fish species.
Based upon those results, a cautionary ecotoxicity exposure safety value
of 3.0 mg L ™! bromate in natural water sources, which is 10 times smaller
than the LCs( observed for the most sensitive species, was recommended.
Other studies mentioned by Butler et al. [28] observed persistent brain
and spine diseases in fish eggs exposed to bromate and an increment in
cell division in some species of marine phytoplankton when exposed to
13.6 mg L ™! of bromate. Nevertheless, bromate concentrations found in
the samples analysed in the present study are far below from those
values, including the proposed ecotoxicity exposure safety value of 3.0
mgL

Bromide was present at a steady concentration level throughout the
RAS system, although sample 8 (raw seawater) and sample 3 (post-2nd
contact chamber) showed higher concentrations than the rest of the
samples. The bromide concentration found in raw seawater (70.22 mg
L) was within the normal concentration range reported in the literature
(65-78 mg L™1) [27].

As expected, chlorate was not found in raw seawater and was also not
detected after the first ozonation treatment in sample 9. However, its
concentration subsequently increased in all samples within the RAS,
reaching a regular concentration level of around 100 pg L™ for all
samples, suggesting a clear production of chlorate by the second ozone
treatment. However, according to the literature [29], chlorate appears to
be non-toxic (LCsg is greater than 100 mg L) to freshwater life. The
lowest effect level, a 96-hour LCsg to a freshwater fish, (larval cherry
salmon, O. masou) was 863 mg L~! of chlorate. For marine life, the
guideline is set to 5 pg L™} to protect the most sensitive species, e.g.,
brown algae.
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Figure 4. SRMs chromatograms for iodate (a), bromate (b), bromide (c), chlorate (d), and iodide (e) obtained for the analysis of a standard mixture containing 1.25 pg
L~! of iodate, bromate and chlorate, 2.5 mg L™ of bromide, and 0.75 pg L™ of iodide using the new method developed (instrumental conditions detailed in Tables 2
and 3).

Table 5. Iodate, bromate, bromide, chlorate and iodide concentration for the 9 samples analysed (Average +SD, n = 2, duplicate A and B samples). SD: Standard
deviation.

Sample Concentration (pg L™!)
ITodate Bromate Bromide Chlorate Iodide

8 107.89 + 2.13 1.26 + 0.17 70.22 + 1.00 n.d. 3.24 £ 0.32
9 113.49 £ 6.07 3.82 £ 0.28 69.66 + 0.43 n.d. 1.15 +£ 0.17
1 78.76 £ 19.79 5.58 + 0.27 66.61 + 2.40 109.35 + 10.53 n.d.

2 99.23 + 9.36 5.49 £ 0.41 64.41 £ 0.18 103.27 + 2.37 n.d.

=) 115.70 + 4.35 5.49 £ 0.34 72.76 £ 1.35 100.91 + 3.78 n.d.

4 114.41 £ 7.04 5.38 £ 0.19 68.30 + 6.00 99.89 + 1.94 n.d.

5 115.23 £+ 6.27 5.13 £ 0.30 68.66 + 0.71 95.55 + 1.59 n.d.

6 100.95 + 26.15 5.35 + 0.60 66.07 + 2.37 111.16 + 3.99 n.d.

7 120.16 £ 12.65 5.49 £ 0.23 68.33 £ 6.00 98.72 + 5.06 n.d.

n.d.: not detected.
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Figure 5. Iodate (a), iodide (b), bromate (c), bromide (d), and chlorate (e) concentration for the 9 samples analysed (Average +SD, n = 2).

The application of ozone to seawater results in the production of
numerous DBPs. The anions measured in this study were primarily the
stable start (iodide and bromide) and end (iodate, bromate and chlorate)
points of these reactions. Active disinfection is facilitated by intermediate
species, including hypobromous acid/hypobromite ion (HOBr/OBr ™)
[30]. The future quantification of these intermediate by-products will be
of significant value for water treatment in mariculture.

4. Conclusion

A new IC-MS based method for the determination of iodate, bromate,
chlorate, bromide, and iodide at ultra-trace levels in seawater samples
has been developed. The proposed method owes its success to four key
factors: (1) The high capacity of the chosen AS11-HC column allowed
large-volume injections of seawater samples diluted just 10-fold. (2) The
high resolution provided by the 4pm particle size packing of the AS11-HC
column provided excellent peak shapes, even when using large injection
volumes containing relatively high concentrations of matrix ions, which
made possible the quantification of targeted analytes even at ultra-trace
levels. (3) SRM acquisition mode, available using a triple quadrupole
detector, provided the ultra-selective and sensitive detection required to
quantify analytes such as bromate, present at low pg L™ levels, even
when they were co-eluted with species present at high concentration
such as chloride. (4) Quantification by standard addition method to
overcome matrix effects.

The method was applied for the analysis of various seawater samples
from within a modern aquaculture facility wherein ozonation and UV
treatment were used to disinfect the seawater circulating in the system.
Results confirmed that iodide was completely transformed to iodate, with
iodate, bromate and chlorate being the main ozonation by-products

generated. The developed method has demonstrable practical utility as a
valuable tool for monitoring and understanding water treatment protocols
in aquaculture facilities, with a view to monitoring and avoiding undesir-
able iodide deficiencies and/or oxyhalides intake in fish populations.
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