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Abstract

Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has
been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether
the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal
components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat
brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of
amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable
neuronal assembly constitutes a spatial dimension of the engram.
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Introduction

Understanding the physical encoding of a memory (the engram)

in neuronal networks is a fundamental challenge for neuroscience

[1,2,3]. A key question to be addressed about the engram is what

principle underlies the organization of neurons storing a memory.

Pavlovian fear conditioning is a form of associative memory

formation where a conditioned stimulus (CS) such as an auditory

tone is paired with a fear arousing unconditioned stimulus (US)

such as a foot shock. As a result a memory is formed which allows

the CS to elicit freezing, a behavioral index of fear. Synaptic

plasticity in the lateral amygdala (LA) is critical to the

establishment of this memory [4,5,6,7,8]. Plasticity of synaptic

strength and neuronal structure is dependent upon phosphoryla-

tion of extracellular signal-regulated kinase, a mitogen-activated

protein kinase (ERK/MAPK) [9,10]. Pavlovian fear conditioning

is dependent upon phosphorylation of ERK/MAPK (pMAPK) in

the LA, which is detectable as both an increase in pMAPK

protein, and pMAPK expressing neurons [11,12].

Within a memory-storing nucleus, such as the lateral amygdala

(LA), it is not understood if the distribution of neurons encoding a

given memory is random or spatially organized. In this study, we

asked whether Pavlovian auditory fear conditioning in intact

animals is associated with a unique topography of pMAPK labeled

neurons in the LA and whether this pattern is consistent across

animals storing the same fear memory.

To visualize the distribution of pMAPK activated neurons we

generated density heat maps at an anatomically matched region of

the LA. Next, we applied spatial principal components analysis

(sPCA) to quantify the spatial distribution reflected by the density

heat maps. sPCA is a data reduction technique used to capture

patterns of covariance from large datasets [13,14,15,16,17]. In this

study we used sPCA to extract a spatial pattern of activated LA

neurons that could statistically distinguish between brains that did

or did not acquire an auditory fear memory.

We found a unique pattern of neuronal activation in the LA that

was associated with the formation of an auditory fear memory.

The topography was consistent across brains encoding the same

fear memory, suggesting that the spatial distribution of LA

neurons associated with fear memory encoding is stable.

Results

Section alignment
We set out to provide a quantitative measure of coronal brain

section alignment, rather than a qualitative measure as is

traditionally used for comparing brain sections. We identified

the lateral ventricle as a structure that could both be accurately

measured and importantly, it showed rapid change from section to

section which allows brain sections to be quantitatively assigned to

sequential groups. In order to verify the alignment of the section

across subjects, the contour of the entrance to the LV was digitally

reconstructed and the maximum feret length was statistically

compared (ANOVA) between conditions. The maximum feret

length is the longest distance of the contour as if a caliper was used

to make the measurement across the two opposing sides

(NeuroExplorer, MBF Bioscience, VT). To verify that the section

chosen for mapping was significantly different from adjacent
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sections, a paired t-test was used to compare the maximum feret

measurement of the LV across three consecutive sections

(Figure 1). To assess the degree of similarity between subjects for

the section chosen for pMAPK neuron mapping, z-scores were

computed from each maximum feret measurement of the lateral

ventricle (LV) and outliers were determined. Z-scores greater than

3.29 were considered outliers. No z-scores exceeded the

predetermined cut-off of 3.29 so it can be assumed that each

section was matched across subjects. The maximum feret

measurement of the LV was also compared between experimental

conditions to rule out whether artifactual differences due to

misalignment of sections may have contributed to the observed

between-group differences. There was not a significant difference

(p = .49) in the maximum feret distance between P5

(403.56100.5), UP5 (430.0683.5) and N (283.2682.4) groups,

indicating that the section chosen for mapping was closely aligned

between experimental conditions. The maximum feret measure-

ment of the LV for the section chosen for mapping (Bregma

23.36) was significantly different from the section rostral (23.32;

p = .000003) and caudal (23.40; p = .000008), confirming the

initial opening of the LV as a useful anatomical reference for

section alignment between subjects. Together, these results

confirm that differences in pMAPK neuron distribution between

experimental conditions are not due to misalignment of sections

between groups (Figure 1).

pMAPK neuron density
Using MANOVA, we compared the relative change in pMAPK

neuron density among LA subnuclei, which included the dorsal

(LAd), ventromedial (LAvm) and ventrolateral (LAvl) subnuclei.

Significant differences between conditions were restricted to the

LAd (F2,10 = 11.5; p = .003) (see Results S1 and Figure 2).

Apparent increases in pMAPK density were also observed in

amygdala regions ventral to the LAd, including the LAvm and

Figure 1. The entrance of the lateral ventricle was used as an anatomical landmark for section alignment. (A) Representative
photomicrographs (2x magnification) of three consecutive 40 mm sections depicting (1) the ‘‘blind pouch’’ (indicated by arrowhead) rostral to the
initial opening of the lateral ventricle (LV), (2) initial opening of the LV (Bregma 23.36) and (3) the LV (indicated by arrowhead) caudal to the initial
opening of the LV (B) The maximum feret measurement of the LV was significantly different at the section rostral (Bregma 23.32) and caudal (Bregma
23.40) to the section chosen for mapping (Bregma 23.36). (C) Representative reconstructions of the morphology of the LV at Bregma 23.32, 23.36
and 23.40. The reconstructions of the LV for consecutive sections are representative of the mean maximum feret distance for all subjects. Circles
represent the mean LV feret measurement 6 standard error of the mean. *** indicates p,.00001.
doi:10.1371/journal.pone.0015698.g001
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LAvl. In the current study of a single matched section these

increases were not significantly different. In addition, no

differences in pMAPK neuron density among the experimental

conditions were found for the MePD (Figure S1). Next we

compared the density of pMAPK activated neurons in the LAd

from the P5 group to the total number of principal neurons as

revealed by calcium/calmodulin-dependent protein kinase II

(CaMKII) immunocytochemistry. pMAPK neurons represented

20% (79.869.0: 403.0611.3) of the total principal neurons

(pMAPK n = 4; CaMKII n = 4)(Figure S2). This proportion of

neurons in the amygdala, activated as a result of associative fear

learning, is directly comparable to the proportion of principal

neurons identified using different methods to visualize neurons

undergoing plasticity, including pCREB [18] and AMPA

receptors [19]. Collectively, these data show that association of

the tone and shock alters pMAPK neuronal density in the LAd

[11,12]. Consequently we restricted subsequent neuronal topo-

graphical analyses of pMAPK expressing neurons to LAd.

Spatial Principal Components Analysis
Density heat maps plotting mean pMAPK neuron density in

LAd (Figure 3) revealed a distinct pattern in the distribution of

pMAPK neurons in the P5 group compared to controls. These

maps suggest that neurons expressing pMAPK due to the

association of tone and shock, and thus encoding the engram,

may be topographically organized in the LAd. In order to evaluate

the topographical stability of pMAPK expressing neurons across

individuals and experimental groups, we performed spatial

principal components analysis (sPCA) on neuronal density maps

from LAd. sPCA was used to reduce the complex spatial

distribution of pMAPK labeled neurons into a less complex set

of uncorrelated pattern components (see Results S1, Figure S3).

The pattern of labeling is illustrated by the loading values

associated with a particular component, and pattern prominence is

indicated by the component score for each individual. The analysis

revealed a single component with a consistent pattern of pMAPK

neuron labeling that was specific to the P5 group (Figure 3 and

Figure 4; see Results S1). This pattern represents a stable

topography of pMAPK labeling that is associated with the

formation of the auditory fear memory (Figure 4).

What appeared to distinguish the distribution of pMAPK

labeled neurons in the present experiment was differential labeling

in discrete regions within LAd between conditions, an observation

consistent with higher loading values (for component 1) in a small

proportion of the bins. Significantly higher component scores in

the P5 group relative to control groups provided quantitative

confirmation of this observation (Figure 4). We also statistically

compared the spatial patterns of pMAPK labeled neurons

Figure 2. Auditory fear conditioning was accompanied by greater density of pMAPK expressing neurons in the LAd. (A) Paired
presentation of the tone and shock produced greater freezing levels when the auditory CS was presented alone in a novel environment relative to
the explicitly Unpaired and Naı̈ve control conditions (one-way ANOVA; Bonferroni post-hoc). Freezing prior to the presentation of the auditory CS in a
novel chamber (pre-CS) was low for all conditions (B) pMAPK neuron density was increased in the P5 relative to both control conditions for the LaD
(Multivariate ANOVA with Bonferroni post-hoc). (C) Photomicrograph of a pMAPK labeled section of LA subnuclei (4X magnification; scale bar
= 100 mm) and representative pMAPK labeled neuron from the LAd (40X magnification; scale bar = 10 mm). (D) Micro density heat maps of the LAd,
LAvm and LAvl sub regions of the LA depicting the distribution of pMAPK labeled cells in the Paired, Unpaired and Naı̈ve conditions. The colors for
each bin reflect an estimation of spatial density from low (blue) to high (red).* denotes p,.05, ** p,.01, *** p,.001.
doi:10.1371/journal.pone.0015698.g002
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associated with the remaining components (2–7) extracted by the

sPCA (See Results S1 and Figure 3). Importantly, we found no

differences in factor score with respect to experimental condition

for these components. This provides further verification that the

pattern of pMAPK labeled neurons reflected by component 1 was

unique to the formation of the associative fear memory. Overall,

the sPCA showed that the distinguishing feature of the pMAPK

topography in the P5 group – as compared to the control groups –

was a higher proportion of labeled neurons in discrete areas within

the dorsal LAd.

In the P5 group, the greatest number of pMAPK labeled cells

(7.061.2) was localized within bin 7 (from Bregma: 3.6 mm

caudal; 5.65 mm medial; 7.23 mm ventral, Figure 3) [20].

Component 1 loaded highly in this area, and this area possessed

significantly more pMAPK neurons in P5 relative to both control

groups when compared with an appropriately corrected post hoc

test (a/22, p,0.002; see Results S1). Additionally, there was a

significant difference for bin 13, which was also the location of a

high component 1 loading value. The fact that bins with the

highest loading values were also the sites of the greatest difference

in neuronal number between experimental conditions verifies the

use of sPCA in extracting meaningful patterns of variance

associated with the experimental manipulation. This finding

suggests the possibility that an extremely small portion of the

LAd makes a significant contribution to the encoding of Pavlovian

auditory fear memory.

Figure 3. Spatial principal components analysis of the distribution of pMAPK labeling in the LAd. (A) Photomicrograph (4x
magnification) of the LaD with grid overlay. (B) Grid showing the numerical layout of bins (120 mm2) for the LAd. (C) Micro density maps with grid
overlay illustrating the mean distribution of pMAPK labeled neurons for the Paired (auditory fear memory), Unpaired and Naı̈ve (no auditory fear
memory) experimental conditions. (D) Component loading maps illustrating the spatial distribution of loading values for each component. The
loading values can be interpreted as representing regions of variance in pMAPK activity. The loading maps are ordered according to decreasing
eigenvalues with the largest eigenvalue associated with component 1. The component loading maps were generated by first categorizing the
frequency of loading values for all 7 factors into bins. Each bin was color coded to reflect incremental loading values from low (dark blue) to high
(red).
doi:10.1371/journal.pone.0015698.g003
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Discussion

The present data provide the first evidence that formation of a

Pavlovian fear memory is associated with a unique neural

topography in the amygdala. The consistency of the spatial

pattern across animals that encoded the same fear memory

indicates that the topography of pMAPK neuron activity observed

in the present data-set was reliable and non-random.

The ERK/MAPK signaling cascade regulates cyclic-AMP

response element binding protein (CREB), a transcription factor

regulating protein synthesis underlying memory [18,21]. Recent

data shows that neurons expressing experimentally induced up-

regulated CREB are preferentially recruited into the network of

LA neurons encoding a Pavlovian fear memory [18,22]. These

data suggest that the inclusion of a given LA neuron into the

network is not random but rather depends on the level of CREB

expressed in the neuron at the time of the memory formation

[18,21]. The present finding of a stable spatial map of neurons

associated with Pavlovian fear conditioning provides evidence for

non-random participation of neurons encoding a fear memory.

sPCA is a particularly useful data-driven statistical tool for

decoding complex interactions of spatially distributed biological

activity. The advantage of using sPCA to a more traditional test of

independent samples (e.g., a t-test) is that sPCA reduces the large

numbers of variables into a smaller set of uncorrelated variables. A

comparison of the new, smaller number of variables between

experimental conditions significantly reduces familywise error

rates resulting from multiple comparisons. Thus, with sPCA it was

possible to identify the most common overall pattern of neuron

distribution associated with fear memory formation across

different animals (Figure 4). In addition, within this pattern it

was possible to identify regions of greatest difference (Figure 4).

Figure 4. Spatial principal component analysis revealed a pattern of pMAPK activated neurons unique to auditory fear
conditioning. (A) Component 1 loading map best represents the difference in pMAPK activity between groups. The loading values can be
interpreted as representing regions of difference in pMAPK activity between the experimental conditions as depicted in panel B. (B) Grid maps
depicting the mean value of pMAPK activity for each experimental condition. The mean values for pMAPK activated cells were assigned a color value
from violet (low cell number) to red (high cell number) (C) The bar graph reflects the mean difference in the component 1 scores between Paired,
Unpaired and Naive groups (one-way ANOVA; Bonferroni post-hoc). (D) Photomicrograph (4 x magnification) of the LAd with superimposed
component 1 loading values. ** denotes p,0.01.
doi:10.1371/journal.pone.0015698.g004
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One potential caveat of the present study was the relatively

small number of observations in relation to the number of

variables (observation to variable ratio,1:1.69). Nevertheless, only

the first of the seven components extracted by the sPCA reflected

the pattern suggested by the density heat maps (Figure 3) and

distinguished among experimental conditions (Figure 4). A

subsequent ANOVA of group means within each bin provided

confirmation that only component 1 reflected a meaningful

pattern of variance. These results collectively indicate that the

number of observations was sufficient to permit reducing heat

maps of high dimensionality into simplified spatial components.

Moreover, using the approach developed here future studies may

be able to also determine neuronal patterns encoding different

sensory CS’s and the contextual component of Pavlovian fear

memories.

Recent human fMRI [23,24] and rat [25] data demonstrate a

stable topography of activation for specific memories in the

hippocampus. Our current data show the principle of a stable

topography at the neuron level in the amygdala. Both the finding

of a stable neural assembly associated with fear memory formation

as well as the use of the spatial principal components analysis

method to identify patterns is novel. In addition, these data

provide a practical micro map. This map will enable the better

isolation and study of important aspects of neuronal plasticity and

associative memory in the LA and its subnuclei.

Overall, these data provide the first evidence for a unique neural

topography associated with memory formation. Thus, in addition

to showing that associative memory encoding is linked to increased

numbers of pMAPK activated neurons in LAd, we provide

evidence that the engram also has a spatial dimension. A stable,

spatially organized neural assembly may be a fundamental feature

of the engram by which associative fear memory is encoded.

Materials and Methods

Animals
Adult male Sprague-Dawley rats (Taconic) were group housed

(2/cage) and maintained on a 12 hr light/dark cycle with food and

water were provided ad libitum. Rats were handled on three

consecutive days prior to testing. All procedures were conducted in

accordance to the National Institute of Health Guide for the Care and

Use of Experimental Animals and were approved by the Uniformed

Services University Institutional Animal Care and Use Committee

(PSY-08-697). Experiments were conducted on two parallel

cohorts of three experimental groups that were run simultaneous-

ly. Rats (N = 25) were randomly assigned to one of three groups:

paired (n = 8), unpaired (n = 10) and naı̈ve (n = 7). Following fear

conditioning, rats were subdivided into two groups of study, a

behavior (paired n = 4, unpaired n = 5 and naı̈ve n = 3) and

anatomy (paired n = 4, unpaired n = 5 and naı̈ve n = 4) group.

Pavlovian auditory fear conditioning
Rats weighing 260–360 g were habituated to the fear

conditioning chamber (context A) for 30 minutes one day prior

to conditioning. Context A consisted of a Plexiglas rodent

conditioning chamber with a metal grid floor (Coulbourn

Instruments, Lehigh Valley, PA), illuminated by a single house

light, and enclosed within a sound-attenuating chamber. The

conditioning chamber was interfaced to a stimulus controller

(Coulbourn Instruments, Lehigh Valley, PA). The chamber was

cleaned with a 70% EtOH solution between subjects. On

conditioning day, rats were placed in context A and left to

explore the chamber for three minutes prior to presentation of

stimuli. Rats in the paired (P5) group were exposed to five tones

(CS; 5 kHz, 75 dB, 20 s) that co-terminated with a foot shock (US;

1.0 mA, 500 ms). In the control conditions, an unpaired (UP5)

group was presented with non-overlapping presentations of the CS

and US. The presentation of the stimuli for UP5 was ordered so

that there was one occurrence in which a CS followed a CS and

US followed a US. In this way the tone was less predictive of the

occurrence of a shock. The time between stimulus onset (intertrial

interval; ITI) for all groups was 30–90 s (60 s mean). Animals were

removed from the chamber 60 s following the final stimulus

presentation. A naı̈ve (N) group was exposed to the fear

conditioning chamber alone for ten minutes. Rats in the behavior

group were placed back into the fear conditioning chamber

(context A) 24 hours later for analysis of freezing to the original

training context (contextual fear memory). Three days following

testing for contextual memory, rats were tested for retention of

auditory fear conditioning in a novel context (Context B) to mask

environmental cues of the conditioning chamber. Context B

consisted of plastic flooring covered with fresh bedding, altered

geometry and spatial cues (red and black tape) relative to context

A, four additional cue lights illuminated continuously, and 1%

ammonium hydroxide solution used as a cleaning agent. On the

day of auditory fear testing, rats were placed into context B and

presented with 10 auditory CSs alone at the identical frequency

and dB level as conditioning. An experimenter blind to the

experimental condition of the animals scored freezing behavior, a

measure of conditioned fear. Freezing was defined as the absence

of all movements except those related to respiration [26]. Freezing

was scored during the CS presentation (20 s) from digitized videos.

A mean freezing value was calculated from the 10 scored freezing

episodes and transformed into a percent freezing by dividing the

total time spent freezing by the number of scored freezing episodes

and dividing by 100. Mean freezing was the dependent variable.

Immunocytochemistry
In the second (anatomy) cohort, we identified pMAPK activity

in principal neurons following auditory fear conditioning using

antibodies against ERK/MAPK p42/44 and then mapped

neurons in the right LA and medial posterodorsal amygdala

(MePD). The MePD served as a control region not associated with

Pavlovian fear conditioning [27] (see Results S1 and Figure S1).

Tissue preparation
pMAPK expression in the LA has been shown to peak at 60

minutes post-auditory fear conditioning [11]. For this reason rats

were anesthetized exactly 60 minutes following auditory fear

conditioning. Rats were anesthetized via intraperitoneal (i.p.)

injection of a ketamine/xylazine (100 mg/kg, 10 mg/kg) cocktail

and transcardially perfused through the ascending aorta with ice

cold saline (100 mL) followed by ice cold 4% paraformaldehyde/

1% glutaraldehyde/0.1 M phosphate buffer saline (PBS) at pH 7.4

(250 mL). For calcium/calmodulin-dependent protein kinase II

(CaMK) immunocytochemistry, glutaraldehyde was not included

in the fixative. Brains were removed and stored in the fixative

overnight (4uC), then stored in PBS for no more than three days.

Sequential coronal brain sections containing the LA at 23.36

Bregma (see below) were prepared on a vibratome at 40 mm. All

sections were treated with 1% sodium borohydride prior to

immunocytochemistry.

pMAPK
Sections were first blocked with 1% BSA for 1 hr. Next, sections

were incubated in a rabbit polyclonal antibody to phospho-p44/42

MAPK (Thr202/Tyr204, 1:250 dilution, Cell Signaling Technol-

ogy, Boston, MA) for 24 h at room temperature. Following

A Stable Topography of Amygdala Neurons for Memory
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washing in PBS, slices for pMAPK immunoreactivity were

subsequently incubated with biotinylated goat anti-rabbit IgG

(1:200 dilution, Vector Laboratories, Burlingame, CA) for 30 min.

Slices were then washed again in PBS and incubated in avidin-

biotin HRP complex (ABC Elite, Vector Laboratories, Burlin-

game, CA). After a final wash in PBS, activated neurons were

visualized using SG chromagen (Vector Laboratories, Burlingame,

CA). Sections were mounted in numerical order on gelatin subbed

slides and air dried, then dehydrated in a graded series of alcohol,

xylene and coverslipped.

CaMK
Following a blocking step identical to that described above,

sections were incubated overnight at room temperature in a mouse

monoclonal antibody to the alpha subunit of CaMK (20 mg/mL;

clone 6G9; Millipore, Billerica, MA). Slices were rinsed in PBS

and then incubated in biotinylated goat anti-mouse IgG (1:200,

Vector Laboratories, Burlingame, CA) for 30 min. Subsequent

processing steps were identical to that described above.

Section alignment
Analysis was restricted to the X and Y dimensions of single

40 mm section. The use of a single section maximized the accuracy

of direct comparisons among animals. In order to achieve the

highest spatial resolution possible, the section from which pMAPK

labeled neurons in the LA were mapped was aligned across

subjects using the entrance to the lateral ventricle (LV) as an

anatomical marker (Bregma 23.36 mm) (Figure 1). At this level,

the dorsal (LAd), ventromedial (LAvm), ventrolateral (LAvl) and

medial posterodorsal (MePD) subdivisions of the amygdala

complex are well represented (Figure 1).

Neuronal mapping
For all neuronal mapping the experimenter was blind to

experimental condition. For a density measurement of pMAPK

labeled neurons for each subregion of the LA, the anatomical

boundaries of the LA were first demarcated at 4x magnification

using a contour tracing tool (Neurolucida, MBF Biosciences, VT)

on an image of the LA from a rat brain atlas [20] at the

appropriate Bregma (23.36 mm). Thus the dimensions of the

contour were identical between experimental groups. The (XY)

coordinates of individually labeled pMAPK neurons within the LA

were marked at 20X magnification. NeuroExplorer (MBF

Biosciences, VT) was used to quantify markers (XY coordinates)

and contours. The density of pMAPK labeling was calculated as

the ratio between the total number of pMAPK labeled neurons

and the contour area (mm2) of each LA subnucleus. Multivariate

ANOVA (MANOVA) was used to detect group difference among

LA subnucei.

Spatial principal components analysis of pMAPK labeled
cells

To reduce the complex spatial distribution of pMAPK labeled

cells into a more simplified structure, spatial principal components

analysis (sPCA) was applied to 698 total neurons from the LAd.

The result of sPCA is set of component loadings and scores.

Component loadings reflect orthogonal patterns of variance in the

distribution of pMAPK neurons. Component scores reflect the

contribution of each component or ‘pattern prominence’ in each

of the experimental groups. Thus, grouping scores by condition

reveals variability associated with experimental manipulation.

We chose to focus our analysis on the LAd because a significant

difference in pMAPK labeled neuron density between the P5, UP5

and N conditions was localized to the LAd (Figure 2). No

differences between all experimental conditions were found for

either the LAvm or LAvl subdivisions (Figure 2). In addition, the

LAd receives strong projections from the medial geniculate

nucleus of the thalamus (auditory thalamus) [28]. To determine

the spatial distribution of pMAPK using sPCA, a virtual grid was

constructed and aligned with the anatomical boundaries of the

LAd [20]. To construct the grid, the contour of the LAd was

partitioned into equal sized sub regions (bins). The bin dimensions

were determined by the area of the LAd and the mean number of

data points (pMAPK labeled neurons) for all subjects [29]. Bins for

the LAd measured 120 mm2. Principal neurons in the amygdala

are on average 15–20 mm in diameter [30]. The ratio of pMAPK

activated neurons to surface area (mm2) of the LAd was 1:80.

Therefore, the dimensions of each bin (120 mm2) in the LAd allow

for an appropriate level of spatial resolution for mapping patterns

of pMAPK activated neurons in the LAd. Bins were arranged

within the borders of the LAd so as to account for the maximum

amount of area (Figure 3). The geometry of the grid was

determined by the anatomical shape of the LaD [20]. The total

number of pMAPK labeled neurons within each bin was

considered the dependent variable in the sPCA. We used a

covariance association matrix, treating individual bins as variables.

We applied varimax rotation, followed by promax rotation (kappa

2) to obtain simple structure. We also carried out the analysis with

a varimax rotation, which provided a virtually identical solution.

The similarity in outcome following both approaches illustrates

orthogonality among principal components. The loading maps for

each component were evaluated with the goal of determining

similarity to the spatial distribution of the mean density heat maps

for the P5, UP5 and N groups (Figure 3).

The scores for each component were statistically compared

using analysis of variance (ANOVA). Subsequent post hoc analysis

was performed with a Bonferroni test.

Supporting Information

Figure S1 Spatial principal components analysis of the
medial amygdala. There were no differences in overall density

or pattern of pMAPK labeled neurons in the MePD between

experimental conditions. (A) Diagram of the MePD at Bregma -

3.36 and relevant anatomical landmarks [20] (B) Representative

photomicrograph of MePD with grid overlay used for sPCA. Bins

for the MePD measured 140 mm2 (C) There was no difference in

the density of pMAPK labeled neurons between experimental

conditions. (D) Micro density heat maps depicting the distribution

of pMAPK labeling in the MePD for the Paired, Unpaired and

Naı̈ve conditions. Bars represent mean pMAPK neuron density 6

standard error of the mean.

(TIF)

Figure S2 Density of CaMK neurons in the LAd. pMAPK

activated neurons from the LAd in the P5 group represented

19.8% of the total number of principal neurons as revealed by

calcium/calmodulin-dependent protein kinase II (CaMK) immu-

nocytochemistry. Bars represent mean pMAPK and CaMK

density 6 standard error of the mean.

(TIF)

Figure S3 Density heat maps of the LAd for all subjects.
Micro density heat maps of the LAd depicting the distribution of

pMAPK labeled cells for all subjects in the Paired, Unpaired and

Naı̈ve conditions. To construct the maps, XY coordinates for each

pMAPK activated cell were categorized into bin that measured

50 mm2. The data points that fell into each bin were counted and
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placed into a matrix that fit the anatomical dimensions of the LAd

(1200 mm2). The colors for each bin reflect an estimation of spatial

density from low (blue) to high (red).

(TIF)

Results S1 A topography of amygdala neurons.
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