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Abstract

Dempster-Shafer evidence theory (D-S) is an effective instrument for merging the

collected pieces of basic probability assignment (BPA), and it exhibits superiority

in achieving robustness of soft computing and decision making in an uncertain and

imprecise environment. However, the determination of BPA is still uncertain, and

merely applying evidence theory can sometimes lead to counterintuitive results when

lines of evidence conflict. In this paper, a novel BPA generation method for binary

problems called the base algorithm is designed based on the kernel density esti-

mation to construct probability density function models, using the pairwise learning

method to establish binary classification pairs. By means of the new BPA generation

method, a new decision-making algorithm based on D-S evidence theory, fuzzy pref-

erence relation and nondominance criterion is effectively designed. The strength of
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the proposed method is in applying pairwise learning, which transforms the original

complex problem into simple subproblems. With this process, the complexity of the

problem to be solved is greatly reduced, which increases the feasibility for industrial

fields. Furthermore, the fuzzy computing technique is used to aggregate the output

for each single subproblem, and the nondominance degree of each class is determined

from the fuzzy preference relation matrix, which can be directly used for the de-

termination of the input instance. Based on several industrial-based classification

experiments, the proposed BPA generation method and decision-making algorithm

present the effectiveness and improvement in terms of precision and Cohen’s kappa.
Keywords: Multisource data fusion; Pairwise learning; Dempster–Shafer evidence

theory; Fuzzy preference relationship; Basic probability assignment generation;

Kernel density estimation; Decision making; Classification

1. Introduction

Information fusion can integrate data from multiple sources to obtain the op-

timum estimation of targets [1, 2]. The method has been applied in many fields,

including medical diagnosis [3, 4], risk analysis [5], uncertainty problems [6] and

multicriteria decision-making [7–10]. The information in a multisource system may

be imprecise, uncertain or even mutually conflicting in real applications. Numerous

theories are presented to handle uncertainty [11, 12], including intuitionistic fuzzy

sets [13], soft likelihood function [14], soft sets [15], evidence theory [16, 17] and

others [18–20].

D-S evidence theory has been widely applied in numerous fields owing to its supe-

rior features [21]. Multisource information can be fused by Dempster’s combination

rule without depending on prior information [22]. D-S evidence theory can handle

uncertain and unknown information with fewer conditions than probability theory.

2

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜

朱朝胜



Due to its flexibility, many other theories can be extended and combined with D-S

evidence theory in its elegant computational framework, such as evidential reason-

ing, D numbers, Z-numbers [23–25], belief rule, quantum mass function, complex

evidence theory [26], and other hybrid models [27, 28]. These combination methods

provide more extensive application of D-S evidence theory and generate various valu-

able approaches to solve many problems, such as decision making [29–31], reliability

evaluation [32], classification [33], information fusion and so on [34–36].

However, D-S evidence theory still presents some shortcomings [37]. As the num-

ber of elements in the frame of discernment increases, so does the computational

complexity. In addition, when evidence is highly conflicting, the fusion result may

be abnormal; Zadeh cites a famous example to argue this issue [38]. It can be noticed

that these issues are all related to BPA, because the determination of BPA is the first

step, which directly impacts the computation of D-S evidence theory. Therefore, this

is troublesome for cases which must be solved urgently since the determination of

BPA is not always reasonable. When combining these BPAs, the BPAs may create

a negative impression and may ultimately influence the decision-making result. The

effectiveness of the relevant evidential system directly depends on the correctness of

the generated BPAs. This is therefore worth further study, especially for real-world

applications.

A large number of methods have been presented for the purpose of addressing the

problem mentioned above. Suh and Yook [39] used sensor data to determine BPA.

Jiang et al. made use of the fuzzy Triangle number to construct the BPA [40]. Xu

et al. [41] presented a nonparametric way to generate BPA. Qin et al. [42] improved

BPA by introducing kernel density estimation. Nevertheless, these methods are not

stable enough since they do not consider complex cases or cases with multiple targets.

For instance, when addressing multiclass problems, most of them cannot clearly
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distinguish the different boundaries of different classes. In multiclass problems, with

the increase of the number of classes, the computational complexity will significantly

increase since Dempster’s combination rule includes exponential behavior. These

approaches thus still have significant room for improvement. Therefore, a new BPA

determination method for binary problems, the base algorithm of which is based

on the pairwise learning strategy and kernel density estimation-based probability

density function, is proposed in this paper. It can be used to determine BPA in a

more reasonable and effective way.

In particular, the main point is transforming the original individual problem into

binary problems. Correspondingly, the frame of discernment is transformed into mul-

tiple binary hypotheses. These binary hypotheses can then be addressed separately.

Compared with dedicated multiclass classifiers, binary classifiers are generally easier

to construct, train and test more rapidly, and they have simpler decision bound-

aries. To solve the complex problems that often exist in computer vision with plenty

of targets or high feature dimensions, a more practical and feasible choice is usually

to divide multiple classes of problems into multiple binary classification problems

that are easily solved. In addition, in each sub-binary problem, the kernel density

estimation is applied to construct the probability density function (PDF) models.

The BPAs of each binary problem can be obtained according to the relation between

test samples and PDF models. After modeling the fuzzy preference relationship for

the obtained BPAs, nondominance degree is computed by comparing the nondomi-

nance degree of each class, and the class to which the instance belongs is determined.

Several classification experiments are implemented to demonstrate the effectiveness

of the presented study. To evaluate the results, both Cohen’s kappa and classification

accuracy are under consideration.

The remaining parts of the study are presented as follows. In Section 2, the pre-
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liminaries of this paper are quickly introduced with respect to D-S evidence theory,

pairwise learning and kernel density estimation. The details of the proposed base

algorithm for binary problems based on the pairwise learning algorithm and kernel

density estimation-based PDF model are presented, and the novel decision-making

method based on the D-S evidence theory, fuzzy preference relation and nondom-

inance criterion is proposed in Section 3. Section 4 shows an application of the

proposed method, and a few classification experiments are introduced in Section 5.

Finally, the conclusion to this work is presented in Section 6.

2. Preliminaries

In this section, the preliminaries of this paper are shortly introduced with respect

to D-S evidence theory, pairwise learning and kernel density estimation.

2.1. Dempster-Shafer evidence theory

The Dempster-Shafer evidence theory [43, 44] is one of the most effective methods.

With the promotion of Bayesian probability theory, D-S evidence theory offers the

superior capability that it can directly express the “uncertainty” through assigning

belief into multi-event hypotheses rather than into single-event hypotheses alone.

The basic notions about the D-S evidence theory are presented in the following.

2.1.1. Frame of discernment

Let C be a set of k collectively exhaustive and mutually exclusive events (denoted

as C), where C is known as the frame of discernment [43, 44]:

C =
{

C1, C2, · · · , Cp, · · ·Cq, · · ·Ck
}

. (1)
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2C denotes the possible hypotheses formed by the combination of classes in the C:

2C = {∅, {C1} , {C2} , · · · , {Ck} , {C1, C2} , · · · , {Cp, Cq}, · · · , C}, (2)

where ∅ denotes the empty set. The hypothesis which contains only one class is

called singleton.

2.1.2. Basic probability assignment

Once C is established, the BPA m, also called the mass function, is defined in

[43, 44] as:

m :

2C → [0, 1],

A → m(A),
(3)

and:

∑
A∈2C

m(A) = 1, (4)

m(∅) = 0, (5)

where m(A) is the support degree to hypothesis A. A is called a focal element if

m(A) > 0.

Owing to its superior feature of modeling uncertainty, BPA has been deeply

explored with respect to entropy [45], negation, divergence, and information quality.
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2.1.3. Dempster’s combination rule

Let m1 and m2 be two mass functions separately collected from distinctive infor-

mation sources on C. The combined evidence m = m1 ⊕ m2 is calculated as follows:

m(A) =
∑B∩D=A m1(B)m2(D)

1 − K
, (6)

and

K = ∑B∩D=∅ m1(B)m2(D), (7)

where B, D ∈ 2C ; K is the conflict coefficient between B and D [46].

2.1.4. Pignistic probability transformation

Pignistic probability is an elaboration of the D-S evidence theory developed by

Smets. The pignistic probability employs the principle of insufficient reason to trans-

form the mass function into a probability measure for decision making, which pro-

vides a valid way to address the nonprobability problem in D-S evidence theory.

Let m be a BPA defined on C, where the pignistic probability function of hypoth-

esis B in the frame C is defined in [47] as:

BetP(B) = ∑
A⊆2C

A∩B ̸=∅

|A ∩ B|
|A| · m(A)

1 − m(∅)
, ∀B ⊆ 2C , (8)

where |A| is the cardinality of hypothesis A. BetP(B) describes all the probability

values that support the hypothesis B being true.

2.2. Pairwise learning

The pairwise learning method is a useful method to handle multiclass classifica-

tion problems through class binarization techniques. The main strategy of pairwise
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learning is to transform the original multiclass classification problem into multiple

binary classification problems, which are easier to distinguish [48]. In the pairwise

learning approach, the original k-classes classification problem is divided into k(k−1)
2

binary classification problems. Then, a binary classifier is trained to distinguish each

pair of binary classification problems using a predefined binary classification algo-

rithm. In this way, k(k−1)
2 binary classifiers can be obtained based on the training

dataset, where each classifier consists of only two class labels. An example of pairwise

learning for a multiclass classification problem is presented in Fig. 1.

For a test sample to be classified, the final classification result is determined by

combining the outputs of all binary classifiers. A score-matrix R containing these

outputs is constructed as:

R =



− · · · r(1,p) · · · r(1,q) · · · r(1,k)

· · · − · · · · · · · · · · · · · · ·

r(p,1) · · · − · · · r(p,q) · · · r(p,k)

· · · · · · · · · − · · · · · · · · ·

r(q,1) · · · r(q,p) · · · − · · · r(q,k)

· · · · · · · · · · · · · · · − · · ·

r(k,1) · · · r(k,p) · · · r(k,q) · · · −


, (9)

where r(p,q) is the confidence that the binary classifier distinguishes class Cp from

class Cq, and r(q,p) = 1 − r(p,q) is the confidence in favor of class Cq (if it is not

provided by the classifier). After the score-matrix is determined by Eq. (9), the

next step is to deduce the final class by any of the combination methods. In this

paper, the nondominance criterion (ND) based on fuzzy preference relations [48]

is applied. The score-matrix is regarded as a fuzzy preference relation, and any
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degree of nondominance is calculated from the fuzzy preference relation. Specifically,

nondominance represents the degree to which the class Cp is not dominated by any

of the remaining classes. The detailed classification steps are as follows:

1. Normalize the score-matrix R, which is denoted as R
′ :

R
′
=



− · · · r
′
(1,p) · · · r

′
(1,q) · · · r

′
(1,k)

· · · − · · · · · · · · · · · · · · ·

r
′
(p,1) · · · − · · · r

′
(p,q) · · · r

′
(p,k)

· · · · · · · · · − · · · · · · · · ·

r
′
(q,1) · · · r

′
(q,p) · · · − · · · r

′
(q,k)

· · · · · · · · · · · · · · · − · · ·

r
′
(k,1) · · · r

′
(k,p) · · · r

′
(k,q) · · · −


, (10)

in which

r
′
(p,q) =

r(p,q)

r(p,q) + r(q,p)
. (11)

2. Construct the fuzzy preference relation matrix R̃:

R̃ =



− · · · r̃(1,p) · · · r̃(1,q) · · · r̃(1,k)

· · · − · · · · · · · · · · · · · · ·

r̃(p,1) · · · − · · · r̃(p,q) · · · r̃(p,k)

· · · · · · · · · − · · · · · · · · ·

r̃(q,1) · · · r̃(q,p) · · · − · · · r̃(q,k)

· · · · · · · · · · · · · · · − · · ·

r̃(k,1) · · · r̃(k,p) · · · r̃(k,q) · · · −


, (12)
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where the fuzzy preference relation r̃(p,q) is calculated as below:

r̃(p,q) =

 r
′
(p,q) − r

′
(q,p), r

′
(p,q) > r

′
(q,p);

0, otherwise.

3. Compute the nondominance degree NDp of each class Cp:

NDp = 1 − sup
1≤p≤k

[r̃(q,p)]. (13)

4. Determine the final class:

Select the max value in NDp, denoted as ND, which indicates that the instance

belongs to class CND:

ND = arg max
1≤p≤k

{NDp}. (14)

Hence, the class of the input instance is finally identified as belonging to the

class CND.

2.3. Kernel density estimation

Nonparametric density estimation is a considerable instrument for statistical

analysis of data. The nonparametric approach exhibits the superior capability that it

can more flexibly model the given dataset. Furthermore, compared with traditional

approaches, the nonparametric approach will not be affected by specification bias.

Kernel density estimation (KDE), as a nonparametric density estimation ap-

proach, is used to estimate the probability density function (PDF) of a random vari-

able. For a univariate independent training sample T = (t1, t2, t3 · · · , tn), the KDE
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Figure 1: An example of the pairwise learning technique for a 3-class problem.
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of the density which is implemented to construct the probability density function

(PDF) of test sample T is defined as:

∧
fh(x) =

1
n

n

∑
z=1

κh(x − tz) =
1

nh

n

∑
z=1

κ(
x − tz

h
), x ∈ R, (15)

where κ is the kernel function; h is a smoothing parameter called the bandwidth; R

is any real number.

In this study, an adaptive KDE approach [42] is chosen, and its corresponding

knowledge is as follows:

The KDE can be computed by:

f̂ (x; h) =
1
n

n

∑
z=1

κ(x, tz; h), x ∈ [0, 1], (16)

where the kernel κ is:

κ(x, tz; h) =
∞

∑
K=−∞

ϕ(x, 2K + tz; h) + ϕ(x, 2K − tz; h), (17)

and

ϕ(x, 2K + tz; h) =
1√
2πh

e
−(x−2K−tz)2

2h , (18)

ϕ(x, 2K − tz; h) =
1√
2πh

e
−(x−2K+tz)2

2h . (19)

For more details of KDE, the reader can refer to [42].

3. The proposed method

In this section, a new method for the determination of BPA is presented. Further-

more, a new decision-making algorithm based on D-S evidence theory is proposed.
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In general, in pairwise learning, the original frame of discernment which contains k

classes is divided into k(k − 1)
2

hypotheses pairs. For instance, given a problem with

the frame of discernment Θ = {A, B, D}, it can be decomposed to the hypothesis

pairs of {A, B}, {A, D} and {B, D}, which constitute three smaller binary problems.

It can be determined that a complex problem with multiple classes included is de-

composed into multiple easier binary problems, for which each frame of discernment

of binary problems includes only two classes/events. The newly devised base algo-

rithm can then be applied to each binary problem to determine BPA, and the BPA

at this time is the immediate result for binary problems. Subsequently, their results

will be aggregated by the fuzzy preference relation to determine the final BPA. Note

that the obtained BPA is for the original problem.

3.1. Decompose the frame of discernment

For the given dataset, if it contains k classes and each class has N attributes,

then the frame of discernment of the dataset is defined:

C =
{

C1, C2, · · · , Cp, · · ·Cq, · · ·Ck
}

, (20)

which means that there are k classes in the dataset. Conducting the decomposition

process will generate k(k−1)
2 hypothesis pairs, denoted as θ:

θ1 = {C1, C2} , θ2 = {C1, C3} , . . . , θi =
{

Cp, Cq
}

, . . . θ k(k−1)
2

= {Ck−1, Ck} . (21)

After that, the original k-classes problem is divided into k(k−1)
2 binary problems, and

the frames of discernment are all converted to a binary problem hypothesis which

contains two classes. For each binary problem, the base algorithm introduced below

is applied to determine the BPA.
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3.2. Base algorithm

In this process, the base algorithm for each binary problem is divided into three

parts. The first part builds a probability density function (PDF) model via kernel

density estimation introduced in Section 2.3. The second part determines the BPA

with the relation between the test instance and the model. The final part makes a

final decision based on the fuzzy preference relation and the nondominance degree.

3.2.1. Build the probability density function (PDF) model

Step 1: Preliminary preparation and hypothesis

First, the whole dataset is divided into two parts: training set T = {t1, t2, . . . , tn}

and test set S = {s1, s2, . . . , sv}. The class to which instance tn/sv belongs is one of

the classes in C, and for each instance tn/sv, N attributes are included.

Step 2: Construct the PDF model

The lowest value LBpj and highest value UBpj of the training sample tp,j in

training set T for class Cp and its corresponding attribute j are selected to construct

the interval [LBpj, UBpj].

If tz ∈ [LBpj, UBpj]:

f̂ (x; h) =
1
n

n

∑
z=1

κ(x, tz; h), x ∈ [0, 1]; (22)

If tz /∈ [LBpj, UBpj]:

f̂ (x; h) = ε0, (23)

where, according to paper [42], ε0 is set as 0.001.

The PDF model of the given dataset has already been established.
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3.2.2. Determine BPA for the binary problem {Cp, Cq}

For the binary problem {Cp, Cq}, (1 ≤ p < q ≤ k), the determination of its BPA

is as follows.

Step 3: Obtain the relationship between test sample sv and the PDF model

Use yl (l = 1, 2) to represent the intersection of the selected attribute j (j =

1, 2, · · · , N) with the corresponding PDF models of two classes in the hypothesis

pair {Cp, Cq}, (1 ≤ p < q ≤ k).

Step 4: Assign the membership to the focal element

Case 1: ∃yl ̸= ε0 (l = 1, 2)

The intersecting values yl  (l = 1, 2) are sorted in descending order, wg (g = 1, 2).

For wg (g = 1, 2), its corresponding class (i.e., the class of PDF model it belongs

to) can be identified in the binary problem {Cp, Cq}. For the hypothesis pair, wg

(g = 1, 2) is assigned to the mass function by the following rule:

m(p,q),j({Cp}) = w1,

m(p,q),j({Cp, Cq}) = w2,

where m(p,q),j({Cp}) denotes the wg assignment of the mass function to the hypoth-

esis pair for class Cp to attribute j in the hypothesis pair {Cp, Cq}.

Case 2: ∀yl = ε0 (l = 1, 2)

In this case, we generate the BPA by considering the similarity between the test

sample sv and the mean value of each class in training set T. Let tp,j denote the mean

value of class Cp for attribute j in T, tp,j =

k
∑

p=1
tp,j

k
, in which tp,j denotes the sample of

class Cp for attribute j, and k is the cardinality of the frame of discernment C. With
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the input instance sv,j, which is the instance sv with its corresponding attribute j,

the distance dp,j from the instance to the tp,j is calculated as follows, which indicates

the discrepancy of the instance with respect to all classes.

For class Cp (1 ≤ p ≤ k):

dp,j =
∣∣sv,j − tp,j

∣∣ , (24)

where j represents the attribute j, 1 ≤ j ≤ N.

If max(dp,j) > 1, dp,j
′
is calculated as follows:

dp,j
′
=

dp,j

dp,j + dq,j
. (25)

If max(dp,j) < 1, dp,j
′
is calculated as follows:

dp,j
′
= dp,j. (26)

Then, m(p,q),j({Cp}) can be obtained by:

m(p,q),j({Cp}) = e−dp,j
′
. (27)

Similarly, for the class Cq and its corresponding attribute j, the same method is

conducted as above to obtain m(p,q),j({Cq}).

Then, the BPAs of the test sample can be determined.

Step 5: Normalize the BPA

Due to the requirements of Eq. (6), the sum of the belief of all hypotheses should

be equal to 1; thus, the BPAs should be normalized by:
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Case 1: ∃yl ̸= ε0 (l = 1, 2)

m
′
(p,q),j({Cp}) =

m(p,q),j({Cp})
m(p,q),j({Cp}) + m(p,q),j({Cp, Cq})

. (28)

m
′
(p,q),j({Cp, Cq}) =

m(p,q),j({Cp, Cq})
m(p,q),j({Cp}) + m(p,q),j({Cp, Cq})

. (29)

Case 2: ∀yl = ε0 (l = 1, 2)

m
′
(p,q),j({Cp}) =

m(p,q),j({Cp})
m(p,q),j({Cp}) + m(p,q),j({Cq})

. (30)

m
′
(p,q),j({Cq}) =

m(p,q),j({Cq})
m(p,q),j({Cp}) + m(p,q),j({Cq})

. (31)

Note that the generated BPA is not the final one, but is for each binary problem.

Step 6: Combine BPAs

These BPAs can be fused by Dempster’s combination rule for each binary problem

according to Eq. (6) and Eq. (7) to obtain the final BPA (m̃) of the sample.

m̃(p,q) = m
′
(p,q),1 ⊕ m

′
(p,q),2⊕, · · · ,⊕m

′
(p,q),j, · · · ,⊕m

′
(p,q),N. (32)

Then, for each binary problem {Cp, Cq}, its corresponding BPA can be obtained as

m̃(p,q).

With the obtained final BPA m̃(p,q), the pignistic probability function is im-

plemented as defined in Eq. (8) to transform the mass function to a probability

distribution:

BetP(p,q)({Cp}) = m̃(p,q)({Cp}) +
∣∣{Cp} ∩ {Cp, Cq}

∣∣∣∣{Cp, Cq}
∣∣ ·

m̃(p,q)({Cp, Cq})
1 − m̃(p,q)(∅)

; (33)
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BetP(p,q)({Cq}) =
∣∣{Cq} ∩ {Cp, Cq}

∣∣∣∣{Cp, Cq}
∣∣ ·

m̃(p,q)({Cp, Cq})
1 − m̃(p,q)(∅)

. (34)

It is noteworthy that the problem to be addressed occurs in a closed world, which

indicates that C is complete; thus, m̃(∅) = 0.

3.2.3. Aggregation and final decision making

Step 7: Determine the score-matrix

As mentioned above, r(p,q) represents the confidence degree of the classifier in

favor of class Cp. In the proposed method, r(p,q){Cp} is obtained by r(p,q){Cp} =

BetP(p,q)({Cp}), and r(q,p){Cq} is assigned by r(q,p){Cq} = BetP(q,p)({Cq}), where

BetP(p,q)({Cp}) and BetP(q,p)({Cq}) are the instances of BetP supporting class Cp

and class Cq, respectively. Thus, in this paper, the score-matrix can be obtained as:

R =



− · · · r(1,p){C1} · · · r(1,q){C1} · · · r(1,k){C1}

· · · − · · · · · · · · · · · · · · ·

r(p,1){Cp} · · · − · · · r(p,q){Cp} · · · r(p,k){Cp}

· · · · · · · · · − · · · · · · · · ·

r(q,1){Cq} · · · r(q,p){Cq} · · · − · · · r(q,k){Cq}

· · · · · · · · · · · · · · · − · · ·

r(k,1){Ck} · · · r(k,p){Ck} · · · r(k,q){Ck} · · · −


, (35)

where r(p,q){Cp} represents the pignistic probability supporting the class Cp in the

frame of discernment {Cp, Cq}.
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Step 8: Normalize the score-matrix

R
′
=



− · · · r
′
(1,p){C1} · · · r

′
(1,q){C1} · · · r

′
(1,k){C1}

· · · − · · · · · · · · · · · · · · ·

r
′
(p,1){Cp} · · · − · · · r

′
(p,q){Cp} · · · r

′
(p,k){Cp}

· · · · · · · · · − · · · · · · · · ·

r
′
(q,1){Cq} · · · r

′
(q,p){Cq} · · · − · · · r

′
(q,k){Cq}

· · · · · · · · · · · · · · · − · · ·

r
′
(k,1){Ck} · · · r

′
(k,p){Ck} · · · r

′
(k,q){Ck} · · · −


, (36)

in which

r
′
(p,q){Cp} =

r(p,q){Cp}
r(p,q){Cp}+ r(q,p){Cq}

. (37)

Step 9: Compute the fuzzy preference relation

R̃ =



− · · · r̃(1,p){C1} · · · r̃(1,q){C1} · · · r̃(1,k){C1}

· · · − · · · · · · · · · · · · · · ·

r̃(p,1){Cp} · · · − · · · r̃(p,q){Cp} · · · r̃(p,k){Cp}

· · · · · · · · · − · · · · · · · · ·

r̃(q,1){Cq} · · · r̃(q,p){Cq} · · · − · · · r̃(q,k){Cq}

· · · · · · · · · · · · · · · − · · ·

r̃(k,1){Ck} · · · r̃(k,p){Ck} · · · r̃(k,q){Ck} · · · −


, (38)
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where the fuzzy preference relation r̃(p,q) is calculated as below:

r̃(p,q){Cp} =

 r
′
(p,q){Cp} − r

′
(q,p){Cq}, r

′
(p,q){Cp} > r

′
(q,p){Cq};

0, otherwise.
(39)

Step 10: Compute the nondominance degree NDp of class Cp

NDp =


1 − sup

1≤q≤k
[r̃(q,p){Cq}], 1 − sup

1≤q≤k
[r̃(q,p){Cq}] > 0;

0, 1 − sup
1≤q≤k

[r̃(q,p){Cq}] < 0.
(40)

Step 11: Determine the final class of the instance

Select the maximum value in NDp, denoted as ND, which indicates that the

instance belongs to class CND:

ND = arg max
1≤p≤k

{NDp}. (41)

Hence, the input instance is finally identified as belonging to the class CND.

4. An illustrated application

Decision making is necessary in various kinds of applications [49]. In this section,

an application of classification is given to illustrate the proposed method. The Iris

dataset originates from the UCI repository and KEEL dataset repository of the

machine learning databases. The Iris dataset includes three species of Setosa (Se),

Versicolor (Vc), and Virginica (Vi), with 50 instances per class. Each type of flower

has four attributes: sepal length (SL), sepal width (SW), petal length (PL), and

petal width (PW).
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Figure 2: The flowchart of the proposed method

Step 1

For the Iris dataset, there are 30 and 20 instances of each class for the training

set and test set, respectively.

Step 2

For each attribute of each class, the probability density function (PDF) modes will

be constructed based on KDE. The PDF model of the property SL of the class Setosa

is established in Fig. 3(a). Similarly, for the attributes SW, PL and PW of Setosa,

their corresponding PDF is established and drawn in Fig. 3(b)-(d), respectively. In

addition, for the classes Versicolor and Virginicia, their PDF probability model can

be established with the same operation.

Step 3

In this step, we demonstrate calculating the confidence degree of r(Se,Vc). Given

an instance of class Setosa from the test set: sv,SL = 5.1 cm, sv,SW = 3.8 cm, sv,PL
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Figure 3: Probabilistic model of four attributes in three categories
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= 1.6 cm, sv,PW = 0.2 cm

To calculate its intersection with other PDF curves, consider the value of its

SL attribute as sv,SL = 5.1. The result is shown in Fig. 4. We can obtain two

intersections A1 and A2 with the PDF curves of Setosa and Versicolor:

A1 : (5.1, y1) and A2 : (5.1, y2).

The intersecting result of the test sample sv,SL with the PDF model is:

y1 = 1.0972 and y2 = 0.2369.

Figure 4: The intersection result with other PDF curves.
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Step 4

Based on the rules in Section 3.2.2, we can obtain two propositions for the hy-

pothesis pair {Se, Vc}:

m(Se,Vc)({Se}) = 1.0972;

m(Se,Vc)({Se, Vc}) = 0.2369.

Step 5

The BPA is normalized as:

m
′
(Se,Vc)({Se}) = 0.8224;

m
′
(Se,Vc)({Se, Vc}) = 0.1776.

Similarly, we obtain the remaining BPAs of attributes SW, PL and PW of hy-

pothesis pair {Se, Vc} with the proposed method, which are shown in Table 1. For

the hypothesis pairs of {Se, Vi} and {Vc, Vi}, their BPAs can be obtained with the

same process as that employed for hypothesis pair {Se, Vc}.

Step 6

In this step, the four BPAs are merged using Dempster’s merge rules. After that,

the pignistic probability function is conducted to transform the BPA into probability

distribution BetP. The results are BetP(Se,Vc)({Se}) = 1 and BetP(Se,Vc)({Vc}) = 0.

Step 7

To determine the score-matrix R, the same process above will be performed until

all the items of R are calculated.
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Table 1: The generated BPAs in terms of the test sample Setosa

Hypothesis BPA

SL m
′
(Se,Vc)({Se}) = 0.8224

m
′
(Se,Vc)({Se, Vc}) = 0.1776

SW m
′
(Se,Vc)({Se}) = 0.9986

m
′
(Se,Vc)({Se, Vc}) = 0.0014

PL m
′
(Se,Vc)({Se}) = 0.9995

m
′
(Se,Vc)({Se, Vc}) = 0.0005

PW m
′
(Se,Vc)({Se}) = 0.9999

m
′
(Se,Vc)({Se, Vc}) = 0.0001

R =


0 1.000 1.0000

0 0 0.8278

0 0.1722 0

 . (42)

Step 8

Normalize the score-matrix R to R
′ :

R
′
=


0 1.000 1.0000

0 0 0.8278

0 0.1722 0

 . (43)

Step 9

Compute the fuzzy preference relation between classes to obtain R̃:

R̃ =


0 1.000 1.0000

0 0 0.6556

0 0 0

 . (44)
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Table 2: Datasets

d Dataset v N k

Hep Hepatitis 155 19 2
Hea Heart 270 13 2
Breast Breast-cancer-wisconsin 699 9 2
Iri Iris 150 4 3
Win Wine 178 13 3
New Newthyroid 215 5 3
Veh Vehicle 846 18 4
Cle Cleveland 303 13 5
Pag Page-blocks 5472 10 5
Gla Glass 214 9 7

Step 10

Compute the nondominance degrees:

NDSe = 1;

NDVc = 0;

NDVi = 0.

(45)

Step 11

Select the maximum value in {NDSe, NDVc, NDVi}, denoted as ND, which in-

dicates that the instance belongs to class CND:

ND = arg max
p∈{Se,Vc,Vi}

{NDSe, NDVc, NDVi} = Se. (46)

Through ND, it can then be inferred that the instance belongs to the class

Setosa, which is the true discrimination of the class of the sample.
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Table 3: Confusion matrix for an m-class problem

Ground label Output class
C1 C2 · · · Ck Total

C1 µ11 µ12 · · · µ1k Tr1
C2 µ21 µ22 · · · µ2k Tr2

... · · · ... · · · · · · · · ·
Ck µk1 µk2 · · · µkk Trk

Total Tc1 Tc2 · · · Tck T

Table 4: Confusion matrix of Heart dataset produced by the method of Jiang et al.

Actual class Output class
1 2

1 135 15
2 52 68

Table 5: Confusion matrix of the Heart dataset produced by the method of Qin et al.

Actual class Output class
1 2

1 146 4
2 47 73

Table 6: Average classification accuracy results of different methods for different datasets

Dataset Jiang et al. Qin et al. Proposed method
Hep 81.29 89.03 91.61
Hea 75.19 81.11 91.48

Breast 86.38 97.07 99.85
Iri 95.33 96.00 99.33

Win 86.38 98.88 99.90
New 97.67 98.60 99.79
Veh 64.89 66.55 98.45
Cle 46.80 64.31 63.64
Pag 78.83 90.24 99.18
Gla 78.05 83.18 89.72
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Table 7: Average kappa results of different datasets obtained with different methods

Dataset Jiang et al. Qin et al. Proposed method
Hep 0.3787 0.6272 0.7632
Hea 0.4815 0.6003 0.8250

Breast 0.6733 0.9522 0.9968
Iri 0.9400 0.9500 0.9800

Win 0.9745 0.9830 0.9900
New 0.9600 0.9700 0.9800
Veh 0.4839 0.5208 0.9788
Cle 0.3643 0.4116 0.4731
Pag 0.5871 0.6181 0.9565
Gla 0.7425 0.7686 0.8574

Table 8: Confusion matrix of Heart dataset produced by the proposed method

Actual class Output class
1 2

1 147 3
2 20 100

Table 9: Confusion matrix of the Page-blocks dataset produced by the method of Qin et al.

Actual class Output class
1 2 3 4 5

1 4475 95 50 222 71
2 4 305 4 9 7
3 0 17 17 3 0
4 5 1 0 77 4
5 15 0 0 36 64
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Table 10: Confusion matrix of the Page-blocks dataset produced by the proposed method

Actual class Output class
1 2 3 4 5

1 4913 0 0 0 0
2 0 329 0 0 0
3 0 0 28 0 0
4 0 0 0 87 0
5 0 45 0 0 70

5. Experiments

In this section, ten real-world classification experiments will be performed to

illustrate the function of the method. We will provide the detailed information about

the chosen dataset in the first section, and then introduce two metrics to evaluate

the performance of the presented approach. Finally, some discussions are presented

based on the comparison with the two related works.

5.1. Experimental datasets

In our experiments, ten datasets from the KEEL repository are used to implement

the classification experiments. These datasets represent real-world problems from

different industrial fields such as medical diagnosis, the manufacturing industry, the

transportation industry and so on. They contain different amounts of instances

varying from hundreds to thousands. The same partition is applied for each dataset:

in other words, the same 5-fold cross-validation is used to divide the training and

test sets. For each fold, four-fifths of the dataset is regarded as the training set,

and the remaining fifth is used to test the performance of the proposed method.

Table 2 summarizes the brief descriptions of those datasets, including the number

of instances (v), the number of attributes (N), and the number of classes (k). We

removed those instances with missing values before conducting the experiments.
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5.2. Performance measures

Several standard terms have been defined for the classification problems. The

classification accuracy [50] is the most widely used metric to evaluate the performance

of binary classification problems. The formula for quantifying binary accuracy is:

Acc =
TP + TN

TP + TN + FP + FN
, (47)

where TP = True positive; FP = False positive; TN = True negative; FN =

False negative.

With respect to multiclass classification problems, another metric called Cohen’s

kappa [48] might reflect the real classification performance of the classifier. In this

study, classification accuracy and Cohen’s kappa are employed as evaluation mea-

sures. Therefore, the confusion matrix needs to be determined first as in Table 3.

From the confusion matrix, the Cohen’s kappa is calculated as below:

kappa =

v
k
∑

z=1
µzz −

k
∑

z=1
TrzTcz

v2 −
k
∑

z=1
TrzTcz

, (48)

where v represents the total number of instances, k is the number of classes, and µzz

is a positive number for each class, which denotes the number of test samples whose

input sample category is the same as the classification result. As shown in Table 3,

Trz and Tcz are counts of rows and columns. The results for kappa range from -1 to

1, where -1 indicates total disagreement, a value of 0 indicates slight consistency and

a value of 1 denotes near-perfection.
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5.3. Discussion

The results of the comparison are summarized in Table 6 and Table 7 in terms

of classification accuracy and kappa, respectively. Each bold-face data point in the

two Tables is the best result for each experiment. From these data, it is interesting

to draw some meaningful conclusions. In Table 6, the best results almost all come

from the proposed method, except in the case of the Cleveland dataset. Even for

the Cleveland dataset, the result for our method is only 0.67 % smaller than the

best result, which was obtained by Qin et al. Particularly, in the case of the Vehicle

dataset, our method outperforms the method of Jiang et al. by 33.56 % and is

also 31.9 % higher than the result of the method of Qin et al. With respect to

complex cases, such as Page-blocks and the Glass dataset, with five and seven classes,

respectively, the proposed method also exhibits stable performance, with outcomes

nearly 20 % higher than the method of Jiang et al. and 7 % higher than the method

of Qin et al. The reason for the disparity is that the other two methods do not

consider the difficult decision boundaries of multiclass cases, which leads to the weak

capabilities of the two methods in cases with complex circumstances. Although the

original problem is resized to a smaller scale, such as a binary classification problem

(e.g., the Hepatitis and Heart datasets), our method can also more effectively handle

such issues. This is just not as outstanding as the multiclass case: our method

increases by nearly 3 % and 10 % versus the others.

Regarding the kappa metric, the outcomes are remarkable as well, and it also

supports the competitiveness of the proposed method. From the data, we can find

the most significant differences. It is a substantial improvement that the kappa of

our method for Heart is almost 22 % larger than that of the method of Qin et al.,

though there is only a 10 % difference in the classification accuracy. The reason for

this is that the classification accuracy is greatly affected by imbalanced datasets: its
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value is dependent on the results of classes with more instances. Therefore, it cannot

effectively characterize the classifier ability. This result shows that the predicted

class label is almost exactly the same as its original class label for both classes in

the imbalanced Heart dataset, which can be found in Table 9 and Table 10. From

the tables, with regard to class 1, two methods can classify as many instances, but

the method of Qin et al. does not perform satisfactorily for class 2. Jiang et al.’s

method cannot function as well in either of the two classes. Moreover, the results

are more significant for another similar situation for the Page-block dataset. It is

obvious that this dataset is extremely imbalanced, where class 1 contains the most

instances. Table 7 shows that the kappa of the novel method is 34 % higher than

that of the method of Qin et al., while the classification accuracy is only 9 % higher.

Although it does identify the most instances of class 1, it performs poorly in terms

of the other four classes, which can be observed from its confusion matrix in Table 9.

The novel method can not only successfully classify the instances but is less biased

for imbalanced datasets, which may suppose added difficulty for the identification.

These two special examples exhibit the superiority of our novel method in imbalanced

dataset scenarios.

6. Conclusion

In this study, we put forward a pairwise learning-based BPA determination model

called the base algorithm for D-S evidence theory. Specifically, the pairwise learning

method is used to divide the original complex problem into as many pairs of easily

solved binary subproblems as possible, from which the output is computed by kernel

density estimation. Based on the new BPA generation algorithm, D-S combination

rule, fuzzy preference relation and nondominance criterion, a new decision-making

scheme is designed. This new scheme can then discriminate the pairs of subproblems
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and achieve better decision boundaries in complex scenarios from a fuzzy prefer-

ence relation. The new decision-making algorithm is designed based on the binary

hypothesis pair and greatly reduces the computational complexity and boundary

problems, thus enabling a wider range of application scenarios. Through ten real-

world classification experiments, we have verified the efficiency and practicability

of our proposed approach with respect to complex multiclass cases. Wehave shown

that the performance of our approach is superior to those of related works in some

imbalanced conditions, which indicates that any binary classification method can be

used to generate the BPAs and combine them. Therefore, we predict that the use of

D-S evidence theory will escalate in various industrial fields.
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