
1.  Introduction
Accurately gauging the sensitivity of the Earth's climate to greenhouse gas forcing is crucial for efforts to 
mitigating the risks of human-induced climate change. But the Earth's climate sensitivity remains highly 
uncertain. The most typical measure, equilibrium climate sensitivity (ECS), is defined as the global tem-
perature change in response to a doubling to atmospheric CO2. The Intergovernmental Panel on Climate 
Change estimated a likely range in ECS of 1.5°C – 4.5°C in the Fifth Assessment Report (AR5; Stocker 
et al., 2013). A more recent review, using multiple lines of evidence, narrowed the range to 2.6°C – 3.9°C 
(Sherwood et al., 2020).

Abstract  Climate models exhibit a broad range in the simulated properties of the climate system. 
In the early historical period, the absolute global mean surface air temperature in Coupled Model 
Intercomparison Project, Phase 5 (CMIP5) models spans a range of ∼12°C – 15°C. Other climate variables 
may be linked to global mean temperature, and so accurate representation of the baseline climate state 
is crucial for meaningful future climate projections. In CMIP5 baseline climate states, statistically 
significant intermodel correlations between Southern Ocean surface temperature, outgoing shortwave 
radiation, cloudiness, the position of the mid-latitude eddy-driven jet, and Antarctic sea ice area are 
found. The baseline temperature relationships extend to projected future changes in the same set of 
variables, impacting on the projected global mean surface temperature change. Models with initially 
cooler Southern Ocean tend to exhibit more global warming, and vice versa for initially warmer models. 
These relationships arise due to a “capacity for change”. For example, cold-biased models tend to have 
more cloud cover, sea ice, and equatorward jet initially, and thus a greater capacity to lose cloud cover and 
sea ice, and for the jet to shift poleward under global warming. A first look at emerging data from CMIP6 
reveals a shift of the relationship from the Southern Ocean towards the Antarctic region, possibly due to 
reductions in Southern Ocean biases, such as in westerly wind representation.

Plain Language Summary  Modern simulations of the Earth's climate system differ in some 
of their large-scale features. For example, in models reported on by the Intergovernmental Panel on 
Climate Change in the Fifth Assessment Report, the global average temperature ranges between 12°C and 
15°C. Global mean temperature is known to be linked to other features, such as wind, clouds, and rainfall. 
Accurately modeling the present-day climate is important, so that we can have more confidence in the 
possible futures they simulate under different levels of anthropogenic greenhouse gas emissions. In this 
study, strong relationships are found between simulated Southern Ocean temperature and the amount of 
sea ice and clouds. In addition, it is found that the initial Southern Ocean temperature is also related to 
changes in sea ice and cloud simulated in the future. A model that is cooler initially, for example, tends 
to have more sea ice and cloud, but also loses more sea ice and cloud in the future, and simulates more 
global warming.
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(CMIP5) simulations
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temperature relationship extends 
to projected changes in radiation, 
cloudiness, the jet latitude and sea 
ice

•	 �CMIP5 models with initially cooler 
Southern Ocean exhibit more global 
warming, likely due to greater 
capacity for change
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Climate models of all levels of sophistication have been used to estimate climate sensitivity, but modern 
efforts focus on the use of general circulation models or Earth system models which include biogeochem-
ical processes. No two climate models are identical, with some exhibiting low sensitivity and others high 
(e.g., Flato et al., 2013; Forster et al., 2013; Zhai et al., 2015). Furthermore, all models exhibit some level of 
bias when compared with observational data. One approach to reducing the level of uncertainty in climate 
sensitivity is that of “emergent constraints” (Hall et al., 2019). Emergent constraints aim to find links be-
tween the bias of particular variables in the baseline climate, and their evolution under radiative forcing. If 
a relationship emerges, across a wide range of different climate models, then the projected range from less 
biased models may provide a useful constraint on projections (Hall et al., 2019). The emergent constraints 
approach crucially depends upon drawing from a large number of unique climate models. Increasing avail-
ability of such model data, as notably facilitated by the Coupled Model Intercomparison Project (CMIP), 
allows for deeper studies into the impact of model biases on future projections.

Baseline global mean surface temperature (GMST) has been explored as just one of many possible con-
straints on climate sensitivity. CMIP, Phase 5 (CMIP5) models exhibit a wide range in long-term averaged 
absolute GMST over the historical period (∼12°C  –  15°C; Flato et  al.,  2013). No statistically significant 
relationship has been found between baseline temperature and ECS in CMIP5 (Flato et al., 2013), nor with 
future temperature change (Hawkins & Sutton, 2016), though it has been noted that there is an absence 
of models with overly warm baseline temperature and strong global warming (Hawkins & Sutton, 2016). 
Accurately simulating absolute temperature is generally considered less important than, for instance, ini-
tializing a model with near-zero net top-of-atmosphere (TOA) energy balance (Hawkins & Sutton, 2016), as 
temperature projections are typically measured relative to a baseline period (i.e., represented as anomalies).

Past studies have examined possible relationships between elements of the Southern Hemisphere climate 
system and climate sensitivity. CMIP3 models exhibited a strong relationship between Southern Hemi-
sphere net TOA radiation and climate sensitivity (Trenberth & Fasullo, 2010; their Figure 13). Whilst show-
ing that the intermodel correlation is strong, Trenberth & Fasullo (2010) also acknowledge that the rela-
tionship could also be due to other model processes or biases, which might be common across models, and 
hence the true climate sensitivity cannot be inferred. Grise et al. (2015) find a weaker intermodel correlation 
between climate sensitivity and Southern Hemisphere net TOA radiation amongst CMIP5 models. They 
show that the relationship only exists in a subset of CMIP5 models with “unrealistically bright present-day 
clouds in the Southern Hemisphere sub-tropics”—a characteristic that is typical amongst CMIP3 models 
(Grise et al., 2015). Thus, the apparent relationship between net TOA radiation and climate sensitivity is not 
supported by any physical mechanism, and manifests merely as a result of model biases. Southern Ocean 
cloudiness and net radiation were therefore deemed inappropriate for constraining equilibrium climate 
sensitivity (Grise et al., 2015).

Despite some processes being poorly represented in models (Hyder et al., 2018), the Southern Ocean is a 
key component of the global climate system (e.g., Frölicher et al., 2015; Marshall & Speer, 2012; Sarmiento 
et al., 2004; Toggweiler & Samuels, 1995). Characterized by circumpolar circulation under the influence 
of the prevalent westerly winds, it plays an important role in the global thermohaline circulation and the 
uptake of heat and carbon (Manabe et al., 1991; Marshall & Speer, 2012; Mikaloff Fletcher et al, 2006; Togg-
weiler & Samuels, 1995), which is similarly dominant in CMIP5 models (Frölicher et al., 2015).

In this study, the relationships between baseline variables in the Southern Ocean climate system and their 
projected changes are explored. A wide range of variables are analyzed together, and intermodel correla-
tions and regressions are computed. Motivated by the emergent constraints approach, and utilizing the 
complete suite of CMIP5 simulations, we aim to explore the possible role of baseline biases in the Southern 
Ocean system in CMIP5, and their impact on projected changes, locally and globally. A first look at CMIP6 
is also taken, but because the region with the strongest intermodel correlations is shifted towards Antarcti-
ca, further investigation is warranted in a separate study. After outlining the data and methods (Section 2), 
the relationships between baseline absolute temperature and a range of other climate variables, for both 
baseline and future changes, are examined (Section 3). Finally, the conclusions of this study are summa-
rized in Section 4.
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1.1.  Data and Methods

This study focusses on CMIP5 models, but some preliminary analysis is conducted on available CMIP6 
output. For CMIP5, the historical experiments are analyzed together with the Representative Concentration 
Pathway 8.5 (RCP8.5) scenario experiments (rcp85), through to the end of the 21st Century. The rcp85 sce-
nario was chosen since it has the strongest forcing, and therefore the largest projected changes, which helps 
to draw out possible correlations.

Baseline temperature is the equilibrium temperature that models achieve after a ‘spin-up’ period. In this 
study, the baseline temperature is evaluated in the early part of the historical simulations, i.e., the late 19th 
Century. The baseline period is taken as 1861 – 1900, early in the historical simulations and soon after the 
pre-industrial state. Greenhouse gas forcing may cause some temperature change in this early period, but 
the historical simulations are analyzed in preference over the pre-industrial control (piControl) simulations, 
since piControl data are available from fewer models than historical data. For projected changes, a difference 
is taken over the future period 2061 – 2100 and the baseline. Long reference periods of 40 years were chosen 
to reduce the influence of internal decadal variability as much as possible.

The primary climate variables analyzed here are surface air temperature (CMIP variable name: tas), TOA 
outgoing shortwave radiation (rsut), total cloud fraction (clt), surface zonal wind stress (tauu), and sea ice 
concentration (sic). All available CMIP5 monthly data for each of the five variables were gathered from both 
historical and rcp85 experiment sets. Annual means were computed, and then the data were regridded to a 
common 1° × 1° global grid. For models with multiple ensemble members, a single model ensemble mean 
was taken. Utilizing only models for which all five variables were available over the period 1861 – 2100 (af-
ter appending rcp85 to historical), resulted in a set of 40 CMIP5 models (Table 1).

Net TOA radiation is also analyzed in the 40 CMIP5 models, but only in the historical experiments. It is 
computed as TOA incident shortwave radiation (rsdt) minus TOA rsut minus TOA outgoing longwave (rlut). 
Some relationships with ECS are computed, which is only available for 30 of these CMIP5 models (Table 1).

Surface air temperature is analyzed later in a group of CMIP6 models, using historical data together with 
ssp585 (Table 2). Note that CMIP6 uses updated historical forcings, and the Shared Socioeconomic Pathway 
5–8.5 (SSP5-8.5) is not identical to RCP8.5 in CMIP5 (O'Neill et al., 2016), but the differences are not expect-
ed to have appreciable impact on the analyses presented here.

TOA outgoing shortwave radiation is effectively a proxy for TOA albedo, and it is analyzed here in prefer-
ence to net radiation to avoid conflation with other atmospheric and surface processes. The surface zonal 
wind stress is used to estimate the mean latitude of the eddy-driven jet. After regridding zonal wind stress 
to the common 1° × 1° global grid, zonal means were taken. The jet latitude was then computed by fitting a 
quadratic polynomial to the latitude and two neighboring grid latitudes where zonal wind stress is maximal 
in the Southern Hemisphere. This method is similar to that of Kidston & Gerber (2010), but they use 10 m 
zonal wind data rather than zonal wind stress, which results in similar eddy-driven jet latitudes.

Regression coefficients are calculated using ordinary least squares, and quoted correlation values are Pear-
son's correlation coefficients. “Intermodel correlations” or regressions refer to the relationship between 
two variables across the models. For example, the intermodel correlation between absolute baseline GMST 
and GMST change is simply the correlation between absolute baseline GMST (from each of the 40 CMIP5 
models) and GMST change (in the same 40 models). The symbol r is used to denote intermodel correlation. 
The 95% and 99% statistical confidence levels of correlations are quoted in various cases, which are tested 
using a Student's t-distribution. For a sample size of 40, correlations with magnitude greater than ∼0.31 are 
significant at the 95% level (p = 0.05), and ∼0.40 at the 99% level (p = 0.01).

In comparisons with reanalysis, the NOAA-CIRES-DOE Twentieth Century Reanalysis, version 3 (20CRv3) 
product is utilized (Compo et al., 2011). All five variables are from the “Monolevel” set (https://psl.noaa.
gov/data/gridded/data.20thC_ReanV3.monolevel.html), using the monthly mean and ensemble mean 
data. GMST is computed from 2 m air temperature (variable name: air.2m), and the jet latitude from surface 
u-component momentum flux (uflx) following the same procedure as for the CMIP5 models. Other vari-
ables used are surface ice concentration (icec), upward shortwave radiation flux nominal at top-of-atmos-
phere (uswrf.ntat), and total cloud cover with entire atmosphere considered as a single layer (tcdc.eatm).
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Model name Ensemble members used Exceptions
ECS 
(°C)

1 ACCESS1-0 r1i1p1 3.83

2 ACCESS1-3 r1i1p1 3.54

3 bcc-csm1-1 r1i1p1 2.83

4 bcc-csm1-1-m r1i1p1 2.91

5 BNU-ESM r1i1p1 4.04

6 CanESM2 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 3.71

7 CCSM4 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, r6i1p1 Missing for clt: r6i1p1 2.95

8 CESM1-BGC r1i1p1 2.89a

9 CESM1-CAM5 r1i1p1, r2i1p1, r3i1p1 Missing for clt: r1i1p1, r2i1p1 4.10b

10 CMCC-CESM r1i1p1

11 CMCC-CM  r1i1p1

12 CMCC-CMS  r1i1p1

13 CNRM-CM5  r1i1p1, r2i1p1, r4i1p1, r6i1p1, r10i1p1 3.25

14 CSIRO-Mk3-6-0 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, r6i1p1, r7i1p1, r8i1p1, r9i1p1, 
r10i1p1

4.06

15 FGOALS-g2 r1i1p1 3.35

16 FGOALS-s2 r1i1p1, r2i1p1, r3i1p1 Missing for rsut and clt: r1i1p1 4.19

17 FIO-ESM r1i1p1, r2i1p1, r3i1p1

18 GFDL-CM3  r1i1p1 4.00

19 GFDL-ESM2G r1i1p1 2.43

20 GFDL-ESM2M r1i1p1 2.45

21 GISS-E2-H r1i1p1, r1i1p2, r1i1p3, r2i1p1, r2i1p3 Missing for tauu: r2i1p1, r2i1p3 2.30

22 GISS-E2-H-CC r1i1p1

23 GISS-E2-R r1i1p1, r1i1p2, r1i1p3, r2i1p1, r2i1p3 Missing for tas: r1i1p3Missing for tauu: r2i1p1, 
r2i1p3

2.11

24 GISS-E2-R-CC r1i1p1

25 HadGEM2-AO r1i1p1, r2i1p1, r3i1p1 Missing for clt: r2i1p1, r3i1p1

26 HadGEM2-CC r1i1p1

27 HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, r4i1p1 4.58

28 inmcm4 r1i1p1 2.08

29 IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1, r4i1p1 4.13

30 IPSL-CM5A-MR r1i1p1 4.14

31 IPSL-CM5B-LR r1i1p1 2.60

32 MIROC-ESM-CHEM r1i1p1

33 MIROC-ESM r1i1p1 4.66

34 MIROC5 r1i1p1, r2i1p1, r3i1p1 2.71

35 MPI-ESM-LR r1i1p1, r2i1p1, r3i1p1 3.63

36 MPI-ESM-MR r1i1p1 3.45

37 MRI-CGCM3 r1i1p1 2.61

38 MRI-ESM1  r1i1p1

Table 1 
List of Coupled Model Intercomparison Project, Phase 5 Models and Ensemble Members Analyzed in This Study.
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2.  Results
2.1.  Baseline Temperature and Climate Sensitivity

Across CMIP5 models, the GMST in the baseline period (1861–1900) spans a range of 2.8°C (12.1°C – 14.9°C; 
Figure 1a). Following the evolution of global temperature through the historical simulations, and extending 
with the RCP8.5 emissions scenario, the projected range in absolute temperature is 3.9°C (15.5°C – 19.4°C 
in the future period 2061–2100; Figure 1a). By considering GMST anomalies with respect to the baseline 
period in each model, the projected range across all models is 2.5°C (2.9°C – 5.3°C), largely in agreement 
with Collins et al.  (2013). The range of simulated absolute baseline temperatures therefore represents a 
considerable source of uncertainty in future projections.

There is no significant correlation between the absolute baseline GMST and GMST change across CMIP5 
models under the RCP8.5 scenario (Figure 1b), consistent with earlier studies (Flato et al., 2013; Hawkins & 
Sutton, 2016). However, there is a striking feature in the spatial pattern of intermodel correlations between 
grid-point baseline surface temperature and GMST change (Figure 1c). Most of the Southern Ocean baseline 
temperature is negatively correlated with GMST change (with a grid-point maximum of r = −0.64). The in-
termodel correlation of the baseline temperature averaged over 35 – 55°S and GMST change is r = −0.53 (Fig-
ure 1d). Hence, models with initially cooler Southern Ocean surface temperature tend to warm more global-
ly, vice versa for models with initially warmer Southern Ocean. Another notable feature in the spatial pattern 
is the north-south hemisphere contrast (Figure 1c), which appears somewhat analogous with the projection 
of a faster warming of the Northern Hemisphere than the Southern Hemisphere (e.g., Xie et al., 2010). The 
intermodel correlation between north-south hemisphere temperature difference in the baseline and GMST 
change is statistically significant (r = 0.55; figure not shown). But subsequent analysis is focussed on the 
Southern Ocean baseline temperature, since that is where the intermodel correlations are most prominent.

In contrast to Grise et al. (2015), here the intermodel relationship between baseline surface air temperature 
(as opposed to net TOA radiation) and global mean temperature change (as opposed to ECS; see their Fig-
ure 2a) is shown (Figure 1c). By analyzing surface air temperature change, rather than ECS, the model set 
is greatly expanded (output from 40 models here, cf. 20 models in Grise et al., 2015). Even though global 
mean temperature change is strongly related to ECS (Figure 2a) and baseline surface air temperature is 
strongly related to net TOA radiation (Figure 2b), the patterns shown in Figure 1c and by Grise et al. (2015; 
their Figure 2a for CMIP5) are substantially different. Some exploration reveals that selected baseline years 
(1861 – 1900 as opposed to 1990 – 1999, when anthropogenic forcings are stronger), the length of the base-
line period (40 years as opposed to 10 years, which can be influenced by decadal variability), and the set of 
sampled models, all modify the pattern to some extent. However, exchanging only net TOA radiation with 
surface air temperature considerably strengthens the intermodel correlations over the Southern Ocean (cf. 
Figures 2c and 2d). Our subsequent focus is therefore on the Southern Ocean baseline surface temperature, 
and its relationship with key variables in the region, such as sea ice, cloud cover, and the westerly jet.

2.2.  Links Between Surface Temperature and Baseline Climate

There are statistically significant intermodel regressions and correlations, but to differing levels, between 
the Southern Ocean baseline temperature and a range of other baseline climate variables in the domain, 
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Table 1 
Continued

Model name Ensemble members used Exceptions
ECS 
(°C)

39 NorESM1-M r1i1p1 2.82

40 NorESM1-ME r1i1p1 2.99c

Ensemble members from the historical experiments were matched with ensemble members with the same identifiers from the rcp85 experiments. The five 
primary variables analyzed in this study (tas, rsut, clt, tauu, and sic) were available from all models and ensemble members, unless noted under “exceptions”. 
The equilibrium climate sensitivity (ECS) is recorded for models where available, and taken from Caldwell et al. (2016; their Table 1 and Equation 2), with three 
exceptions: aNohara et al. (2015), bMeehl et al. (2013), cSeland et al. (2020)
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such as shortwave radiation, cloud cover, the meridional position of the 
westerly eddy-driven jet, and sea ice area (Figure 3). Here the spatial pat-
terns are intermodel regressions (Figures 3a, 3c ,3e and 3g), rather than 
intermodel correlations (Figures 1 and 2).

Across all models, the baseline surface temperature area-averaged over 
35 – 55°S is negatively related with TOA outgoing shortwave radiation 
in the Southern Ocean region (Figures 3a and 3b). TOA outgoing short-
wave radiation is due mainly to albedo effects, and therefore the South-
ern Ocean baseline temperature is unsurprisingly also negatively relat-
ed with cloud fraction (Figures 3c and 3d). Taken together, these results 
(Figures 3a–3d) show that models with warmer Southern Ocean surface 
temperatures tend to have less cloud cover and therefore less TOA outgo-
ing shortwave radiation, and vice versa for models with cooler Southern 
Ocean surface temperature. The direct intermodel correlation between 
baseline Southern Ocean cloud cover and TOA outgoing shortwave radi-
ation is particularly strong (r = 0.75; Figure 4).

The intermodel relationship of warmer Southern Ocean surface temper-
ature and less cloud cover may seem counterintuitive, but the tendency 
for higher temperatures leading to increased cloudiness is more typical 
in the tropics. Higher temperatures throughout the tropical atmospheric 
column leads to greater cloud water content, due to an increased moist 
adiabatic lapse rate (Betts & Harshvardhan, 1987; Frey et al., 2018). On 
the other hand, cooler surface temperatures in the midlatitudes promote 
subsidence and the formation of reflective low-level clouds (Grise & Me-
deiros, 2016; Klein & Hartmann, 1993), and low clouds over the South-
ern Ocean exhibit the strongest sensitivity to surface temperature (Wall 
et al., 2017). In CMIP5, Southern Ocean sea surface temperature biases 
have been linked to cloud-related shortwave errors (Hyder et al., 2018). 
Therefore, the striking negative intermodel regression over the Southern 
Ocean band (Figure 3c) is likely due to models with less cloud cover per-
mitting a greater downward shortwave radiation flux to heat the ocean 
surface.

The latitude of the Southern Hemisphere eddy-driven jet is also related to 
Southern Ocean surface temperature across models (Figures 3e and 3f). 
It has previously been shown that the jet latitude is biased equatorward 
in all CMIP3 models (Kidston & Gerber, 2010), and there is little improve-
ment in CMIP5 (Barnes & Polvani, 2013). The jet latitude biases have been 
linked to shortwave cloud forcing biases (Ceppi et al., 2012). In models 
with cooler Southern Ocean surface temperature, the jet is more equator-
ward, and vice versa for models with warmer Southern Ocean (r = −0.55; 
Figure 3f). In atmosphere-only (AMIP) simulations of CMIP5, the mean 
model bias in jet latitude was found to be only 28% smaller, implying that 
surface temperature is only partly responsible, with most of the bias due 
to atmospheric processes (Bracegirdle et al., 2013). Kidston et al. (2011) 
found a seasonal link between jet latitude and sea ice area, but only dur-
ing the cold season. Here, the direct relationship between baseline sea ice 

area and jet latitude is found to be weak (r = −0.18; Figure 4). Since the storm tracks are embedded in the 
eddy-driven jet, it is not surprising to find a positive intermodel correlation with cloudiness (r = 0.38; Fig-
ure 4) and therefore also with TOA outgoing shortwave radiation, due to albedo effects (r = 0.67; Figure 4).

There is a statistically significant relationship between baseline Southern Ocean temperature and Antarctic 
sea ice area (r = −0.36; Figure 3h), with stronger regression relationships near the edge of the sea ice region 
(Figure 3g). This is due to the strong link between local surface temperature and the presence of sea ice: 
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Model name Ensemble member used

1 ACCESS-CM2 r1i1p1f1

2 ACCESS-ESM1-5 r1i1p1f1

3 AWI-CM-1-1-MR r1i1p1f1

4 BCC-CSM2-MR r1i1p1f1

5 CAMS-CSM1-0 r1i1p1f1

6 CanESM5-CanOE r1i1p2f1

7 CanESM5 r1i1p1f1

8 CESM2 r1i1p1f1

9 CESM2-WACCM r1i1p1f1

10 CNRM-CM6-1 r1i1p1f2

11 CNRM-CM6-1-HR r1i1p1f2

12 CNRM-ESM2-1 r1i1p1f2

13 EC-Earth3 r1i1p1f1

14 EC-Earth3-Veg r1i1p1f1

15 FGOALS-f3-L r1i1p1f1

16 FGOALS-g3 r1i1p1f1

17 FIO-ESM-2-0 r1i1p1f1

18 GFDL-CM4 r1i1p1f1

19 GFDL-ESM4 r1i1p1f1

20 HadGEM3-GC31-LL r1i1p1f3

21 INM-CM4-8 r1i1p1f1

22 INM-CM5-0 r1i1p1f1

23 IPSL-CM6A-LR r1i1p1f1

24 KACE-1-0-G r1i1p1f1

25 MCM-UA-1-0 r1i1p1f2

26 MIROC6 r1i1p1f1

27 MIROC-ES2L r1i1p1f2

28 MPI-ESM1-2-HR r1i1p1f1

29 MPI-ESM1-2-LR r1i1p1f1

30 MRI-ESM2-0 r1i1p1f1

31 NESM3 r1i1p1f1

32 NorESM2-LM r1i1p1f1

33 UKESM1-0-LL r1i1p1f2

Ensemble members from the historical experiments were matched with 
same identifiers from the ssp585 experiments.

Table 2 
List of Coupled Model Intercomparison Project, Phase 6 Models and 
Ensemble Members Analyzed in This Study.
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surface temperature is substantially lower when sea ice is present, as opposed to when it is warmed by the 
open ocean below. In a positive feedback, cooler temperature also permits sea ice expansion. Converse-
ly, higher temperature inhibits sea ice formation, and less sea ice exposes more water to solar radiation. 
Furthermore, the relatively cooler Antarctic waters are transported northward via Ekman advection. The 
feedback is illustrated to some extent in composite patterns of the 10 models with warmest and coolest base-
line Southern Ocean surface temperature (Figure 5). There are strong temperature anomalies with respect 
to the model mean over the Antarctic sea ice region, in both baseline (Figures 5a and 5b) and projected 
temperature changes (Figures 5c and 5d). Thus, the intermodel relationship is physically consistent in that 
warmer models have less sea ice, and vice versa. Sea ice area correlates poorly with other variables across 
CMIP5, although there is a weak but statistically significant relationship with Southern Ocean cloud cover 
(r = −0.35; Figure 4), which may be related to sea ice suppression of evaporation (Bromwich et al., 2012).

2.3.  Baseline Temperature and Future Projections

Thus far it has been shown that there are a range of physically consistent intermodel relationships between 
the baseline Southern Ocean surface temperature and a range of other baseline climate variables. But how 
are these relationships relevant to climate sensitivity? The relationships between baseline temperature and 
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Figure 1.  Intermodel surface air temperature relationships across Coupled Model Intercomparison Project, phase 
5 (CMIP5). (a) Absolute annual global mean surface temperature (GMST) in CMIP5 historical simulations with 
representative concentration pathway 8.5 (RCP8.5) extension. The baseline (1861 – 1900) and future (2061 – 2100) 
periods are indicated. The timeseries are qualitatively shaded by baseline GMST: initially cooler models in blue and 
warmer models in red. (b) GMST averaged over the baseline period, versus the GMST change (i.e., average over future 
period minus average over baseline). The intermodel correlation (r = −0.21) is quoted, but p > 0.05. (c) Intermodel 
correlation between grid-point (local) baseline surface air temperature, from each of the 40 models, and GMST change, 
again from each of the 40 models. Stippling indicates where correlations are statistically significant at the 99% level. 
The Southern Ocean region (35–55°S) analyzed throughout this study is indicated. (d) Baseline surface air temperature 
averaged over the Southern Ocean, versus the GMST change. The intermodel correlation (r = −0.53) is statistically 
significant at p < 0.01.
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projected changes in variables are now examined. Changes in variables are computed under the RCP8.5 
scenario, as a difference between the future (2061 – 2100) and baseline (1861 – 1900) periods (Figure 1a). A 
strong Southern Ocean signature also emerges in all of the spatial patterns of intermodel regressions (Fig-
ure 6), but here the relationships are positive.

The projected change in TOA outgoing shortwave radiation over the Southern Ocean is not consistent 
across models. In most models, outgoing radiation decreases into the future, but in a small number it in-
creases (Figure 6b). Nevertheless, there is a statistically significant relationship between Southern Ocean 
temperature and the change in TOA outgoing shortwave radiation, such that there is a greater reduction 
in radiation (i.e., increased downward heat flux) for initially cooler models (r = 0.49; Figure 6b). Similar-
ly, initially cooler models tend to lose more cloud cover under global warming (r = 0.50; Figure 6d). The 
similarities of the patterns in Figures 6a and 6c again reflect the strong link between outgoing shortwave 
radiation and cloud cover. The relationships with baseline temperature (Figures 6b and 6d) emerge despite 
the fact that there is no statistically significant relationship between the baseline and change in radiation 
(r = −0.29; Figure 4), nor between the baseline and change in cloud cover (r = −0.25; Figure 4). In other 
words, the baseline Southern Ocean temperature is a stronger predictor of changes in outgoing radiation 
and cloud cover than the baseline in each of these variables.

The eddy-driven jet is projected to shift poleward under all scenarios of climate change (Arblaster & Mee-
hl, 2006; Miller et al., 2006; Simpson & Polvani, 2016). Furthermore, the future change in jet latitude appears 
to be closely connected to its baseline latitude, as was seen in CMIP3 models (Kidston & Gerber, 2010), and 
previously reported for CMIP5 (Simpson & Polvani, 2016). The more equatorward the jet is situated initially, 
the more poleward it shifts under global warming (r = −0.62; Figure 4). Since this correlation is between a 
variable and its change, the change contains a component of the baseline (i.e., A vs. B–A), and it is therefore 
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Figure 2.  CMIP5 intermodel relationships between equilibrium climate sensitivity (ECS) and other variables. (a) 
Global mean surface air temperature (GMST) change versus ECS, for the 30 models for which the ECS value is available 
(Table 1). The intermodel correlation (r = 0.85) is statistically significant at p < 0.01. (b) Intermodel correlation 
between grid-point (local) baseline surface air temperature and grid-point baseline net top-of-atmosphere (TOA) 
radiation, across all 40 models. (c) Intermodel correlation between grid-point (local) net TOA radiation and ECS (30 
models). (d) Intermodel correlation between grid-point (local) baseline surface air temperature and ECS (30 models). 
Stippling in each panel denotes statistically significant correlations at p < 0.01.
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Figure 3.  CMIP5 intermodel relationships between baseline surface temperature and other baseline variables. 
Intermodel regressions are shown in the left panels. In some cases, a field variable is regressed onto an index (a), (c), 
and in others an index is regressed onto a field (e), (g), but always onto baseline temperature, and expressed per unit 
Kelvin. In the panel titles, “local” denotes the field variable. (a) Top-of-atmosphere (TOA) outgoing shortwave radiation 
(field) regressed onto Southern Ocean temperature averaged over 35–55°S (index). (c) Cloud cover (field) regressed onto 
Southern Ocean average temperature (index). (e) Eddy-driven jet latitude (index) regressed onto temperature (field). 
(g) Total Antarctic sea ice area (index) regressed onto temperature (field). Stippling denotes statistically significant 
regressions at p < 0.01. The right panels show Southern Ocean baseline surface temperature averaged over 35–55°S 
(abscissa) versus baseline (b) Southern Ocean TOA outgoing shortwave radiation averaged over 35–55°S; (d) Southern 
Ocean cloud cover averaged over 35–55°S; (f) Eddy-driven jet latitude; and (h) Total Antarctic sea ice area. Intermodel 
correlations are quoted in the top right. Solid lines of best fit denote p < 0.01, and dashed lines denote 0.01 < p < 0.05.
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necessary to verify if the intermodel correlation is significant between the baseline latitude and the future 
latitude (i.e., A vs. B). In this case, the relationship is robust (r = 0.92; figure not shown).

The Southern Ocean baseline temperature is also a robust predictor of future jet migration, with initially 
cooler models exhibiting a larger shift in jet latitude (r = 0.57; Figure 6f). But unlike the Southern Ocean 
baseline temperature (Figure 1d), the baseline jet latitude position is not found to be a predictor for global 
mean surface temperature change (r = 0.28; Figure 4). Bracegirdle et al. (2018) found that baseline sea ice 
is more closely related to changes in jet strength, rather than latitude, where CMIP5 models with greater 
historical sea ice area exhibit less jet strengthening in the future. They likewise find that links between sea 
ice and jet shift are weak (here r = 0.13; Figure 4), albeit with some apparent seasonal relationships.

The intermodel regression of sea ice area change onto Southern Ocean baseline temperature (Figure 6g) has 
a similar pattern to baseline sea ice area regression (Figure 3g), also showing that local surface temperature 
nearer to the sea ice region is more closely related. But it is clear that models with initially more sea ice, 
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Figure 4.  CMIP5 intermodel correlations between baseline values and future change values of all variables analyzed in this study. Red or blue shaded circles 
denote positive or negative correlations, respectively, where darker shades and larger circles denote stronger correlations. Correlations that are statistically 
significant at the 99% level are quoted in white text, and shaded circles are shown only where the correlations are statistically significant at the 95% level. The 
correlations shown in Figures 1, 3, 6 and 7 are indicated.
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which correspond with models having cooler baseline Southern Ocean, also lose more sea ice under global 
warming (r = −0.82; Figure 4). As with the test for jet latitude, the direct intermodel correlation between 
baseline and future sea ice is similarly robust (r = 0.87; figure not shown).

The correlations between baseline Southern Ocean temperature and other baseline variables were found 
to be negative (Figure 3), whereas they are positive between baseline temperature and projected changes 
in other variables (Figure 6). At first glance, these “baseline-baseline” and “baseline-change” relationships 
may appear to be contradictory. But apart from a small number of exceptions, the projected changes in 
almost all variables and models are negative trending quantities (Figures 6b, 6d, 6f and 6h), i.e., sea ice, 
cloud cover, and outgoing radiation all tend to reduce in the future, and the jet tends to shift poleward. 
Therefore, the baseline-change relationships can be viewed as exhibiting weaker projected change in the in-
itially warm-biased models, and greater change in the initially cold-biased models. Since it has been found 
that models with an initially cooler Southern Ocean exhibit greater global warming, the overall negative 
“change-change” intermodel regressions and correlations (Figure 7) are consistent. Hence, models with 
greater Southern Ocean temperature change exhibit greater change in other variables (Figures 7b, 7d, 7f 
and 7h).

It is postulated that these relationships between Southern Ocean temperature and future changes may 
emerge due to a “capacity for change” constraint. For example, a model with more sea ice initially has more 
sea ice to lose as the planet warms. Conversely, if a model has very little sea ice initially, then there is little 
capacity to lose sea ice. This idea is supported by the intermodel correlation between baseline and projected 
changes in sea ice (r = −0.82; Figure 4). A similar constraint may apply for the eddy-driven jet, without as-
suming that the jet itself directly influences the global climate. A jet that is situated more poleward initially 
would have less capacity to shift further poleward, and conversely a jet situated more equatorward would 
have more capacity to shift poleward. Again, this is supported by the intermodel correlation between the 
baseline and projected change in jet latitude (r = −0.62; Figure 4). Whilst it might be reasonable to expect 
a similar relationship for cloud cover, the intermodel correlation between baseline and projected change in 
cloud cover is not statistically significant (r = −0.25; Figure 4).
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Figure 5.  Composites of surface temperature in CMIP5 models by those with coolest and warmest baseline Southern 
Ocean surface temperature. (a) Mean baseline surface temperature in the 10 models with coolest Southern Ocean 
baseline temperature, shown as anomalies with respect to the model mean of all 40 models. (b) As in (a), but for the 10 
warmest models. (c) Mean temperature change in the 10 models with coolest Southern Ocean baseline temperature, 
shown as anomalies with respect to the model mean of all 40 models. (d) As in (c), but for the 10 warmest models.
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Returning to the influence of surface temperature, future changes in all variables are not only correlated 
with Southern Ocean temperature changes (Figure 4; correlations in box marked “Figure 7”), but also with 
global mean temperature change (Figure 4; correlations above box marked “Figure 7”). Clearly, such cor-
relations do not establish causation. However, the postulated capacity for change constraint provides some 
rationale as to how GMST change might be influenced by baseline Southern Ocean temperature amongst 
CMIP5 models.

2.4.  Tests of Southern Ocean Emergent Constraints

The preceding analysis reveals that baseline Southern Ocean surface temperature in CMIP5 is a crucial vari-
able in setting not only the baseline state of the Southern Ocean climate system, but also its future evolution 
and that of the global mean surface temperature (Figure 1). It is not necessarily possible to conclude that it 
is the single key variable, since most variables are coupled to one another. But it is nevertheless compelling 
that baseline temperature is the only variable that exhibits statistically significant correlations at the 95% 
level with all other baseline variables and their projected changes (Figure 4).

In an attempt to test the influence of baseline biases on GMST projections, the 40 CMIP5 models were sub-
sampled according to whether they are biased above or below the NOAA 20th century reanalysis, for each 
of the variables (i.e., models to the left and right of reanalysis in Figure 8). In the first test, models were 
split into two groups according to whether their GMST is less than or greater than in the reanalysis, with 
both models and reanalysis averaged over 1961 – 2000. The period 1961 – 2000 was chosen since obser-
vations, and therefore reanalyses, are more uncertain in the earlier baseline period. The projected GMST 
change in the future period (2061 – 2100) minus the baseline period (1861 – 1900) was then examined in 
the two sets.

The mean GMST change in the warmer model set is less than the cooler model set, but there are only seven 
models in the warmer set (Figure 8a). A two sample Student's t-test for different means, but assuming une-
qual variance, reveals that the model-means of future warming in the two sets are not significantly different 
(p = 0.33). However, unsurprisingly, if the models are separated based on Southern Ocean surface tem-
perature, then the two sets are different at the 95% confidence level. This is consistent with the intermodel 
correlation between baseline Southern Ocean surface temperature and GMST change (Figure 1d). The test 
on GMST changes was then repeated after subsampling models based on 1961 – 2000 mean values of each 
of the other variables shown in Figures 8c–8f. None of the differences in sets were statistically significant, 
indicating that only the baseline Southern Ocean temperature bias is a robust predictor of GMST change.

Another question that arises from the findings of this study is whether the model range in GMST projec-
tions can be constrained by observations, in essence by following the emergent constraints approach. To this 
end, we took the subset of models that are closest to the reanalysis, in a given variable, and tested whether 
the GMST projections in that subsample are different to the remaining, more-biased, models. The process 
of subsampling was conducted for each of the baseline variables examined in this study. The purpose of this 
exercise, in other words, is to test whether reducing the bias in any baseline variable may significantly alter 
the range in warming projections, or climate sensitivity.

As a first test, the 13 models (approximately one third) with GMST closest to that in the NOAA 20th century 
reanalysis over 1961 – 2000 were subsampled. The range in GMST change in the future period (2061 – 2100) 
minus the baseline period (1861 – 1900) in the model subset was then compared to that in the remaining 
27 models. The 13 least biased models warm slightly less than the remaining 27 models. However, a two 
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Figure 6.  CMIP5 intermodel relationships between baseline surface temperature and projected changes in other variables. Intermodel regressions are shown in 
the left panels. In some cases, a field variable is regressed onto an index (a), (c), and in others an index is regressed onto a field (e), (g), but always onto baseline 
temperature, and expressed per unit Kelvin. In the panel titles, “local” denotes the field variable. (a) Top-of-atmosphere (TOA) outgoing shortwave radiation 
change (field) regressed onto Southern Ocean temperature averaged over 35–55°S (index). (c) Cloud cover change (field) regressed onto Southern Ocean average 
temperature (index). (e) Eddy-driven jet latitude change (index) regressed onto temperature (field). (g) Total Antarctic sea ice area change (index) regressed 
onto temperature (field). Stippling denotes statistically significant regressions at p < 0.01. The right panels show Southern Ocean baseline surface temperature 
averaged over 35 – 55°S (abscissa) versus projected changes in (b) Southern Ocean TOA outgoing shortwave radiation averaged over 35 – 55°S; (d) Southern 
Ocean cloud cover averaged over 35 – 55°S; (f) Eddy-driven jet latitude; and (h) Total Antarctic sea ice area. Intermodel correlations are quoted in the top right. 
Solid lines of best fit denote p < 0.01, and dashed lines denote 0.01 < p < 0.05.
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sample Student's t-test for different means, but assuming unequal variance, reveals that the model-means 
of future warming in the two sets are not significantly different (p = 0.21). Similarly, a two sample Kolo-
mogorov-Smirnov test for the sets coming from different continuous distributions, or a two sample F-test 
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Figure 7.  CMIP5 intermodel relationships between projected changes in surface temperature and projected changes in other variables. Intermodel regressions 
are shown in the left panels. In some cases, a field variable is regressed onto an index (a), (c), and in others an index is regressed onto a field (e), (g), but always 
onto temperature change, and expressed per unit Kelvin. In the panel titles, “local” denotes the field variable. (a) Top-of-atmosphere outgoing shortwave 
radiation change (field) regressed onto Southern Ocean temperature change averaged over 35 – 55°S (index). (c) Cloud cover change (field) regressed onto 
Southern Ocean average temperature change (index). (e) Eddy-driven jet latitude change (index) regressed onto temperature change (field). (g) Total Antarctic 
sea ice area change (index) regressed onto temperature change (field). Stippling denotes statistically significant regressions at p < 0.01. The right panels show 
change in Southern Ocean baseline surface temperature averaged over 35 – 55 S (abscissa) versus projected changes in (b) Southern Ocean TOA outgoing 
shortwave radiation averaged over 35 – 55 S; (d) Southern Ocean cloud cover averaged over 35 – 55°S; (f) Eddy-driven jet latitude; and (h) Total Antarctic sea ice 
area. Intermodel correlations are quoted in the top right. Solid lines of best fit denote p < 0.01, and dashed lines denote 0.01 < p < 0.05.

Figure 8.  Histograms of variables in CMIP5 models, averaged over the period 1961 – 2000. The vertical blue line 
denotes the model mean, and the black line denotes the NOAA-CIRES-DOE Twentieth Century Reanalysis, version 
3. (a) Global mean surface air temperature. (b) Surface air temperature averaged over the Southern Ocean. (c) Top-
of-atmosphere outgoing shortwave radiation averaged over the Southern Ocean. (d) Cloud cover averaged over the 
Southern Ocean. (e) Eddy-driven jet latitude. (f) Antarctic sea ice area.
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for different variances, do not suggest that there are statistically significant differences in future projection 
distributions between the two sets.

The tests above were repeated after subsampling models based on 1961 – 2000 mean values of the other 
variables shown in Figures 8b–8f. For Southern Ocean TOA outgoing shortwave radiation, cloud cover, and 
Antarctic sea ice area, the 13 least biased models exhibit greater GMST change than in the remaining mod-
els. But for eddy-driven jet latitude and baseline Southern Ocean temperature, the 13 least biased models 
warm less. Subsampling based on eddy-driven jet latitude exhibits the largest differences between pairs 
of subsets. However, none of the pairs of subsets, for any variable, are significantly different under any of 
the aforementioned statistical tests. Altering the number of models in the subsample set made little differ-
ence. Based on these tests, efforts to constrain the model-mean and range of GMST projections, or climate 
sensitivity, by subsampling less biased models does not seem to be possible for CMIP5 models using these 
variables.

2.5.  A First Look at Coupled Model Intercomparison Project, Phase 6

The following is a preliminary investigation of the surface temperature relationship in CMIP6. Although 
the correlations are mostly negative, the statistically significant intermodel correlation over the Southern 
Ocean seen in CMIP5 (Figure 1) is not present across the 33 models analyzed thus far in CMIP6 (Figure 9a). 
However, the region of statistically significant intermodel correlation is shifted to the south: the baseline 
surface temperature over most of the Antarctic sea ice region is negatively correlated with global mean 
surface temperature change. The Southern Ocean surface temperature range (Hyder et al., 2018) is slightly 
narrowed in CMIP6, with fewer models in the cold bias tail, but the multi-model means of the two sets 
are very similar (Figure 9b). A higher climate sensitivity in CMIP6 is apparent, with an increase in the 
multi-model mean of the GMST change, but the increase has been shown to be statistically insignificant 
(Zelinka et al., 2020).

The changing nature of intermodel relationships across model generations should not be too surprising. 
As key biases are tackled, and reduced or altered, different intermodel features may arise. For instance, as 
noted earlier, the strong CMIP3 intermodel relationship between Southern Hemisphere net TOA radiation 
and climate sensitivity (Trenberth & Fasullo, 2010) was substantially weaker across CMIP5 models (Grise 
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Figure 9.  Coupled Model Intercomparison Project, phase 6 (CMIP6) intermodel relationships between baseline 
temperature and global mean surface temperature change. (a) Intermodel correlation in 33 CMIP6 models (Table 2) 
between grid-point (local) baseline surface air temperature and global mean surface air temperature change. Stippling 
indicates where correlations are statistically significant at the 99% level. CMIP6 surface air temperature is analyzed 
in the historical simulations with ssp585 extension. (b) Baseline surface air temperature averaged over the Southern 
Ocean, versus the GMST change, in CMIP5 (blue; as in Figure 1c) and CMIP6 (red). The intermodel correlation 
coefficients for each model set are given at the bottom left of panel (b). The correlation is not statistically significant 
for CMIP6 (p > 0.05) and denoted by a dotted line. CMIP5 and CMIP6 multi-model means are denoted by vertical and 
horizontal lines in their respective colors.
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et al., 2015). Similarly, the CMIP5 Southern Ocean temperature relationship with GMST change is weaker 
in CMIP6, though the cause of this has not yet been revealed, and will be explored in a future study.

The analysis of CMIP6 is not taken further in this study for two reasons. Firstly, at the time of writing, the 
variables analyzed in CMIP5 were only sparsely available in CMIP6 across both historical and scenario 
runs. Over 130 models have registered their source identifiers for CMIP6 with the World Climate Research 
Programme, so many more simulations are expected to be available over the coming months and years. 
Secondly, the altered pattern in CMIP6 (cf. Figure 1c and Figure. 9) indicates that different processes or bi-
ases are at play. It is likely that CMIP6 analyses will reveal a different story altogether: one of the Antarctic 
region, rather than Southern Ocean dynamics. A new future study will focus on unraveling the processes 
underpinning this higher latitude link between baseline surface temperature biases and future warming.

Despite the current relatively small sample of CMIP6 models from the eventual number expected, some 
findings relevant to this study have emerged in the literature. It has been found, for example, that 10 out 
of 27 CMIP6 models analyzed simulate higher equilibrium climate sensitivity than any of those in CMIP5 
(Zelinka et al., 2020). Although the shift in ECS range is statistically insignificant, the higher sensitivity in 
some models is due to a stronger reduction of lower level cloud cover under global warming, particularly in 
the Southern Hemisphere extratropics (Zelinka et al., 2020). Efforts to understand the plausibility of models 
with higher sensitivity is underway, with the recognition that substantially more CMIP6 simulations are 
expected. In terms of the global energy budget, CMIP6 is in better agreement with reference estimates than 
earlier model generations, and particularly for shortwave clear-sky budgets (Wild, 2020).

CMIP6 also appears to show a stronger intermodel relationship between the global temperature trends of 
the recent past (i.e., 1981–2014) and both equilibrium climate sensitivity and transient climate response, as 
compared with CMIP5 (Tokarska et al., 2020). This opens the potential for future warming estimates to be 
constrained by observations, as more CMIP6 models become available.

With regards to the other variables examined in this study, CMIP6 exhibits mixed results to date. Despite 
a larger under-representation in boreal summer Antarctic sea ice area in CMIP6 (Roach et al., 2020), there 
are nevertheless some positive signs of improvement. For example, there is a reduction in the intermodel 
spread of seasonal sea ice variations, and the regional distribution is improved, compared to CMIP5 (Roach 
et al., 2020). The Southern Hemisphere jet stream and storm tracks are also less biased in CMIP6, exhibiting 
higher mean jet latitude (Bracegirdle et al., 2020; Curtis et al., 2020; Goyal et al., 2021; Priestley et al., 2020), 
and therefore reduced jet shift under future warming (Curtis et al., 2020). The reduced jet stream bias is like-
ly due to increased horizontal atmospheric resolution (Curtis et al., 2020). Along with improvements to the 
representation of surface wind stress forcing, the simulated strength of the Antarctic Circumpolar Current 
and associated density gradients have improved in CMIP6 (Beadling et al., 2020). The simulated mean sea 
level has also improved in the Southern Ocean (Lyu et al., 2020).

3.  Discussion and Conclusions
A summary of the relationships revealed in this study is shown in Figure  10. The schematic illustrates 
overall CMIP5 model tendencies, for those with warmer or cooler Southern Ocean baseline temperature. 
The relationships for the baseline state are physically consistent, that is, with warmer Southern Ocean there 
is a tendency for less cloud, and therefore less TOA outgoing shortwave radiation, less sea ice and a more 
poleward eddy-driven jet (Figure 10a). Under global warming, in models with initially warmer Southern 
Ocean, there are lower reductions in sea ice, clouds, and TOA outgoing shortwave radiation, and smaller 
latitudinal shifts in the eddy-driven jet. Conversely, in models with initially cooler Southern Ocean, there 
is a tendency for initially larger cloud and sea ice area, higher TOA outgoing shortwave and an eddy-driven 
jet that is positioned more equatorward (Figure 10b). Under global warming, initially cooler models tend 
to simulate a greater poleward jet shift, and a greater reduction in outgoing shortwave, clouds, and sea ice 
cover. The schematic is an attempt to illustrate only overall model tendencies. The behaviors are not the 
same in each model, since not every model with an initially cool Southern Ocean, for instance, will involve 
all of the processes featured in Figure 10a. Furthermore, initial analysis indicates that this schematic will 
be somewhat different for CMIP6.
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The upshot of these relationships in the Southern Ocean climate system is that models with an initially 
warmer Southern Ocean exhibit less global warming, and initially cooler models exhibit more global warm-
ing. It is postulated that this relationship between Southern Ocean baseline temperature and climate sensi-
tivity in CMIP5 (Figure 1d) is due to a potential “capacity for change” mechanism. For example, cold-biased 
models tend to have more cloud cover, sea ice, and equatorward jet initially (Figures 3d, 3f and 3h), and 
thus a greater capacity to lose cloud cover and sea ice, or for the jet to shift poleward under global warming 
(Figures 6d, 6f and 6h). Reinforcing this postulation, it was found that greater projected changes in these 
variables correlated with not only greater Southern Ocean temperature change (Figures 7d, 7g and 7h), but 
also GMST change (Figure 4). Such intermodel correlations do not imply causation, but these findings may 
provide clues on where to focus future model development efforts.

Model developers have tended to approach the problem of Southern Ocean biases by using clouds as the 
controlling variable. Models generally do not simulate enough cloud cover over the Southern Ocean (Fig-
ure 8d), leading to too much incoming shortwave radiation at the surface, warm sea surface temperature 
biases, reduced sea ice, and a shift in the eddy-driven jet (Ceppi et al., 2012; Hyder et al., 2018; Williams 
et al., 2017). Since cloud schemes involve the fastest dynamical processes in the chain of causality, they are 
generally the aspect that model developers have found easiest to manipulate. An apparent consequence of 
modified cloud schemes has been an increase in climate sensitivities in many state-of-the-art models (Bo-
das-Salcedo et al., 2019; Zhu & Poulsen, 2020).

Model representations of clouds might be the key factor linking the Southern Ocean atmospheric processes 
together, and therefore influencing the simulation of the Southern Ocean baseline state. However, we found 
that the baseline cloud cover is not strongly linked to projected cloud cover change. In contrast, the baseline 
sea ice area and jet latitude both have strong intermodel correlations with their projected changes. Sea ice 
albedo has also been recognized as a key component of the global heat balance (Flato et al., 2013), and may 
be the source of an emergent constraint (Thackeray & Hall, 2019). The jet and sea ice extent can conspire 
to affect Southern Ocean baseline surface temperature via northward Ekman transport of Antarctic surface 
waters, in turn contributing to GMST change. The representation of clouds, however, would have a more 
direct impact on GMST via its global distribution. The findings of this study suggest that a more holistic 
investigation of the processes that contribute to setting the baseline temperature in models may be benefi-
cial towards an understanding of the processes by which the baseline temperature influences regional and 
global climate changes.

Baseline absolute temperature was found to be a key variable in the Southern Ocean in CMIP5, since each 
of the other variables inspected exhibits a strong intermodel correlation with it, but not necessarily amongst 
themselves. However, we do not advocate that models be tuned for baseline temperature, if that even were 
plausible. In particular, all variables are coupled to one another: tuning a model for one particular baseline 
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Figure 10.  Schematic summary of model tendencies in CMIP5. (a) Models with warmer baseline Southern Ocean 
surface air temperature. (b) Models with cooler baseline Southern Ocean surface air temperature. Red text in 
parentheses indicate changes under global warming.
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variable would invariably alter the baseline states of other variables, and not necessarily yield a more realis-
tic climate simulation. For instance, the intermodel correlations imply that an attempt to cool the Southern 
Ocean surface in a model which is initially too warm, might shift its jet latitude equatorward (Figure 3f), 
but it was shown that most models already have an equatorward bias in jet latitude (Figure 8e). There are 
similar inconsistencies when comparing with observations in other variables: For example, the model mean 
of Southern Ocean temperature is close to reanalysis (Figure 8b), and while cloud cover (Figure 8d) and sea 
ice (Figure 8f) are under-represented, there is a tendency for too much TOA outgoing shortwave radiation 
(Figure 8c). In a set of simple tests, we also found that it did not seem possible to constrain the spread in 
CMIP5 GMST projections by subsampling models that align more closely with reanalysis.

It was shown that in the first available CMIP6 models, the baseline temperature relationship with global 
mean temperature change is less pronounced over the Southern Ocean, which may be a result of model 
improvements. The position of the Southern Hemisphere mid-latitude jet, for instance, appears to be less 
biased (more poleward) across CMIP6 models. Instead, stronger intermodel correlations emerge in the Ant-
arctic sea ice region, suggesting that biases in polar region dynamics in CMIP6, rather than mid-latitude 
Southern Ocean dynamics in CMIP5, might play a stronger role on global changes. As more CMIP6 model 
output becomes available, an examination of biases in the Antarctic region and their possible causal effect 
on GMST will be undertaken.

Data Availability Statement
Climate modeling groups produced and made their model output available (https://esgf-node.llnl.gov). 
CMIP5 and CMIP6 model outputs were made available with the assistance of resources from the National 
Computational Infrastructure (NCI), which is supported by the Australian Government. NOAA Physical 
Sciences Laboratory made the Twentieth Century Reanalysis data available (https://www.esrl.noaa.gov/
psd/data/gridded/data.20thC_ReanV3.html).
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