
Expression Profiles of Mitochondrial Genes in the Frontal
Cortex and the Caudate Nucleus of Developing Humans
and Mice Selectively Bred for High and Low Fear
Kwang H. Choi1*, Thien Le1, Jennifer McGuire1, Jennifer Coyner1, Brandon W. Higgs2, Suad Diglisic3,

Luke R. Johnson1, David M. Benedek1, Robert J. Ursano1

1 Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America,

2 Elashoff Consulting, Redwood City, California, United States of America, 3 Stanley Medical Research Institute, Rockville, Maryland, United States of America

Abstract

A growing body of evidence suggests that mitochondrial function may be important in brain development and psychiatric
disorders. However, detailed expression profiles of those genes in human brain development and fear-related behavior
remain unclear. Using microarray data available from the public domain and the Gene Ontology analysis, we identified the
genes and the functional categories associated with chronological age in the prefrontal cortex (PFC) and the caudate
nucleus (CN) of psychiatrically normal humans ranging in age from birth to 50 years. Among those, we found that a
substantial number of genes in the PFC (115) and the CN (117) are associated with the GO term: mitochondrion (FDR qv
,0.05). A greater number of the genes in the PFC (91%) than the genes in the CN (62%) showed a linear increase in
expression during postnatal development. Using quantitative PCR, we validated the developmental expression pattern of
four genes including monoamine oxidase B (MAOB), NADH dehydrogenase flavoprotein (NDUFV1), mitochondrial
uncoupling protein 5 (SLC25A14) and tubulin beta-3 chain (TUBB3). In mice, overall developmental expression pattern of
MAOB, SLC25A14 and TUBB3 in the PFC were comparable to the pattern observed in humans (p,0.05). However, mice
selectively bred for high fear did not exhibit normal developmental changes of MAOB and TUBB3. These findings suggest
that the genes associated with mitochondrial function in the PFC play a significant role in brain development and fear-
related behavior.
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Introduction

A substantial number of genes in the brain undergo develop-

mental changes in psychiatrically normal subjects [1,2,3]. Many

genes implicated in psychiatric disorders exhibit dynamic expres-

sion changes during the first decade of life [1]. Thus, it is likely that

disruption of normal expression pattern of the susceptibility genes

during development may contribute to the development of

psychiatric symptoms in adulthood. Animal studies have shown

that adolescence is a sensitive period for the development of stress

and anxiety responses in adulthood [4,5]. For example, repeated

exposure of rats to a stressor across an adolescent period increase

fearfulness in a novel environment in adulthood and resulted in

lower levels of dopamine receptor subtype-2 levels in the

prefrontal cortex (PFC) [6]. One of the potential mechanisms

may include different hypothalamus-pituitary-adrenal (HPA) axis

responses to stressors in young and adult animals [7,8]. A slow

maturation of the PFC toward adulthood may contribute to

different stress responses in animals [9]. These studies implicate a

functional relationship between brain development, stress and

altered fear behavior.

The PFC is considered as one of the most functionally advanced

regions of the human cortex [10], mediating working memory,

response inhibition and management of autonomic control

[11,12]. The PFC has been implicated in the pathophysiology of

psychiatric disorders including schizophrenia, mood and anxiety

disorders [13,14,15,16]. Thus, disruption of the PFC function

during normal brain development may contribute to the increased

likelihood of developing psychiatric disorders in adulthood

[10,17,18]. In contrast, the caudate nucleus (CN), a part of the

basal ganglia, has been implicated in motor control, stimulus

response and habit learning [19,20]. The CN receives synaptic

inputs from the dorsolateral PFC [21,22] and may also be involved

in cognitive dysfunction of schizophrenia [23,24]. However, the

CN has received much less attention despite the fact that the CN

had more genes differentially expressed than the PFC in

individuals with schizophrenia [25].

Mitochondria generate energy as adenosine triphosphate (ATP)

and are involved in the apoptosis-signaling pathway [26].

Hundreds of nuclear genes and a few dozen mitochondrial genes

coordinate complex mitochondrial function such as intracellular

ATP and calcium buffering, oxidative phosphorylation, synaptic
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activity and apoptosis. Mitochondrial dysfunction has been

implicated in a variety of pathological conditions including

developmental disorders in primates [27,28,29,30]. Furthermore,

somatic deletions of mitochondrial DNA (mtDNA) may be

associated with development and aging [31,32]. A spectrum of

somatic mutations in mtDNA may be due to oxidative damage

during normal aging. For instance, the breakdown of dopamine by

mitochondrial monoamine oxidase B (MAOB) produces H2O2

which can lead to oxygen radical formation [33]. This may

increase the spectrum of somatic mutations produced by oxidative

damage. Thus, brain regions that are involved in dopamine

metabolism such as the prefrontal cortex (PFC) and the caudate

nucleus (CN) may be particularly vulnerable to oxidative damage.

Previous studies reported developmental patterns of gene expres-

sion in the PFC of human brain tissue [2,34,35]. However,

expression profiles of mitochondrial genes were not described in

those studies. A study reported that approximately 20 genes

associated with the mitochondrial membrane are enriched in

developing human brains based on the template matching

procedure and the gene set enrichment analysis [36]. A

comprehensive expression profile of mitochondrial genes in the

PFC and the CN has not been reported.

Mitochondrial genes are implicated in psychiatric disorders

including schizophrenia [37], bipolar disorder [38], major

depression [39], anxiety disorder [40], and posttraumatic stress

disorder [41]. For example, a significant decrease in mitochondrial

ATP production and mitochondrial enzyme activity was found in

individuals with major depression [42]. Also, genes associated with

mitochondrial function and immune responses were differentially

expressed in the individuals with bipolar disorder and major

depression [43]. Furthermore, genes involved in energy metabo-

lism and mitochondrial function were down-regulated [38,44] and

genes involved in immune response and inflammation were up-

regulated in bipolar disorder patients [45,46]. One of the major

modulators of mitochondrial function is BCL-2 which is embedded

in the inner mitochondrial membrane. Transgenic mice over-

expressing Bcl-2 in the brain showed a decrease in anxiety and

neophobia [47], whereas Bcl-2 knockout mice showed a significant

increase in anxiety-like behavior [40], suggesting the involvement

of Bcl-2 in anxiety disorders. Together, these studies indicate that

the genes associated with mitochondria may play a significant role

in mood and anxiety disorders.

Although mitochondrial dysfunction during development may

contribute to the development of mood and anxiety disorders

[40,48,49,50], molecular mechanisms by which mitochondrial

genes influence brain development and fear-related behavior

remain unclear. Using microarray data available from the public

domain and Gene Ontology analysis, we surveyed genes and

functional categories associated with age in the cortical (PFC) and

the sub-cortical (CN) areas of psychiatrically normal subjects

ranging in age from birth to 50 years. Expression profiles of

different genes from this microarray dataset have been published

[1,2,35,36], and we are testing a novel hypothesis using

mitochondria-associated genes. Using mice selectively bred for

high and low fear, we investigated the effects of age and altered

fear behavior on mitochondrial gene expression. To our knowl-

edge, this is the first study reporting developmental expression

patterns of mitochondrial genes in different brain regions and

altered fear responses. Our study demonstrates the utility of

integrating the expression data derived from postmortem brain

tissue of psychiatrically normal individuals and a mouse model of

fear to enhance our understanding of the mitochondrial function

in brain development and fear-related disorders.

Results

Age-related Genes in the PFC and the CN
Individual variable analyses revealed that brain pH affected

expression of a significant number of transcripts: 6.6% of the

transcripts in the PFC and 0.24% of the transcripts in the CN.

Other demographic variables such as postmortem interval (PMI)

(PFC: 1.9% and CN: 0.08%), RNA Integrity Number (RIN) (PFC:

1.1% and CN: 0.3%), race (PFC: 0.4% and CN: 0.1%) and sex

(PFC: 0.1% and CN: 0.1%) affected a relatively small number of

transcripts. Thus brain pH was adjusted using a multiple

regression model. We identified genes showing linear changes

across age such as 1,236 genes (716 increase and 520 decrease) in

the PFC and 1,745 genes (985 increase and 760 decrease) in the

CN based on the significance criteria (r2.0.6 and qv ,0.05)

(Figure S1). Using those age-related genes, we performed Gene

Ontology (GO) analyses and found the same GO term:

mitochondrion that is enriched in both the PFC (115 genes, fold

change: 1.96, FDR ,5%) and the CN (117 genes, fold change:

1.4, FDR ,5%) as shown in Table 1.

Expression of Mitochondrial Genes in the PFC
A majority of the genes associated with the GO term:

mitochondrion in the PFC (105/115 genes, 91%) showed a linear

increase in expression during postnatal development (Figure 1).

Among those, multiple genes encode different subunits of the same

protein that are involved in the oxidative phosphorylation function

(Table S1). For example, 17 genes encode sub-complexes of the

NADH dehydrogenase (NDUF), 6 genes encode the ATP synthase

(ATP5), 6 genes encode the cytochrome c oxidase (COX) and 3

genes encode the ubiquinol-cytochrome c reductase (UQCR) as

shown on the right side of Figure 1. These suggest that a demand

for energy synthesis and metabolism in the PFC gradually

increases during postnatal development.

Expression of Mitochondrial Genes in the CN
Although an overall number of age-related genes associated

with the GO term: mitochondrion was similar between the PFC

(115) and the CN (117), individual gene expression patterns were

quite different. While a majority of the genes in the PFC (91%)

showed a linear increase with age, less number of the genes in the

CN (62%) showed the same pattern with age (Figure 2). On the

contrary to the age-related genes in the PFC (43), fewer genes (17)

in the CN encode different subunits of the same protein as shown

on the right side of Figure 2.

Quantitative PCR
Using quantitative PCR, we validated the developmental

expression patterns of four genes including monoamine oxidase

B (MAOB), NADH dehydrogenase (ubiquinone) flavoprotein

(NDUFV1), mitochondrial uncoupling protein 5 (SLC25A14) and

tubulin beta-3 chain (TUBB3) in the PFC. We selected these genes

because they are included in the list of 115 genes from the GO

term: mitochondrion and have been implicated in psychiatric

disorders: monoamine oxidase B [51,52], NADH dehydrogenase

(ubiquinone) flavoprotein [53,54], mitochondrial uncoupling

protein 5 [55], and tubulin [56,57]. We have confirmed that the

microarray and the qPCR data were consistent, with all four genes

showing the same directional changes in both experiments. We

used the multiple regression analysis including brain pH as a

covariate, and calculated the adjusted coefficient (r2) and adjusted

p-value for each gene. Expression levels of MAOB (r2 = 0.55,

qv = 7.5E-10), NDUFV1 (r2 = 0.63, qv = 1.8E-08), and SLC25A14

(r2 = 0.53, qv = 3.1E-05) gradually increased while the levels of
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TUBB3 (r2 = 0.51, qv = 4.3E-06) decreased across chronological

age (Figure 3).

Expression of Mitochondrial Genes in Mice with High and
Low Fear

We investigated the effects of age and fear behavior in mice

selectively bred for high and low fear. We quantified the

expression levels of the same genes including MAOB, NDUFV1,

SLC25A14 and TUBB3 in the PFC of juvenile and adult mice

selectively bred for high and low fear (Figure 4). For MAOB, there

was a significant interaction between age and fear (F [1,79] = 8.68,

p,0.05). A post-hoc analysis revealed significant effects between

juvenile and adult mice selectively bred for low fear (Figure 4A).

Expression levels of NDUFV1 were not different between these

groups (p.0.05) as shown in Figure 4B. Expression levels of

SLC25A15 were higher in adult mice as compared to juvenile mice

(p,0.05) as shown in Figure 4C. For TUBB3, a significant

interaction between age and fear was found (F [1,79] = 7.88,

p,0.05). Among the low fear mice, the levels of TUBB3 were

lower in adult mice as compared to juvenile mice (p,0.05)

(Figure 4D). These results indicate that the mice selectively bred

for low fear exhibit normal developmental expression pattern of

those genes. However, the mice selectively bred for high fear

exhibit disrupted expression patterns of MAOB and TUBB3 in the

PFC during postnatal development.

Discussion

A normal mitochondrial function is critical for synaptogenesis

and spine formation [58,59], and for normal apoptosis to occur

[60,61]. Thus, increased expression of the genes associated with

mitochondrial function in the PFC during development may

reflect ongoing maturation and neuronal plasticity, especially

during adolescence [36]. For instance, MAOB is present on the

outer membrane of the mitochondria and function primarily to

maintain the cytosolic concentrations of monoamines. The precise

spatial and temporal pattern of the monoamine neurotransmitter

systems is known to be important in orchestrating the development

of the neural circuitry of the brain [62,63,64]. Consequently, the

metabolism of the monoamines by MAOB in the developing brain

is going to be fundamental for brain development and function.

Given that MAOB expression levels gradually increase in the PFC

during normal brain development, a lack of developmental

changes in MAOB levels observed in high fear mice indicates a

dysfunction of MAOB in these animals. This is an important

finding because MAOB has been implicated in mood and anxiety

disorders including social phobia, panic disorder and post-

traumatic stress disorder (PTSD) [65]. Thus, enhancing MAOB

activity in the PFC may have beneficial effects on fear-related

behavior. Our findings support the notion that monoamines are

involved in mood and anxiety disorders.

We found that the genes associated with the GO term:

mitochondrion undergo age-related changes in expression in both

the PFC and the CN of developing humans. However, only the

genes from the PFC showed a consistent increase in expression

across age. Also there were more genes in the PFC than in the CN

that are involved in oxidative phosphorylation function. A growing

body of evidence suggests mitochondrial dysfunction in affective

disorders involving multiple brain regions, including the PFC [44],

the temporal cortex [66], and the hippocampus [38]. Moreover,

base pair substitutions in the coding regions of mtDNA [67],

altered mitochondrial oxidative phosphorylation [68] and abnor-

mal expression of nuclear genes encoding mitochondrial proteins

[38] have been reported in mood and anxiety disorders. These

results strongly implicate mitochondrial dysfunction in the

pathophysiology of affective disorders [50]. In line with these

findings, the major categories of drugs used to treat depression

have been demonstrated to exert effects on mitochondria as well as

on monoamines [69,70,71]. Also, commonly used mitochondrial-

targeted treatments exert effects on mitochondria and are

increasingly being shown to demonstrate efficacy in mood

disorders [72]. These studies suggest an interaction between the

monoamine system and the mitochondrial system in mood and

anxiety disorders.

Although the mitochondrial system has been implicated in

psychiatric disorders, very little is known about the role of

mitochondrial genes on fear learning in rodents. We investigated

the expression levels of four mitochondrial genes in the PFC of mice

selectively bred for high and low fear. The classical fear conditioning

model has been used extensively to study fear in animals [73] and in

humans [74]. We have found that three mitochondrial genes

(MAOB, SLC25A14 and TUBB3) in the PFC follow age-dependent

changes in expression in mice selectively bred for low fear.

However, normal developmental changes of MAOB and TUBB3

Table 1. Enriched biological pathways in the genes showing age-dependent changes in the PFC and the CN of normal individuals.

Brain Region Category GO Term Count
Fold
Change FDR p-value

PFC GOTERM_CC_ALL GO:0005739,mitochondrion 115 1.96 3.98E-10

PFC GOTERM_CC_ALL GO:0031966,mitochondrial membrane 58 2.62 3.99E-09

PFC GOTERM_BP_ALL GO:0006119,oxidative phosphorylation 28 4.32 8.18E-07

PFC GOTERM_CC_ALL GO:0005746,mitochondrial respiratory chain 22 4.87 9.87E-08

PFC GOTERM_BP_ALL GO:0007399,nervous system development 86 1.96 4.66E-06

CN GOTERM_BP_ALL GO:0007242,intracellular signaling cascade 176 1.42 0.002793

CN GOTERM_BP_ALL GO:0000074,regulation of progression through cell cycle 75 1.72 0.003894

CN GOTERM_BP_ALL GO:0007399,nervous system development 101 1.56 0.005043

CN GOTERM_CC_ALL GO:0005739,mitochondrion 117 1.4 0.009768

CN GOTERM_BP_ALL GO:0008219,cell death 103 1.49 0.012914

Functional annotation analyses (Gene Ontology) were performed using 2 sets of genes (genes changing expression in the PFC and genes changing expression in the
CN). Count: number of genes included in each category, Fold: fold enrichment, FDR: false discovery rate-adjusted p-values based on the Benjamini-Hochberg method
[84].
doi:10.1371/journal.pone.0049183.t001
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were disrupted in mice selectively bred for high fear. This is

significant because mice selectively bred for high fear resemble

individuals who are more susceptible to develop fear-related

disorders [75]. Thus, disrupted expression levels of MAOB and

TUBB3 in the PFC of mice with high fear may contribute to

exaggerated fear responses observed in these animals.

A limitation of this study is that we had a relatively smaller number

of postmortem brain samples from the CN (n = 14) as compared to

the PFC (n = 48), so the statistical power may be compromised.

However, we observed a similar number of genes associated with

mitochondrial function in the PFC (115 genes) and the CN (117

genes) using the same criteria of significance (r2.0.6 and FDR q-

value ,0.05). It is possible that other factors such as nutrition,

metabolism or common deletions in mtDNA associated with aging

may have affected expression of certain mitochondrial genes. It

would be important to corroborate the current gene expression

findings from developing brains with other types of data such as brain

imaging, neuropsychological and cognitive testing to enhance our

understanding on human brain development and function. Another

limitation is that a limited number of mitochondrial genes were tested

in the PFC of mice with high and low fear. Thus it is possible that

other mitochondrial genes that were not investigated in this study

may also contribute to fear and anxiety behavior. Also, we did not

study effects of stress on fear behavior in these animals and a further

study is necessary to expand the current findings.

In summary, we identified a substantial number of genes

associated with mitochondria that undergo age-dependent changes

in the PFC and the CN of psychiatrically normal individuals. A

majority of the genes in the PFC (105/115) showed a linear

increase in expression across age and 27% of them (28/105) were

related to oxidative phosphorylation function. Using mice

selectively bred for high and low fear, we found that age-

Figure 1. Developmental expression pattern of the genes associated with mitochondrial function in the PFC. A majority of the
mitochondrial genes (91%) show increased expression (green to red), while only 9% of the genes show decreased expression (red to green) during
postnatal development. Genes that encode different subunits of the same protein are shown on the right side. X-axis: Age (years). Y-axis: Gene
symbols. In this pseudo-color heat map, increasing red intensities indicate genes with high expression levels, and increasing green intensities indicate
genes with low expression levels across age. Color bar scale: hybridization intensity (log base 2) from 2.41 to 11.72.
doi:10.1371/journal.pone.0049183.g001
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dependent changes in expression of MAOB and TUBB3 in the PFC

were disrupted in animals with high fear. Since mitochondrial

dysfunction can lead to multiple abnormalities in cell function

[76,77], disruptions in normal developmental changes of the genes

during the sensitive period may predispose the individuals to the

development of mood and anxiety disorders. Taken together, a

better understanding of the genes associated with the mitochon-

drial function in the PFC may provide an opportunity to identify a

novel drug target for the treatment of mood and anxiety disorders.

Materials and Methods

Postmortem Brain Tissue and Microarray Experiment
Postmortem brain tissue from the PFC (Brodmann Area 46) and

dorsal head of the CN ranging in age from birth to 50 years were

obtained from the National Institute of Child Health and

Development Brain and Tissue Bank for Developmental Disorders

(NICHD Contract NO1-HD8-3283; IRB approval H-20765)

(Table S2). Details on sample collection and consent information

is available from a previous report [78]. Brain tissue from the CN

was not available from all the subjects, and this resulted in much

fewer samples included in the microarray experiments (PFC: 48

samples and CN: 14 samples) (Figure S2). The brain collection

protocol was reviewed and approved by the Institutional Review

Board of the University of Maryland, Baltimore. All subjects were

free of neurological and psychiatric symptoms at the time of death

as described previously [79]. A microarray experiment (Affymetrix

HG-U133 plus 2.0 GeneChip) was performed by Dr. Paabo’s

Figure 2. Developmental expression pattern of the genes associated with mitochondrial function in the CN. Approximately 62% of the
genes (72/117) show increasing expression (green to red), while 38% of the genes (45/117) show decreasing expression (red to green) during
development. X-axis: Age (years). Y-axis: Gene symbols. Genes that encode different subunits of the same protein are shown on the right side. On the
contrary to the PFC, very few genes encode different subunits of the same protein. Color bar scale: hybridization intensity (log base 2) from 4.45 to
13.56.
doi:10.1371/journal.pone.0049183.g002
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group (Max Planck Institute, Germany) and findings from this

dataset were published previously [2,35,36].

Quality Control of Microarrays
Raw data (.cel files) were processed and analyzed using the R

statistical language (http://www.r-project.org) and Bioconductor

packages [80]. A robust multi-array average (RMA) algorithm was

used for normalization of expression values (log base 2) for each

transcript [81]. Microarray data quality was assessed using a pair-

wise sample correlation coefficient with hierarchical clustering to

identify sample outliers. Transcripts were filtered out if 20% or

more of the subjects had expression values of less than a 1.1-fold

change in either direction from the transcript’s median value and if

the percent of subjects with an absent gene call exceeded 33% using

the Affymetrix calls. We used this procedure to remove transcripts

that are not expressed or changed across the samples before the

statistical analysis [82]. After the gene filtering, 21,391 transcripts

for the PFC and 22,356 transcripts for the CN were retained.

Microarray Data Analysis
First, individual demographic factors were analyzed to identify

potential confounding factors affecting the expression of a

significant number of genes. The number of transcripts signif-

icantly regulated by each variable including brain pH, postmortem

Figure 3. Quantitative PCR validation of mitochondrial genes. A scatter plot with a line of best fit demonstrates that each gene in the PFC
shows either increase or decrease in expression across age (qv ,0.05). X-axis: Age (log 2 scale). Y-axis: Gene expression (log 2 scale). Subjects were
color-coded as red: neonate (0–3 months), green: infant (3–12 months), blue: toddler (1–5 years), light blue: school age (6–13 years), pink: teenage
(14–19 years), yellow: young adult (20–30 years), and grey: adult (31–50 years). A: MAOB (monoamine oxidase B), B: NDUFV1 [NADH dehydrogenase
(ubiquinone) flavoprotein 1, 51 kDa], C: SLC25A14 (mitochondrial uncoupling protein 5), D: TUBB3 (tubulin beta-3 chain).
doi:10.1371/journal.pone.0049183.g003
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interval (PMI), RNA integrity number (RIN), race and sex was

calculated using a linear regression model (p,0.001). Following

the demographic factor analysis, linear gene expression changes

across chronological age were analyzed in a series of multiple

regression models, one model for each gene, including age (log

base 2) and brain pH (as a confounder) as independent variables

and gene expression (log base 2) as a dependent variable. To adjust

for multiple testing of the genes, the calculated p-values

corresponding to the age covariate for each gene were adjusted

to give an overall false discovery rate (FDR) of 5% using the q-

value package (www.bioconductor.org). The criteria of significance

were set at adjusted coefficient r2.0.6 and FDR q-value ,0.05.

The microarray data are available from the Gene Expression

Omnibus (GEO) under the accession number GSE11512.

Gene Ontology Analysis
The NCBI’s Database for Annotation, Visualization and

Integrated Discovery (DAVID; http://david.abcc.ncifcrf.gov/)

was used as a standard source for gene annotation information

[83]. A modified Fisher’s Exact test (EASE) was used to measure

the gene set enrichment in the annotation terms. A set of genes

associated with age in each brain region was used in an annotation

term-by-annotation term contingency test to identify the associ-

ation between each gene set and annotation term. Both nominal

and FDR adjusted p-values for each test were calculated, and the

significance threshold for the GO term was set at FDR-adjusted

p,0.05 [84].

Mice Selectively Bred for High and Low Fear
Mice were derived from the F8 generation of C57BL/6J (B6) X

DBA/2J (D2) advanced intercross line (AIL). The foundation AILs

were created and tested by Dr. Abraham Palmer and colleagues

(University of Chicago, Chicago IL) [85,86,87]. The F8 AILs were

trained and tested for cued and contextual fear [88], and mice that

display either enhanced (top 20%) or diminished (bottom 20%)

conditioned fear (selected generation 1) were shipped to the

Figure 4. Expression levels of mitochondrial genes in the PFC of juvenile and adult mice selectively bred for high and low fear. The
expression levels of mitochondrial genes in the PFC of mice selectively bred for high and low fear were measured in either 1 month (clean bar) or 4
months (hatched bar) of age. A: MAOB (monoamine oxidase B), B: NDUFV1 [NADH dehydrogenase (ubiquinone) flavoprotein 1, 51 kDa], C: SLC25A14
(mitochondrial uncoupling protein 5), D: TUBB3 (tubulin beta-3 chain). Data shown as an average and SEM. *Significant between juvenile and adult
mice (p,0.05).
doi:10.1371/journal.pone.0049183.g004
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Uniformed Services University of the Health Sciences where

breeding and selection continued. Thus, these animals represent

alternative condition as compared to the animals in the middle

that were not selected for breeding. Juvenile (approximately 1

month) and adult (approximately 4 months) mice from the third

and the fourth generations that display high and low fear were

used in this experiment including juvenile mice with high fear

(N = 31) and low fear (N = 19), and adult mice with high fear

(N = 21) and low fear (N = 12). Animals were screened for high and

low fear using Pavlovian fear conditioning. Mice were placed in

Plexiglas rodent conditioning chambers with a metal grid floor

(Ugo Basile, Collegeville, PA) and a single house light provided

dim lighting within sound attenuation boxes. Mice were given a

3 min baseline to adjust to the context and then presented with

two 30 sec tones (conditioned stimuli [CS], 5 kHz, 75 dB) that

terminated with a mild electric foot shock (unconditioned stimuli

[US], 0.5 sec, 0.8 mA) using the AnyMaze program (Stoelting Co.,

Wood Dale, IL). The following day, animals were placed in the

identical chamber with no tones or shocks presented and freezing

in response to the test chamber (contextual fear) was measured for

5 min. For cue-specific fear, the context of the chamber was

changed, which included covering the house light with yellow

acetate film. Striped and checkered patterns were placed around

the Plexiglas and a white plate was placed over the metal grid

floor. With the change in context, the mice were tested on freezing

in response to the tone (CS). The mice were monitored with

infrared cameras, which measured freezing time for each animal

during the testing (ANY-maze program, Stoelting Co., Wood

Dale, IL). These animals showed clear differences in conditioned

fear behavior as reported previously [89]. For example high fear

and low fear mice exhibited approximately 55% and 30% freezing

behavior respectively during CS presentation. An animal protocol

was approved by the IACUC at the Uniformed Serviced

University, Bethesda, MD.

RNA Extraction from Mouse Brain Tissue
Coronal sections of 1.5 mm mouse brain slices were acquired

using an acrylic brain block (Braintree Scientific, Braintree, MA)

and surgical razor blades on wet-ice (4uC). The medial PFC was

punched out using a 14-gauge needle, and immediately frozen in

dry ice. Brain tissue was homogenized by ultrasonication and total

RNA was extracted using the RNeasy Minikit (Qiagen, Valencia,

CA, USA). Complementary DNA was synthesized using a reverse-

transcriptase polymerase chain reaction (RT-PCR) using oligo dT

primers.

Quantitative PCR
Total RNA was extracted from the PFC of the same subjects as

described in postmortem brain tissue section above, and the cDNA

was synthesized with RT-PCR using oligo dT primers. Pre-

designed and validated QuantiTect SYBR primers (Qiagen,

Valencia, CA, USA) were used for the qPCR: MAOB

(QT00009870, NM_000898), NDUFV1 (QT00003080,

NM_007103), SLC25A14 (QT00040544, NM_003951), and

TUBB3 (QT00083713, NM_006086). Three endogenous control

genes including PP1A (QT01866137, NM_021130), GUSB

(QT00046046, NM_000181) and ACTB (QT00095431,

NM_001101) were used. For mouse brain tissue, oligonucleotide

primers were designed using the Primer 3 software (http://frodo.

wi.mit.edu/primer3/). Primer sequences were Maob (forward:

cagccagaaccagaatctttg, reverse: gctgacaagatggtggtcaat), Ndufv1

(forward: cgttgactggatgaacaaggt, reverse: gtgtggccttctatctgcttg),

Slc25a14 (forward: tgaatcagagggcaatagtgg, reverse: atgatgttc-

cagggtccaagt) and Tubb3 (forward: gaatgacctggtgtccgagta, reverse:

cgattcctcgtcatcatcttc). Using a 384-well format with the Prism

7900HT real-time detector (Applied Biosystems, Foster City, CA),

1 ml aliquots of Qiagen QuantiTect SYBR primer, 10 ml qPCR

PCR Master mix (Applied Biosystems, Foster City, CA), and 10 ml

cDNA were mixed together and pipetted into single wells of the

qPCR plate. Reactions were quantified by the cycle threshold (Ct)

method using the SDS2.2 software (Applied Biosystems, Foster

City, CA). An average quantity value (Qty mean) for each sample

from the triplicates of that sample was calculated for each gene.

The data for each gene were expressed as Qty mean for the gene

of interest/geometric mean of Qty mean for the three endogenous

control genes. Multiple regression analyses were performed with

chronological age (log base 2) and brain pH as covariates as

described previously [79]. For the mice data, a two way ANOVA

(age X fear) for interaction and main effects followed by post-hoc

tests were performed using normalized values of the individual

genes.

Supporting Information

Figure S1 Distribution of actual age across samples
(PFC: n = 46 and CN: n = 13). There were more samples with

age below 10 (25 out of 46 samples) in the PFC as described in the

demographic summary table. In order to better describe the

expression changes during early development, we used a log2 scale

of age in Figure 3.

(DOCX)

Figure S2 A Venn diagram showing the total number of
genes with age-related expression changes between the
PFC and the CN (r2.0.6 and FDR qv ,0.05). There were

1,236 genes (716 increased and 520 decreased) in the PFC and

1,745 genes (985 increased and 760 decreased) in the CN that

undergo age-related changes in expression.

(DOCX)

Table S1 A summary of demographic information. PMI:

Postmortem interval, RIN: RNA integrity number M: Male, F:

Female, AA: African American, C: Caucasian

(DOCX)

Table S2 Information on the genes associated with the
GO term: mitochondrion in the PFC and the CN. r2:

adjusted coefficient, r: regression coefficient, q value: FDR-

adjusted q-value

(DOCX)
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