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Abstract 

Objective. Exploring the temporal variability in spatial topology during the resting state 
attracts growing interest and becomes increasingly useful to tackle the cognitive process of 
brain networks. In particular, the temporal brain dynamics during the resting state may be 
delineated and quantified aligning with cognitive performance, but few studies investigated 
the temporal variability in the electroencephalogram (EEG) network as well as its relationship 
with cognitive performance. Approach. In this study, we proposed an EEG-based protocol to 
measure the nonlinear complexity of the dynamic resting-state network by applying the fuzzy 
entropy. To further validate its applicability, the fuzzy entropy was applied into simulated and 
two independent datasets (i.e., decision-making and P300). Main results. The simulation 
study first proved that compared to the existing methods, this approach could not only exactly 
capture the pattern dynamics in time series but also overcame the magnitude effect of time 
series. Concerning the two EEG datasets, the flexible and robust network architectures of the 
brain cortex at rest were identified and distributed at the bilateral temporal lobe and 
frontal/occipital lobe, respectively, whose variability metrics were found to accurately classify 
different groups. Moreover, And the temporal variability of resting-state network property 
was also either positively or negatively related to individual cognitive performance. 
Significance. This outcome suggested the potential of fuzzy entropy for evaluating the 
temporal variability of the dynamic resting-state brain networks, and the fuzzy entropy is also 
helpful for uncovering the fluctuating network variability that accounts for the individual 
decision differences. 
 

Keywords: Fuzzy entropy, Resting-state EEG, Network variability, Decision-making 

  

Page 2 of 62AUTHOR SUBMITTED MANUSCRIPT - JNE-104420.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1. Introduction 

Electroencephalogram (EEG) directly reflecting the neural electrical activity, is dynamic and 
varies across time scales. As one of the most complex dynamic systems, the brain constantly 
constructs and updates the internal network models to anticipate and plan future adaptive 
behaviors (Braun et al 2015, Jiang et al 2019). The brain at rest is also active both 
physiologically and psychologically (Damoiseaux et al 2006, Mantini et al 2007), and related 
resting-state brain activity has been proved to serve as the neural basis underlying the 
potential task information processing (Wang et al 2019, Hearne et al 2017). Just as illustrated, 
related brain networks at rest can effectively characterize the intrinsic allocation of the brain 
resources (Falahpour et al 2018, Northoff et al 2010) and also help predict the individual 
performance during the following tasks (Li et al 2013a, Zhou et al 2012) , as well as 
individual mental state (Tian et al 2017a). For example, both the resting-state network 
topologies and properties were found to be positively related to the P300 amplitudes that were 
evoked by the target stimuli during the oddball tasks (Li et al 2015). and related network at 
rest can effectively characterize the intrinsic allocation of brain resources (Falahpour et al 
2018, Li et al 2019b, Northoff et al 2010), and also helps to predict the individual task 
performance (Si et al 2019a, Zhang et al 2015, Li et al 2013a). At its initial stage, the 
resting-state network is believed to be stable, while plenty of recent studies find that the brain 
network at rest also fluctuates over time (Betzel et al 2016, Yu et al 2015, Garrett et al 2011). 
To quantitatively capture the fluctuating brain variability, the sliding window is usually used, 
which measures the time series of the dynamic functional connectivity. Several methods are 
then developed to explore the fluctuating variability across the time scales, which includes the 
variance of dynamic network connectivity, the network dissimilarity over time, and non-linear 
test statistics (Sun et al 2019, Zalesky et al 2014, Sakoglu et al 2010). For example, the 
network dissimilarity illustrated that better individual verbal creativity correlates with higher 
temporal variability in resting-state functional connectivity among multiple regions, such as 
the lateral prefrontal cortex, parahippocampal gyrus, and precuneus (Sun et al 2019). 

Theoretically, the more diverse the fluctuating patterns of a given time series are, the 
high complexity the corresponding time series will be, that is, the signal is more irregular. The 
temporal complexity of a system can index its fluctuating dynamics; for a given signal, 
entropy has been widely used to quantify the corresponding signal complexity. The entropy 
can nonlinearly measure how complex (i.e., level of irregularity) the physiological signal will 
be (Gao et al 2015) and thus is proportional to signal irregularity; the larger the entropy, the 
more irregular the signal. Therefore, measuring the signal entropy in the temporal domain will 
deepen our knowledge of brain dynamics (Abasolo et al 2006, Tian et al 2019, Tian et al 
2017b) and provide the possibility to quantitatively evaluate the temporal complexity of the 
physiological system (Takahashi et al 2010). Fuzziness is an alternative approach used when 
describing the uncertainty of a time series and the corresponding fuzzy entropy measurement 
has been proved to have great potential for avoiding the undesirable boundary effect (a sharp 
distinction of the boundary), compared to the other entropies, such as approximate entropy 
and sample entropy (Chen et al 2009); in the meantime, stronger relative consistency and less 
dependence on data length of the Fuzzy entropy further facilitate its application in evaluating 
the signal complexity (Li et al 2013b, Xie et al 2010). Therefore, can avoid the undesirable 
boundary effect (i.e., a sharp distinction of the boundary) (Rudas and Kaynak 1998); thus, the 
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fuzzy entropy can effectively guarantee the estimated signal metrics to vary smoothly and 
continuously with similarity tolerance. Recently, fuzzy entropy has been widely applied to 
measure the complexity of both EEG and electromyogram (Cao et al 2018, Cao and Lin 2018, 
Masulli et al 2020), as well as investigating brain diseases, such as epileptic seizure (Cao et al 
2020, Xiang et al 2015), schizophrenia (Yang et al 2015), and Alzheimer's Disease (AD) 
(Simons et al 2018). For example, when using the network-based Takagi-Sugeno-Kanga 
fuzzy classifiers to identify the AD patients, related network metrics under eyes-closed and 
eyes-open conditions achieved relatively high accuracies of 97.3% and 94.78%, respectively 
(Yu et al 2020). 

However, most of the current approaches mainly focus on the amplitude stationarity of 
brain networks to measure the dynamics of the temporal network variability (Zalesky et al 
2014, Hindriks et al 2016) but neglect the inherent fluctuating network patterns that are 
remarkably helpful for reflecting how the brain network fluctuates over time. As illustrated 
previously, the corresponding network patterns, such as the network topological alterations, 
could promote the classification among different conditions (Moon et al 2020, Pena-Gomez et 
al 2018). For example, Shirer and colleagues used the whole-brain connectivity patterns to 
decode subject-driven cognitive states and achieved an accuracy of 84% (Shirer et al 2012), 
and when using network topological alterations to accomplish the fatigue classification, 
Dimitrakopoulos and colleagues also achieve high accuracy of 92% for driving and 97% for 
psychomotor vigilance task (Dimitrakopoulos et al 2018).However, most of the current 
approaches mainly focus on the amplitude stationarity of brain networks to measure the 
dynamics of temporal variability in brain networks but neglect the inherent fluctuating 
patterns of networks that seem to be more important to reflect how the brain network 
fluctuates over time. Moreover, corresponding network complexity has also been proved to 
have great potential for indexing the flexible and robust network architectures and reflecting 
how the brain could respond to cognitive stimuli (Sun et al 2019). To effectively explore the 
mechanism underlying the cognitive process in the brain, exactly capturing the fluctuating 
network patterns, e.g., flexible and robust architectures, will play an important role and help 
reflect to which degree the brain can respond to the upcoming task. Therefore, contrary to the 
traditional methods that measure the amplitude stationarity (Zalesky et al 2014, Hindriks et al 
2016), our current work mainly focused on exploring the fluctuating temporal patterns of the 
time-varying resting-state brain networks, to uncover the potential fuzzy evidence underlying 
the decision differences between different individuals.When exploring the neural mechanism 
underlying the cognitive process, exactly and effectively capturing the fluctuating network 
patterns, e.g., flexible and robust architectures, will be more crucial, and helps reflect to 
which degree the brain could respond to the upcoming task from the perspective of the brain 
networks. Therefore, contrary to traditional approaches that measure the amplitude 
stationarity, our current work mainly focused on investigating the fluctuating temporal 
patterns of resting-state brain networks over time. And the corresponding flexible and robust 
architectures would be then effectively captured by the fuzzy entropy, whose variability 
metrics could accurately reflect how the brain network architecture fluctuates over time. 

Herein, we assumed that the fluctuating temporal variability in resting-state networks 
can be effectively captured by fuzzy entropy, and related variability metrics do closely relate 
to individual cognitive behaviors. To validate this approach, besides a simulation study, the 
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proposed metric was further applied to the real dataset of decision-making that was collected 
from adolescents and adults when they responded to the unfair offers. As a high-level 
cognitive process, decision-making involves a wide range of complex behaviors (Cecchetto et 
al 2017, Preuss et al 2016) and is attributed to the functional interactions of those spatially 
separated but functionally linked brain regions (Si et al 2020a, Si et al 2019b). Understanding 
the neural substrates of decision-making helps establish effective artificial intelligence and 
brain-computer interface (BCI) as well, where the decision-making is of great importance for 
individuals (Long et al 2012, Li et al 2013c). The theories of (culture-specific) socialization 
(Hoffmann and Tee 2006, Marchetti et al 2019) and childhood development (Castelli et al 
2010, Castelli et al 2014, Guroglu et al 2009) demonstrate that the preference for fairness 
increases with age, and adolescents usually make relatively larger acceptances than the adults, 
as they preferred the outcome even under unfair conditions (Sutter 2007, Si et al 2020b). 

Moreover, P300 has also been demonstrated to be attributed to the functional interactions 
of multiple regions in the brain, including the middle frontal gyrus, insula, and thalamus, etc 
(Li et al 2020, Bledowski et al 2004), and could effectively index various cognitive functions, 
such as attention allocations and working memory (Polich 2007). As one of the 
electrophysiological biomarkers, P300 has been widely used to evaluate the subject’s capacity 
during tasks (Wang et al 2015a), as well as classify different individual groups (Turetsky et al 
2015). Uncovering related neural mechanism also helps deepen our understanding of P300 
and contributes to its future applications in multiple aspects, such as BCI and clinical diseases, 
etc. Following decision-making, to further validate the applicability of the fuzzy entropy in 
capturing the fluctuating temporal variability of resting-state networks, an independent P300 
resting-state EEG dataset was also investigated by adopting the same analytical protocols. 

 

2. Materials and methods 

2.1. Fuzzy entropy of the dynamic networks 

Fuzzy entropy can effectively evaluate signal complexity, especially for the short time series 
contaminated by noise (Chen et al 2009), and is insensitive to disturbance but sensitive to the 
fluctuations of related information content (Acharya et al 2015). A higher value of fuzzy 
entropy represents the larger temporal variability in time series. 

Assuming there are N networks, the time series for each network edge can be termed as 
Xi (1 ≤ i ≤ N) whose value varies from 0 to 1, which is formed as follows; 

        , 1 ,..., 1 , 1, ..., 10
m u i u i u i m u i i N mX i                         (1) 

where Xi
m represents m consecutive u values (i.e., coherence value) at i-th network point, 

which is generalized by removing the baseline    
1-1

0 0

m
u i n i jm

j


 


. 

Given r, calculating the similarity degree Dij
m between Xi

m and its neighboring vector Xj
m, 

which is formulized as follow; 

( ),µ=m m
ij ijD d r                           (2) 

where dij
m is the maximum absolute difference of the corresponding scalar components of Xi

m 
and Xj

m. For each vector Xi
m (i = 1, 2, …, N-m+1), by averaging all similarity degree, Dij

m, of 
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its neighboring vectors Xj
m (i = 1, 2, …, N-m+1, and j ≠ i), we then get 

   -11
1,



  

 

N mm mr N m Di ij
j j i                    (3) 

Relying on      -1

1
 


 


N mm mr N m ri
i

 and      -11 1
1

 
  


N mm mr N m rii
, we then define the 

FuzzEn(m, r) of the time series Xi (1 ≤ i ≤ N) as follow; 

     1, lim ln ln  


    

m m

N
FuzzEn m r r r                  (4) 

which can be estimated by the statistic, 

     1, , ln ln   m mFuzzEn m r N r r                    (5) 

where m denotes the length of the compared window, r denotes the width of the boundary for 
similarity measurement, and N denotes the length of related time series to be analyzed. 
Particularly, large m guarantees a more detailed reconstruction of the dynamic process, but an 
overlarge m might lead to information loss (Pincus and Goldberger 1994). Just as proposed in 
the previous study (Chen et al 2007), m was determined to be 2. In the meantime, rather small 
r brings the noise, but too large r might also result in information loss, which is, therefore, set 
to 0.2 multiplied by the standard deviation of the time series in this study. 

2.2. Validation on simulated data 

To evaluate whether the proposed fuzzy entropy-based analysis could capture the fluctuating 
temporal variability in the dynamic resting-state networks, we first simulated the dynamic 
networks that varied across time scales, whose network edge strengths vary over time. To 
fulfill this aim, the MIX(p) with varying parameter p values (0 ≤ p ≤ 1) was used to formulate 
the network edges between two nodes (Pincus 1991, Pincus 1995), whose time series had 
varying complexity. The MIX(p) is a series of sampling processes for the stacking waves of 
sines and cosines at p = 0 or independent uniform random variables at p = 1. Meanwhile, to 
test if the proposed method was sensitive to the magnitude of the signal, the varying 
magnitudes were also simulated with another parameter i, as i was set as 0.1, 0.5, 1, 5, and 10. 
Herein, for each time point j in the simulated time series, we first defined the MIX(i)(p) as 
follow; 

( ) ( ) ( )1= − + −i
j j j j jj

MIX p i Z X Z Y H                      (6) 

where Xj represents the stochastic and deterministic signal formed by the sine and cosine 

signal, and 
7 3 1 19sin sin cos cos 0.8

100 100 25 2050 6 500 6 1000 125
                                                      

j j j jX j , Yj represents a 

family of independent identically distributed real random variables, with uniform density in 
the interval [0, 0.3], Zj represents the random variable, where Zj = 1 with probability p, Zj = 0 
with probability 1 - p, and Hj represents a discrete step function. 

As the p-value increases, the time process becomes intuitively more irregular, that is, a 
larger p denotes the higher complexity of the signal (i.e., the corresponding edge has more 
complicated patterns). In this study, we simulated a weighted network with 5 nodes (Fig. 3a), 
in which each edge had varied predefined complexity with the p-value being selected within a 
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range of [0.1, 0.5]. With the predefined signal complexity determined by p, the five 
time-varying edges were simulated between pairs of nodes (nodes A and C, nodes B and D, 
nodes C and D, nodes C and E, and nodes D and E) in Fig. 3a. 
In this study, apart from the fuzzy entropy, other traditional approaches, such as variance 
(Sakoglu et al 2010) and non-linear test statistic (Zalesky et al 2014), were also used to 
measure related fluctuating temporal complexity of these edges in our predefined 5-nodes 
network. Furthermore, to acquire a robust simulated result, the MIX(i)(p) and the estimation of 
fluctuating temporal complexity were repeated 1,000 times. Finally, the averaging across 
1000 times is used to evaluate and compare the capacity of different approaches in measuring 
the fluctuating temporal variability of the brain networks. 

2.3. Validation on decision-making data 

2.3.1. Participants. The experiment protocol was approved by the Institution Research Ethics Board 
of XXX and was conducted following the Declaration of Helsinki. Two independent groups of 
participants (i.e., postgraduate and junior high school students) were recruited and paid for their efforts 
to take part in this study at XXX. Before they joined our experiments, participants were told about the 
experimental details and then read and signed their names on the written informed consent. Eighteen 
postgraduate students (5 females, age range of 21-24 years, and mean 23.45 years) from the XXX and 
22 junior high school students (10 females, age range of 14-16 years, and mean 14.59 years) from 
XXX were included in this study. None of the participants had a history of neurological or psychiatric 
disorders and were not currently using any psychoactive medications. All of them had normal or 
correct-to-normal visual acuity.The experiment protocol was approved by the Institution 
Research Ethics Board of the University of Electronic Science and Technology of China 
(UESTC) and was conducted in accordance with the Declaration of Helsinki. Two 
independent groups of participants (i.e., postgraduate and junior high school students) were 
recruited and paid for their efforts to take part in this study at UESTC. Before they joined our 
experiments, participants were told about the experimental details and then read and signed 
their name on the written informed consent. Eighteen postgraduate students (5 females, age 
range of 21-24 years, and mean 23.45 years) from the UESTC and 22 junior high school 
students (10 females, age range of 14-16 years, and mean 14.59 years) from The 
Experimental High School Attached To UESTC were included in this study. None of the 
participants had a history of neurological or psychiatric disorders and were not currently using 
any psychoactive medications; meanwhile, all of them had normal or correct-to-normal visual 
acuity. 

2.3.2. Experimental protocols. In the ultimatum game (UG) task, the participant acted as a 
responder who would decide to accept or reject an offer given by the proposer (i.e., the 
computer itself). If he or she accepted the offer, both players (i.e., responder and proposer) 
received the money according to the splits; in case of rejecting it, they would not earn 
anything. When playing with the computer game, participants were advised to play this game 
with another participant in a separate room. Experiments were performed in a quiet, dimly 
lightroom. Participants were first instructed to take a deep breath to adapt to the experimental 
environment. Before the UG task, 5 minutes of eyes-closed resting-state EEG datasets were 
recorded, which was followed by an 8.5 min UG task. 
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2.3.2. In the ultimatum game (UG) task, the participant acted as a responder who would 
decide to accept or reject an offer given by the proposer (i.e., the computer itself). If he or she 
accepted the offer, both players (i.e., responder and proposer) received the money according 
to the splits; in case of rejecting it, they would not earn anything. When playing with the 
computer game, participants were advised to play this game with another participant in a 
separate room. Experiments were performed in a quiet, dimly lightroom. Participants were 
first instructed to take a deep breath to adapt to the experimental environment. Before the UG 
task, 5 minutes of eyes-closed resting-state EEG datasets were recorded, which was followed 
by an 8.5 min UG task. 

Fig. 1 illustrates the timeline of the UG task. In the UG task, the sum of splits was ¥ 10; 
meanwhile, three categories were included, i.e., the fair offer (¥ 5 vs. ¥ 5), moderately unfair 
offer (¥ 3 vs. ¥ 7), and extremely unfair offer (¥ 1 vs. ¥ 9). A total of 90 offers, 30 offers per 
condition, were included in the UG task. Each UG trial began with an 800 ms thin cross. Then, 
a screen with ¥ 10 appeared and lasted 500 ms, which was followed by a 1,000 ms black 
screen. Thereafter, a split offer was presented, at the same time, participants need to decide to 
reject ("3") or accept ("1") the offer by pressing the button on the standard keyboard. 
Followed by their choice, the feedback appeared to inform their received money on that trial, 
as well as the cumulative winnings of participants. The decision and feedback would keep 
2,700 ms in total. 

 
Fig. 1. The timeline of a UG task trial. 

2.3.3. EEG recording. Participants were seated in an electrically shielded and light-attenuated 
room. The 64-channels resting-state EEG datasets were recorded by using the ASA-Lab 
Amplifier (ANT Neuro), and the 64 Ag/AgCl electrodes were positioned in compliance with 
the extended 10-20 international electrode system. During the data recording, the EEGs were 
digitized with a sampling rate of 500 Hz, and online bandpass filtered within the frequency 
range of [0.05 Hz, 70 Hz]. The electrodes of CPz and AFz served as the reference and ground, 
respectively. The electrooculogram was recorded from one channel located at the above side 
of the left eye to monitor eye movements. For all electrodes, the impedance was consistently 
below 5 KΩ throughout the experimentParticipants were seated in an electrically shielded and 
light-attenuated room. The 64-channels resting-state EEG datasets were recorded by using the 
ASA-Lab Amplifier (ANT Neuro), and the 64 Ag/AgCl electrodes were positioned in 
compliance with the extended 10-20 international electrode system. During the data recording, 
the EEGs were digitized with a sampling rate of 500 Hz, and online bandpass filtered within 
the frequency range of [0.05 Hz, 70 Hz]. The electrodes of CPz and AFz served as the 
reference and ground, respectively. The electrooculogram was recorded from one channel 
located at the above side of the left eye to monitor eye movements. For all electrodes, the 
impedance was consistently below 5 KΩ throughout the experiment. 
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2.3.4. EEG processingFuzzy entropy of resting-state EEG network. In fact, these 
decision-making datasets had been reported in our previous study (Si et al 2019b), since our 
present study focused on investigating the resting-state network variability, only the 
resting-state EEG datasets were used here. Although the potential mechanism of the 
decision-making differences had been explored in previous studies from the perspective of 
ERP and power spectra, etc (Villafaina et al 2019, Kim et al 2021), decision-making is proved 
to be attributed to the functional interactions of those spatially separated but functionally 
coupled regions (Si et al 2020a, Si et al 2019b). Moreover, related fluctuating temporal 
patterns in decision networks are still been left unveiled, although the corresponding network 
complexity has also been proved to help identify the temporal variability in network 
architecture and index how the brain responds to cognitive stimuli (Sun et al 2019, Zalesky et 
al 2014). Therefore, when exploring the potential mechanism underlying the decision-making, 
identifying the corresponding temporal variability in decision network architectures, e.g., 
flexible and robust network patterns, will be of great importance and also help index to which 
degree the brain could respond to the unfair conditions. The analytical protocols for exploring 
the brain variability in dynamic resting-state networks were first displayed in Fig. 2, and the 
detailed procedures were further depicted as follows. 
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Fig. 2. Analytical protocols of the temporal variability in the resting-state EEG network. (a) 
Dynamic resting-state network construction, (b) The complexity of the dynamic resting-state 
network topologies, and (c) The temporal complexity of the dynamic resting-state network 
properties and Pearson’s correlation analysis between network properties complexity and UG 
task behaviors. DFC denotes dynamic functional connectivity. 
 

Before exploring related brain variability in these time-varying resting-state networks, 
the resting-state EEG datasets were first preprocessed. Concretely, to remove the artifacts, the 
resting-state EEG datasets were first referenced to a neutral reference of Reference Electrode 
Standardization Technique (REST) (Dong et al 2017, Yao 2001), and then offline bandpass 
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filtered within the frequency range of [0.5 Hz, 30 Hz]. Thereafter, the independent component 
analysis (ICA) was adopted to remove residual artifacts (He et al 2005) that still contaminate 
EEG data by removing related artifact components. 
 

Resting-state EEG network. The brain network is typically modeled by graph theory and 
includes a collection of nodes and edges. The EEG electrodes were considered as network 
nodes, and the synchronized strengths between pairwise electrodes estimated by coherence 
were set as network edges. Due to the effect of volume conduction, the nearby electrodes 
acquire similar contributions from cortical sources and thus capture a similar activity. In our 
present study, to reduce the effect of volume conduction, following the procedure in related 
studies (Qin et al 2010, Huang et al 2017), 21 canonical electrodes (i.e., FP1/z/2, F7/3/z/4/8, 
T7/8, C3/z/4, P7/3/z/4/8, and O1/z/2) out of the 64 channels in the 10-20 system were used to 
construct the resting-state network. Theoretically, coherence can effectively measure the 
synchronized neuronal assembly at any given frequency bin f between pairwise signals, x(t) 
and y(t), and is usually formulated as, 

( ) ( )
( )

( ) ( )

2
2

= =
P fxy

C f R fxy xy P f P fxx yy
                     (17) 

where Cxy(f) and Rxy(f) represent the estimated coherence value and the complex correlation 
coefficient between x(t) and y(t) at frequency bin f, respectively. At per frequency bin f, Pxy(f) 
represents the cross-spectrum between x(t) and y(t), Pxx(f) and Pyy(f) represent the 
auto-spectrum of x(t) and y(t), respectively. These measurements of spectral densities were 
calculated from the Fast Fourier Transform. For each frequency bin f, the Cxy(f) is calculated 
by squaring the magnitude of the complex correlation coefficient R between x(t) and y(t), 
which returns a real value within the range of [0, 1]. Since this study focused on the 
fluctuating variability of brain activity at rest, we thus concentrated on the alpha band ([8, 13] 
Hz) to construct the corresponding resting-state network. 

In our present study, the time-resolved resting-state network was calculated by using a 
5-s sliding-window approach with an overlapping of 98% that can provide the 100 ms 
temporal resolution for dynamic networks, which resulted in the time-varying networks 
varied across time scales. , whose protocols were further depicted in Fig. 2. 

The network is constructed based on each 5-s segment with 98% overlapping, resulting 
in the dynamic networks varied across time scales. Based on the time-varying dynamic 
resting-state networks, a time series would be obtained for each network edge, and when the 
corresponding variability is calculated for each edge by the fuzzy entropy, the variability of 
network topology could be achieved, which can reflect how stable each network edge is (Fig. 
2a). After the above procedure, each subject will have a network topology complexity and a 
network property complexity. For network topological complexity, it can reveal the 
distribution of spatial topological variability clearly, which can reflect the robust or flexible 
spatial pattern. Finally, by grand-averaging across subjects, the network topology complexity 
accounting for all subjects could be achieved (Fig. 2b). 

Meanwhile, by using the brain connectivity toolbox (BCT), we quantitatively calculated 
the corresponding network properties for each dynamic network, resulting in the dynamic 
resting-state network properties (i.e., CC, CPL, GE, LE, and small-worldness) that varied 
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across time. Then, the temporal variability of these parameters could also be quantitatively 
measured by the fuzzy entropy, which reflected the fluctuating complexity in the properties 
time series  (Fig. 2a). 

Thereafter, a threshold strategy was used in identifying the fluctuating temporal patterns 
in resting-state networks; concretely, the 20% network edges with the largest and smallest 
fuzzy entropy were adopted to index the flexible and robust network architectures for both 
groups, respectively. However, when calculating related resting-state network properties, 

Fuzzy entropy. Fuzzy entropy can effectively evaluate signal complexity, especially for the 
short time series contaminated by noise (Chen et al 2009), and is insensitive to disturbance and 
sensitive to the change of information content (Acharya et al 2015). A higher value of fuzzy 
entropy represents the larger temporal variability in time series. 

Assuming there are N networks, the time series for each network edge can be termed as Xi (1 
≤ i ≤ N) whose value varies from 0 to 1, which is formed as follows; 

        , 1 ,..., 1 0 , 1, ..., 1       m u i u i u i m u i i N mX i                 (2) 

where Xim represents m consecutive u values (i.e., coherence value) at i-th network point, 

which is generalized by removing the baseline    
1-10
0


 


m
u i n i jm

j
. 

Given r, calculating the similarity degree Dij
m between Xim and its neighboring vector Xjm, 

which is formulized as follow; 

( ),µ=m m
ij ijD d r                                    (3) 

where dij
m is the maximum absolute difference of the corresponding scalar components of Xim 

and Xjm. For each vector Xim (i = 1, 2, …, N-m+1), by averaging all similarity degree, Dij
m, of its 

neighboring vectors Xjm (i = 1, 2, …, N-m+1, and j ≠ i), we then get 

   -11
1,



  

 

N mm mr N m Di ij
j j i                          (4) 

Relying on      -1

1
 


 


N mm mr N m ri
i

 and      -11 1
1

 
  


N mm mr N m rii
, we then define the 

FuzzEn(m, r) of the time series Xi (1 ≤ i ≤ N) as follow; 

     1, lim ln ln  


    

m m

N
FuzzEn m r r r                       (5) 

which can be estimated by the statistic, 

     1, , ln ln   m mFuzzEn m r N r r                          (6) 

In this definition, m denotes the embedded dimension and r denotes the fuzzy similarity 
boundary. Larger m means the more detailed reconstruction of the dynamic process, we then set m 
to 2. Rather small r might bring the noise, whereas too large r might lead to information loss 
(Chen et al 2007), which is, therefore, set to 0.2 multiplied by the standard deviation of the time 
series in this study. 

Fuzzy entropy of network property. Multiple network properties, including nodal degree (ND), 
clustering coefficients (CC), global efficiency (GE), local efficiency (LE), and characteristic path 
length (CPL) (Rubinov and Sporns 2010), the fully-connected weighted adjacency matrices 
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without any thresholding were used. can be used to quantitatively measure brain network [46]. 
Theoretically, the ND sums all edge strengths connecting one network node and reflects the 
importance of this node in a given network, the CC and LE index the functional segregation of a 
given network and both reflect the capacity for specialized processing within densely 
interconnected regions, while the CPL and GE measure the functional integration and index the 
ability to rapidly combine specialized information from distributed regions. Here, based on the 
fully-connected weighted adjacency matrix per subject, let Cij be the synchronized strength 
between nodes i and j estimated by coherence, dij represents the shortest weighted path length, N 
represents the number of all nodes, and Θ represents the set of network nodes. The ND, CC, GE, 
LE, and CPL were then formulized as follows. 




ND Ci ijj
                               (78) 

1
3

1 ,

-1

 ∑  
 ∈Θ= ∑
 ∈Θ  ∑ ∑
 ∈Θ ∈Θ 

C C Cij il jlj lCC
N i

C Cij ijj j

                     (89) 

1 ,
1

∑
∈Θ ≠= ∑

−∈Θ

dijj j iCPL
N Ni

                      (910) 

( ) 1

,1
1

ij
j j i

i

d
GE

N N

−

∈Ψ ≠

∈Θ
=

−

∑
∑                             (1011) 

( )( )1 31

, ,1

1

ij ih jh i
j h j i

i
ij ij

j j

w w d
LE

N
w w

−

∈Θ ≠

∈Θ

∈Θ ∈Θ

 Θ 
=

 
−  

 

∑
∑

∑ ∑

                     (1112) 

Since the small-worldness has been widely used in brain networks to investigate the 
human cognitive process (Bassett and Bullmore 2017), as well as measuring the capacity of 
stimuli modulation, such as acupuncture (Yu et al 2018), in our present study, the 
small-worldness is also adopted as one of the variability metrics to measure the resting-state 
brain networks. Theoretically, small-worldness is quantified by the CPL and CC and reflects 
the regional specialization and the information transfer efficiency in the brain. Before 
calculating the small-worldness, the CC and CPL of the constructed EEG networks (i.e., CCt 
and CPLt) are normalized by dividing by the value for the same variable calculated for a 
randomly rewired null model, which are then termed as γ and λ, respectively. Here, the CC 
and CPL of the random network (i.e., CCr and CPLr) are the averages of the values calculated 
from 1000 randomly rewired null models. 

= t

r

CC
CC

γ                               (1213) 

= t

r

CPL
CPL

λ                               (1314) 

 Finally, the small-worldness, sw, is given by a ratio of the normalized CC, γ, to the 
normalized CPL, λ, as, 
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sw γ
λ

=                              (1415) 

Herein, by using the brain connectivity toolbox (BCT), we quantitatively calculated the 
corresponding network properties for each dynamic network, resulting in the dynamic 
resting-state network properties (i.e., CC, CPL, GE, LE, and small-worldness) that varied 
across time. Then, the temporal variability of these parameters could also be quantitatively 
measured by the fuzzy entropy, which reflected the fluctuating complexity in the properties 
time series (Yu et al 2015, Thompson et al 2017) (Fig. 2a). 

Although, the acceptance rate (AR) varies across subjects but relatively keeps stable 
intra-subject, and is thus used to characterize the individual task behavior during tasks (Wang 
et al 2017). Besides, the cumulative winnings (CW) is also regarded as a direct measurement 
of task behavior during the UG task. We then obtained the AR of combining the extremely 
and moderately unfairness conditions, as well as the CW throughout the UG task.In this study, 
to investigate the underlying relationship between the resting-state network variability and 
individual task behaviors (Pedersen et al 2018), we then quantitatively obtained the AR of 
combining the extremely and moderately unfairness conditions, as well as the CW throughout 
the UG task. 

In our study, the time-resolved resting-state network was calculated by using a 5-s 
sliding-window approach with overlapping of 98% that can provide the 100 ms temporal 
resolution for dynamic networks, whose protocols were further depicted in Fig. 2. 

The network is constructed based on each 5-s segment with 98% overlapping, resulting 
in the dynamic networks varied across time scales. Based on the dynamic resting-state 
networks, a time series would be obtained for each network edge, and when the 
corresponding variability is calculated for each edge by the fuzzy entropy, the variability of 
network topology could be achieved, which can reflect how stable each network edge is (Fig. 
2a). Meanwhile, by using the brain connectivity toolbox (BCT), we quantitatively calculated 
the corresponding network properties for each dynamic network, resulting in the dynamic 
resting-state network properties (i.e., CC, CPL, GE, LE, and small-worldness) that varied 
across time. Then, the temporal variability of these parameters could also be quantitatively 
measured by the fuzzy entropy, which reflected the fluctuating complexity in the properties 
time series (Yu et al 2015, Thompson et al 2017) (Fig. 2a). 

After the above procedure, each subject will have a network topology complexity and a 
network property complexity. For network topology complexity, it can reveal the distribution 
of spatial topology variability clearly, which can reflect the stable or flexible spatial pattern. 
Finally, by grand-averaging across subjects, the network topology complexity accounting for 
all subjects could be achieved (Fig. 2b). As proved in previous studies, the corresponding 
resting-state brain network has great potential for facilitating the prediction of individual 
performance during the following tasks (Li et al 2013a, Zhou et al 2012), for example, when 
using related resting-state network properties to predict individual acceptance rate during the 
UG task, the predicted rates were also found to be significantly correlated with the actual 
rates (Si et al 2019a). In our present study, concerning the resting-state network properties 
complexity, the correlation analysis was further implemented to investigate any possible 
relationships between resting-state network properties complexity and individual decision 
behavior (AR and CW, Fig. 2c). To obtain the robust representative knowledge underlying 
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the variability in decision-making between the two groups, the outliers were marked relying 
on the relationships between network property variability and task behaviors. In detail, 
participants with the 10% largest Malahanobis distances (Zhang et al 2015) to the data center 
were considered as the outliers and then excluded from the correlation analysis. 

 

3. Results 

3.1. Simulated network 

To evaluate whether the proposed fuzzy entropy-based analysis could capture the fluctuating 
temporal variability in the dynamic resting-state networks, we first simulated the dynamic 
networks that varied across time scales, whose network edge strengths vary over time. To 
fulfill this aim, the MIX(p) with varying parameter p values (0 ≤ p ≤ 1) was used to formulate 
the network edges between two nodes (Pincus 1991, Pincus 1995), whose time series had the 
varying complexity. The MIX(p) is a series of sampling processes for the stacking waves of 
sines and cosines at p = 0 or independent uniform random variables at p = 1. Meanwhile, to 
test if the proposed method was sensitive to the magnitude of the signal, the varying 
magnitudes were also simulated with another parameter i, as i was set as 0.1, 0.5, 1, 5, and 10. 
Herein, for each time point j in the simulated time series, we first defined the MIX(i)(p) as 
follow; 

( ) ( ) ( )1= − + −i
j j j j jj

MIX p i Z X Z Y H                      (15) 

where Xj represents the stochastic and deterministic signal formed by the sine and cosine 

signal, and 7 3 1 19sin sin cos cos 0.8
100 100 25 2050 6 500 6 1000 125

                                                      
j j j jX j , Yj represents a family 

of independent identically distributed real random variables, with uniform density in the 
interval [0, 0.3], Zj represents the random variable, where Zj = 1 with probability p, Zj = 0 with 
probability 1 - p, and Hj represents a discrete step function. 

As the p-value increases, the time process becomes intuitively more irregular, that is, a 
larger p denotes the higher complexity of the signal (i.e., the corresponding edge has more 
complicated patterns). In this study, we simulated a weighted network with 5 nodes (Fig. 3a), 
in which each edge had varied predefined complexity with the p-value being selected within a 
range of [0.1, 0.5]. With the predefined signal complexity determined by p, the five 
time-varying edges were simulated between pairs of nodes (nodes A and C, nodes B and D, 
nodes C and D, nodes C and E, and nodes D and E) in Fig. 3a. 
In this study, apart from the fuzzy entropy, other approaches such as variance (Sakoglu et al 
2010) and non-linear test statistic (Zalesky et al 2014) were also used to measure the 
corresponding temporal fluctuating complexity of these edges in our predefined 5-nodes 
network. Furthermore, to acquire a robust simulated result, the MIX(i)(p) and the estimation of 
temporal fluctuating complexity were repeated 1,000 times. Finally, the averaging across 
1000 times is used to evaluate and compare the capacity of different approaches in measuring 
the fluctuating temporal variability of the brain networks. 
In this simulation study, the complexity of each network edge measured by the fuzzy entropy 
was first displayed in Fig. 3b, which The complexity of each network edge measured by the 
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fuzzy entropy (Fig. 3b) demonstrated a similar tendency with the predefined complexity per 
time series (Fig. 3a), for example, the edge D-E showed the largest complexity in both Fig. 3a 
and 3b. However, as shown in Figs. 3c and 3d, the other two methods inversely presented the 
largest complexity of edge A-C that had the smallest complexity in the current simulation, 
which unfortunately estimated the opposite tendency of the temporal complexity. 

Moreover, the variance and non-linear test statistic were found to be indeed sensitive to 
the magnitude of the signal. Along with the increased magnitude, both methods estimated the 
increased signal complexity, which revealed MIX(10)(p) > MIX(5)(p) > MIX(1)(p) > MIX(0.5)(p) > 
MIX(0.1)(p) per complexity case (Fig. 3f and 3g). In contrast, the fuzzy entropy was not 
affected by the increased magnitude (Fig. 3e), as the same complexity was accurately 
estimated by the fuzzy entropy for all the five magnitude cases. 

 

Fig. 3. Simulated 5-nodes network with MIX(i)(p) (p = 0.1, 0.2, 0.3, 0.4, and 0.5) (a) and the 
estimated temporal complexity of the network edge by the fuzzy entropy (b), variance (c), and 
non-linear test statistic (d). In subfigures (b - d), the width of the solid line denotes the 
predefined or estimated temporal complexity of a given edge. Subfigures (e - g) denote the 
varied temporal complexity of the network edge estimated by the fuzzy entropy (e), variance 
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(f), and non-linear test statistic (g) for all the five magnitude cases. 

3.2. Variability in decision-making network topology 

Figs. 4a and 4b display the 20% network edges with the largest (i.e., flexible) and smallest 
(i.e., robust) fuzzy entropy, respectively. Specifically, the flexible architectures of both 
postgraduate and junior high school students were consistently distributed at the bilateral 
temporal lobe (Fig. 4a), and the nodes were further printed with deep red color (i.e., high 
entropy) as shown in Fig. 4c. By contrast, for both groups, Fig. 4b illustrates a similarly 
robust architecture that seemed to be a resting-state default mode network (DMN), where the 
20% edges with the smallest fuzzy entropy linked the frontal and occipital lobe. 

 

Fig. 4. Scalp topologies with the 20% largest and smallest fuzzy entropy for both groups. (a) 
Flexible architecture, (b) Robust architecture, and (c) Nodal degree ND distribution. The first 
and second row denotes the postgraduate students and junior high school students, 
respectively. In subfigures (a, b), the size of each electrode is proportional to its binary degree 
in the 20% largest and smallest network, respectively. 

3.3. The relationships between network variability and decision behaviors 

Thereafter, for both flexible and robust resting-state network architectures displayed in Fig. 4, 
the weights of flexible and robust network edges were averaged separately to achieve the 
averaged flexible and robust variability metrics per student in both postgraduates and junior 
high school groups. Thereafter, the averaged flexible and robust variability metrics of both 
groups were statistically compared separately, and as displayed in Fig. 5, we found the 
flexible metrics of postgraduate students were significantly larger than that of junior high 
school students (p = < 0.0005), while the robust metrics between two groups were opposite to 
the flexible metrics (p <= 0.005). 
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Fig. 5. The differences in the flexible and robust network variability metrics between 
postgraduate students and junior high school students. The red-filled bars denote the junior 
high school students, the blue-filled bars denote the postgraduate students, and the symbol * 
denotes p < 0.05. 

 
Meanwhile, based on these flexible and robust variability metrics per student, the 

classification of postgraduate students versus junior high school students was further 
performed by adopting the leave-one-out cross-validation (LOOCV) strategy (Zeng et al 
2012). Herein, considering m (m = 40 of both postgraduates and junior high school students) 
samples, in each LOOCV procedure, m-1 subjects were used to training the linear 
discriminant analysis (LDA) classifier, and the remaining 1 sample was used for testing until 
all subjects were served as testing for one time. After the LOOCV was finished, the 
corresponding classification accuracy would be then reported. Here, Fig. 6 displays the 
scatterplot of flexible and robust variability metrics, which indicated that these metrics could 
accurately classify both groups, and indeed, the LDA could achieve an accuracy of 92.50% 
when classifying these subjects by using the variability metrics proposed in this study. 
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Fig. 6. The scatterplot of flexible and robust network variability metrics. The red-filled circles 
denote the junior high school students, the blue-filled triangles denote the postgraduates, and 
the grey-filled circles denote the falsely classified students. 

Finally, the potential relationships between individual decision behaviors and network 
variability for postgraduate students and junior high school students were investigated, and 
the opposite tendencies of both variables between the two independent groups were displayed 
in Figs. 7 and 8to 10. Concretely, for postgraduate students (Figs. 7 and 8), Fig. 7 showed that 
the individual decision AR was marginally significantly negative-correlated with the CC (r = 
-0.479, p = 0.060), GE (r = -0.489, p = 0.055), LE (r = -0.472, p = 0.065), CPL (r = -0.435, p 
= 0.092; CW:), and small-worldness (r = -0.529, p = 0.035). Concerning the CW displayed in 
Fig. 8, similar tendency was found, as the CW also illustrated the significantly negative 
relationship with the CC (r = -0.488, p = 0.055), GE (r = -0.542, p = 0.030), LE (r = -0.522, p 
= 0.038), CPL (r = -0.522, p = 0.038), and small-worldness (r = -0.610, p = 0.012).In detail, 
for postgraduate students (Fig. 7), both decision behaviors (i.e., AR and CW) were marginally 
significantly negative-correlated with the CC (AR: r = -0.479, p = 0.060; CW: r = -0.488, p = 
0.055), GE (AR: r = -0.489, p = 0.055; CW: r = -0.542, p = 0.030), LE (AR: r = -0.472, p = 
0.065; CW: r = -0.522, p = 0.038), CPL (AR: r = -0.435, p = 0.092; CW: r = -0.522, p = 
0.038), and small-worldness (AR: r = -0.529, p = 0.035; CW: r = -0.610, p = 0.012). 
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Fig. 7. The relationship between resting-state network variability metrics and the acceptance 
rate for postgraduate students. In each subfigure, the blue lines denote the fitted linear trend 
between two variables, the black and grey filled circles denote the included and outlier 
subjects, respectively. 
Fig. 7. The relationship between resting-state network variability and task behavior for 
postgraduate students. The scatter plots in the first and second row denote the correlations of 
resting-state network variability versus AR and CW, respectively. In each subfigure, the blue 
lines denote the fitted linear trend between two variables, the black and grey filled circles 
denote the included and outlier subjects, respectively. 

 

Fig. 8. The relationships between resting-state network variability metrics and the cumulative 
winnings for postgraduate students. In each subfigure, the blue lines denote the fitted linear 
trend between two variables; the black- and grey-filled circles denote the included and outlier 
subjects, respectively. 
 

By contrast, the corresponding relationships between resting-state network variability 
metrics and individual decision behaviors for the junior high school students were further 

Page 20 of 62AUTHOR SUBMITTED MANUSCRIPT - JNE-104420.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



displayed in Figs. 9 and 10. In detail, as illustrated in Fig. 9, the CC (r = 0.545, p = 0.013), 
GE (r = 0.419, p = 0.066), LE (r = 0.516, p = 0.020), CPL (r = 0.506, p = 0.023), and 
small-worldness (r = 0.512, p = 0.021) were found to be significantly and positively related to 
the decision AR in junior high school students. Concerning the CW in junior high school 
students, Fig. 10 eventually illustrated that the individual CW also showed the significantly 
positive relationships with the CC (r = 0.634, p = 0.003), GE (r = 0.500, p = 0.025), LE (r = 
0.603, p = 0.005), CPL (r = 0.587, p = 0.007), and small-worldness (r = 0.512, p = 0.021) of 
their resting-state network variability.as illustrated in Fig. 8, the CC (AR: r = 0.545, p = 0.013; 
CW: r = 0.634, p = 0.003), GE (AR: r = 0.419, p = 0.066; CW: r = 0.500, p = 0.025), LE (AR: 
r = 0.516, p = 0.020; CW: r = 0.603, p = 0.005), CPL (AR: r = 0.506, p = 0.023; CW: r = 
0.587, p = 0.007), and small-worldness (AR: r = 0.512, p = 0.021; CW: r = 0.512, p = 0.021) 
were significantly and positively related to the AR and CW in junior high school students. 

 
Fig. 9. The relationship between resting-state network variability metrics and the acceptance 
rate for junior high school students. In each subfigure, the blue lines denote the fitted linear 
trend between two variables, the black and grey filled circles denote the included and outlier 
subjects, respectively. 
Fig. 8. The relationship between resting-state network variability and task behavior for junior 
high school students. The scatter plots in the first and second row denote the correlations of 

resting-state network variability versus AR and CW, respectively. In each subfigure, the blue 
lines denote the fitted linear trend between two variables, the black and grey filled circles 

denote the included and outlier subjects, respectively.
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Fig. 10. The relationships between resting-state network variability metrics and the 
cumulative winnings for junior high school students. In each subfigure, the blue lines denote 
the fitted linear trend between two variables; the black and grey filled circles denote the 
included and outlier subjects, respectively. 
 

4. Discussion 

When referring to the time-resolved function connectivity, the network connectivity fluctuates 
in a transient time interval (Hutchison et al 2013), and these fluctuations are further found to 
be related to the modularity of brain network architecture (Pedersen et al 2018, Lurie et al 
2018). Fluctuating temporal variability in network topology corresponds to the varied 
flexibility in the network architecture, and the flexibility of those edges is believed to 
effectively index the brain activity (Lurie et al 2018, Allen et al 2014). Meanwhile, the 
corresponding temporal flexibility might be measured by the temporal complexity of 
time-varying functional connectivity in the brain (Pedersen et al 2018). The entropy is useful 
in addressing the randomness (irregularity) of a given system, and higher entropy always 
associates with higher randomness, as well as the larger complexity. In this study, we thereby 
used the fuzzy entropy (Chen et al 2007, Chen et al 2009) to evaluate the fluctuating temporal 
variability in time-varying resting-state networks and further investigated the possible 
relationship between the resting-state network variability and individual decision behaviors. 
In addition, to validate the applicability of fuzzy entropy in capturing the fluctuating temporal 
variability, we also recorded and further analyzed another independent resting-state EEG 
dataset before a P300 task by the independent amplifier (i.e., Symtop Instrument, Beijing, 
China), which also demonstrated the similar flexible and robust resting-state architecture (see 
APPENDIX). 

Just as depicted above, during the simulation study, edge D-E was defined by MIX(p = 
0.5) and had the largest complexity; while edge A-C was defined by MIX(p = 0.1) and had the 
smallest complexity. Fig. 3 demonstrates that in contrast to the other approaches, such as the 
variance and non-linear test statistic based on the median, only the fuzzy entropy could 
accurately estimate the network edge complexity in a predefined 5-nodes network. In this 
study, the fuzzy entropy presented the precise complexity order of the five edges as edge D-E > 
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edge C-E > edge C-D > edge B-D > edge A-C; nevertheless, the remaining approaches 
incorrectly identified the opposite tendency among the five edges. In fact, unlike fuzzy 
entropy, both methods are more concerned about capturing the fluctuation of signal 
magnitude (Dionisio et al 2007), while the fluctuating network pattern is more meaningful to 
uncover the neural basis of physiological signals. Under some specific situations, they will 
fail in describing the temporal complexity and even present the opposite tendency. On the 
contrary, fuzzy entropy is insensitive to the data magnitude (Fig. 3e) but depends more on the 
data distribution (Dionisio et al 2007), thus fuzzy entropy is more helpful to capture the 
dynamic fluctuations of network patterns. Therefore, we believed the simulation displayed in 
Fig. 3 effectively validated the applicability of fuzzy entropy in measuring the fluctuating 
temporal variability of the resting-state networks across time scales. 

In essence, when the brain is at rest, along with participants’ closing their eyes, the brain 
functions in an interoceptive state consisting of the imagination and sensory activity (Marx et 
al 2003, Marx et al 2004), at the same time, the intrinsic connectivity synchronization that 
relates to somatosensory (Fox et al 1987) and auditory network increases. For both groups, a 
highly flexible network architecture consistently experienced denser connectivity in the 
bilateral temporal lobe (Fig. 4a), which reflected that these regions overlapped with that 
activated by the interoceptive state under the eye-closed resting state. In essence, previous 
studies have demonstrated that the DMN is the core and inherent network in the brain (Shen 
2015), and the dynamics of DMN may serve as the basis when switching between 
exteroceptive and interoceptive state (Wang et al 2015b). DMN relates to the individual 
internal process, self-generated thought, and mind wandering (Buckner and Vincent 2007, 
Anticevic et al 2012). In this study, for both groups, we consistently showed the DMN-like 
topology that indexes the robust network architecture, which was measured by fuzzy entropy 
(Fig. 4b). In essence, the flexibility in functional network connectivity closely relates to its 
complexity, an increase in edge flexibility corresponds to the higher signal complexity. An 
interesting issue was that, although the network in a resting state indeed fluctuates in a 
transient time interval, we could still observe a steady DMN pattern connecting the frontal 
and occipital lobe. We assumed that this might be the reason why our previous study found a 
close relationship between the frontal-occipital long-range linkage and P300 (Li et al 2015), 
as well as other findings in related resting-state studies (Jann et al 2009, Prestel et al 2018). 

Decision-making requires an effective evaluation of the current situation, which relies on 
effectively assessing external (i.e., monetary value) and internal factors (i.e., fairness) (Huerta 
and Kaas 1990). The decision-making in adults and adolescents is usually influenced by many 
factors including inhibitory control, learning, emotion, and social context (Gladwin et al 2011, 
Rubia et al 2000), and distinctive decision behaviors between the two groups have been found 
in our previous study (Si et al 2020b). While time-resolved investigation allows the 
fine-grained evaluations of the relationship between functional connectivity and ongoing 
cognition (Pedersen et al 2018), such as decision-making. In our present study, based on the 
identified flexible and robust architectures displayed in Fig. 4, the statistics of flexible and 
robust variability metrics were first completed (Fig. 5), which showed significant differences 
between the postgraduate students and junior high school students (p < 0.05). And when using 
the flexible and robust variability metrics to classify the two groups, an accuracy of 92.50% 
could be achieved (Fig. 6), while if only the raw coherence metrics were used, no satisfying 
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results would be obtained, which further validated the capacity of the proposed protocols in 
capturing the fluctuating temporal variability in resting-state networks, as well as identifying 
distinct groups. 

In fact, the studies focusing on childhood development and socialization have confirmed 
the increase of the preference for fair distribution along with their growing up (Marchetti et al 
2019, Castelli et al 2014). That is, compared to the adults, the adolescents were more likely to 
accept the offer given by the others since they (i.e., children and adolescents) preferred the 
outcome, which led to a large AR even when faced with unfair offers; nevertheless, the adults 
focused on the intention, which might explain the high rejection rates related to unfair offers 
in the postgraduate students. In our present study, the potential relationships between decision 
behavior and network variability of both groups were thus investigated, to uncover if the 
different decision strategies were used by both groups in the UG task. 

Quantitatively, small-worldness reflects regional specialization and information transfer 
efficiency of a given network, the CC and LE are the aggregation of the node and reflect the 
capacity for specialized processing of the local region; by contrast, the CPL and GE denote 
the functional integration of multiple brain regions, and all of these parameters can effectively 
evaluate the efficiency related to the specific information processing in the brain (Cozzo et al 
2015). In this study, the temporal fuzzy entropy of these parameters (i.e., CC, GE, LE, CPL, 
and small-worldness) is thought to has the potential to quantitatively measure the local and 
global flexibility in the brain. As displayed in Figs. 7 to 10, what is interesting was the 
opposite decision-making behaviors between adolescents and adults under unfair conditions. 
In particular, in postgraduate students, we found the network variability parameters were 
negatively related to both AR and CW (Figs. 7 and 8), while the opposite relationships were 
found in junior high school students as these parameters were significantly positively related 
to individual AR and CW (Figs. 89 and 10). A small AR means an individual prefers fairness 
by rejecting the current unfair offer to punish the unfair behavior of the proposer (Yamagishi 
et al 2009), which thus leads to the lower task earning (i.e., smaller CW). In fact, the studies 
focusing on childhood development and socialization have primarily confirmed the increase 
of the preference for fairness from adolescence to adulthood (Marchetti et al 2019, Castelli et 
al 2014). Along with their growing up, the individuals' sociality increases and they are 
increasingly capable of using a multi-dimensional rule to deal with the current decision 
situation (van Duijvenvoorde et al 2010). Since this study was the first work to explore the 
potential relationships between resting-state brain network variability and individual decision 
behaviors, based on these considerations mentioned above, we believed that compared to 
those postgraduate students, junior high school students were more likely to accept the offer 
given by the others, even those unfair ones, as they preferred current interests over fairness 
(Si et al 2020b). By contrast, the postgraduate students focused more on the intention and 
preferred the fairness (Peterburs et al 2017), if the unfairness occurs, they would like to reject 
the unfair offer in this situation. This might lead to a large AR in junior high school students 
but the high rejection rates in postgraduate students, as well as the opposite relationships 
between network variability and decision behaviors for both groups.  

That is, compared to the adults, the adolescents were more likely to accept the offer 
given by the others since they (i.e., children and adolescents) preferred the outcome, which 
led to a large AR even when faced with unfair offers; nevertheless, the adults focused on the 
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intention, which might explain the high rejection rates related to unfair offers in the 
postgraduate students. In our present study, the potential relationships between decision 
behavior and network variability of both groups were thus investigated, to uncover if the 
different decision strategies were used by both groups in the UG task. 

Based on the considerations above, we believed that compared to the postgraduate 
students, the junior high school students pay more attention to monetary value but less to 
fairness; even when meeting with unfair conditions, the adolescents tend to accept the 
unfairness to ensure their self-interest. Nevertheless, the postgraduate students incline to 
assess the fairness of the current situation, if the unfairness occurs, they would like to reject 
the unfair offer in this situation, which then results in an opposite relationship between 
network variability and task behavior with the junior high school students. 

One possible limitation of this study would be that although sparse electrodes could 
reduce the effect of volume conduction on EEG and related networks, theoretically, EEG 
source localization could eliminate the volume conduction effect by projecting scalp EEG 
back to the cortex. In the future, by performing the EEG source localization, we will further 
investigate the fluctuating temporal variability of brain networks on the cortical layer, to 
further uncover the neural basis of network variability and its relationships with human 
cognition. 

One possible limitation of this study would be that although sparse electrodes could 
reduce the effect of volume conduction on EEG and related networks, theoretically, EEG 
inverse solution could eliminate the volume conduction effect by projecting scalp EEG back 
to the cortex. And in the future, by adopting the EEG inverse solution, we will further 
investigate the fluctuating temporal variability of brain networks on the cortical layer, to 
further uncover the neural basis of network variability and its relationships with human 
cognition. 

 

5. Conclusion 

In summary, our present study first validated the capacity of fuzzy entropy in quantitatively 
measuring the fluctuating temporal patterns of the time-varying resting-state brain networks. 
When applying in the decision-making and P300 EEG datasets, the corresponding inherent 
fluctuating temporal patterns of resting-state networks were effectively captured; in particular, 
the flexible and robust architectures of the brain at rest were identified and distributed at the 
bilateral temporal lobe and frontal/occipital lobe, respectively. Moreover, the corresponding 
variability metrics not only helped differentiate different groups but also closely related to the 
individual decision behaviors, which could facilitate our knowledge of the human cognitive 
process, such as decision-making. 
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Conventional approaches 
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In essence, the variance (also the standard-deviation) , as a straightforward method, has been 
used to measure the uncertainty of a given signal (Dionisio et al 2007), which is usually in the 
resting-state fMRI studies (Hindriks et al 2016, Sakoglu et al 2010). In addition, Zalesky and 
colleagues also used the univariate test statistic to measure the time-varying correlation 
coefficient fluctuations for pairwise regions (Zalesky et al 2014). In this study, to first 
validate the benefits of the fuzzy entropy, these two traditional methods i.e., the variance and 
non-linear test statistic, were also used to estimate the corresponding temporal complexity of 
the simulated network edges, and the corresponding performance of the fuzzy entropy was 
then statistically compared with that of the two traditional methods. Here, the corresponding 
definitions of both methods were further depicted below. 

Concerning In the current study, we, therefore, also proposed to use the traditional test 
statistics, i.e., the variance and non-linear test statistic, to estimate the temporal complexity of 
the defined network edges. On the one hand, the variance, V, for each of the five network 
edges is formulized as follow; 

  2

1

1
1

 




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L

i
i

p
L

V                     (A1) 

where p = p1, p2, …, pL denotes the time series of the simulated network edge, V denotes the 
variance of the time series, and μ denotes the mean of the signal. 

For the non-linear test statistic, let m be the median of p and let n1, n2, …, nJ be the 
samples for which p crosses m. p then makes J-1 consecutive excursions from m. The length 
In and height Hn of the j-th excursion are defined as In = nj+1 – nj and 

{ }  1 : += − < <n i j jH max p m n i n , respectively. The non-linear test statistic (Zalesky et al 2014, 

Hindriks et al 2016) is finally defined as, 
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where α and β control the relative weighting of the length and height for each excursion. 
Meanwhile, following Zalesky and colleagues (Zalesky et al 2014), in this study, we then set 
α = 0.9 and β = 1. 
 

Validation on resting-state P300 EEG 

Aiming to validate its applicability, the independent group of resting-state EEG datasets 
recorded before an oddball P300 task (Li et al 2019) was further analyzed by applying the 
same analytical protocols. 

After being preprocessed with the same analytical protocols, 19 healthy right-handed 
participants (6 females, age range of 20-41 years, and mean 29.37 years) were included in the 
following analysis. They had the normal or corrected-to-normal visual acuity, and none of 
them had histories of substance abuse, took the medication with deleterious effects on 
cognition, and had a neurological illness. 

Their resting-state EEG datasets were recorded using the Symtop amplifier (Symtop 
Instrument, Beijing, China) and a 16-channel Ag/AgCl electrode cap (BrainMaster, Inc., 
Shenzhen, China), whose electrodes (Fp1/2, F3/4, C3/C4, P3/4, O1/2, F7/8, T3/4/5/6) were 
positioned according to the 10-20 international electrode system. Electrode AFz served as the 
reference. The predefined sampling rate is 1,000 Hz and the online bandpass filtering is 
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0.05-100 Hz. The impedance per electrode was kept below 5 KΩ throughout the experiment. 
Fig. A1 displays the network edges with the 20% largest (i.e., flexible, Fig. A1a) and 20% 

smallest (i.e., robust, Fig. A1b) fuzzy entropy, respectively, as well as the corresponding 
nodal degree ND distribution (Fig. A1c). Coincided with the findings of the postgraduate 
students and junior high school students in the UG task, the flexible architectures were also 
distributed at the bilateral temporal lobe (Fig. A1a), whose electrodes were printed with deep 
red color in Fig. A1c. Meanwhile, Fig. A1b further illustrates a robust DMN-like architecture, 
which linked the frontal and occipital lobe (i.e., the electrodes with deep blue color in Fig. 
A1c). 

 
Fig. A1. Scalp topologies with the 20% largest and smallest fuzzy entropy for resting P300. (a) 
Flexible architecture, (b) Robust architecture, and (c) Nodal degree ND distribution. In 
subfigures (a, b), the size of each electrode is proportional to its binary degree in the 20% 
largest and smallest network, respectively. 
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Abstract

Objective. Exploring the temporal variability in spatial topology during the resting state 
attracts growing interest and becomes increasingly useful to tackle the cognitive process of 
brain networks. In particular, the temporal brain dynamics during the resting state may be 
delineated and quantified aligning with cognitive performance, but few studies investigated 
the temporal variability in the electroencephalogram (EEG) network as well as its relationship 
with cognitive performance. Approach. In this study, we proposed an EEG-based protocol to 
measure the nonlinear complexity of the dynamic resting-state network by applying the fuzzy 
entropy. To further validate its applicability, the fuzzy entropy was applied into simulated and 
two independent datasets (i.e., decision-making and P300). Main results. The simulation 
study first proved that compared to the existing methods, this approach could not only exactly 
capture the pattern dynamics in time series but also overcame the magnitude effect of time 
series. Concerning the two EEG datasets, the flexible and robust network architectures of the 
brain cortex at rest were identified and distributed at the bilateral temporal lobe and 
frontal/occipital lobe, respectively, whose variability metrics were found to accurately 
classify different groups. Moreover, the temporal variability of resting-state network property 
was also either positively or negatively related to individual cognitive performance. 
Significance. This outcome suggested the potential of fuzzy entropy for evaluating the 
temporal variability of the dynamic resting-state brain networks, and the fuzzy entropy is also 
helpful for uncovering the fluctuating network variability that accounts for the individual 
decision differences.

Keywords: Fuzzy entropy, Resting-state EEG, Network variability, Decision-making
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1. Introduction

Electroencephalogram (EEG) directly reflecting the neural electrical activity, is dynamic and 
varies across time scales. As one of the most complex dynamic systems, the brain constantly 
constructs and updates the internal network models to anticipate and plan future adaptive 
behaviors (Braun et al 2015, Jiang et al 2019). The brain at rest is also active both 
physiologically and psychologically (Damoiseaux et al 2006, Mantini et al 2007), and related 
resting-state brain activity has been proved to serve as the neural basis underlying the 
potential task information processing (Wang et al 2019, Hearne et al 2017). Just as illustrated, 
related brain networks at rest can effectively characterize the intrinsic allocation of the brain 
resources (Falahpour et al 2018, Northoff et al 2010) and also help predict the individual 
performance during the following tasks (Li et al 2013a, Zhou et al 2012), as well as 
individual mental state (Tian et al 2017a). For example, both the resting-state network 
topologies and properties were found to be positively related to the P300 amplitudes that were 
evoked by the target stimuli during the oddball tasks (Li et al 2015). At its initial stage, the 
resting-state network is believed to be stable, while plenty of recent studies find that the brain 
network at rest also fluctuates over time (Betzel et al 2016, Yu et al 2015, Garrett et al 2011). 
To quantitatively capture the fluctuating brain variability, the sliding window is usually used, 
which measures the time series of the dynamic functional connectivity. Several methods are 
then developed to explore the fluctuating variability across the time scales, which includes the 
variance of dynamic network connectivity, the network dissimilarity over time, and non-linear 
test statistics (Sun et al 2019, Zalesky et al 2014, Sakoglu et al 2010). For example, the 
network dissimilarity illustrated that better individual verbal creativity correlates with higher 
temporal variability in resting-state functional connectivity among multiple regions, such as 
the lateral prefrontal cortex, parahippocampal gyrus, and precuneus (Sun et al 2019).

Theoretically, the more diverse the fluctuating patterns of a given time series are, the 
high complexity the corresponding time series will be, that is, the signal is more irregular. 
The temporal complexity of a system can index its fluctuating dynamics; for a given signal, 
entropy has been widely used to quantify the corresponding signal complexity. The entropy 
can nonlinearly measure how complex (i.e., level of irregularity) the physiological signal will 
be (Gao et al 2015) and thus is proportional to signal irregularity; the larger the entropy, the 
more irregular the signal. Therefore, measuring the signal entropy in the temporal domain will 
deepen our knowledge of brain dynamics (Abasolo et al 2006, Tian et al 2019, Tian et al 
2017b) and provide the possibility to quantitatively evaluate the temporal complexity of the 
physiological system (Takahashi et al 2010). Fuzziness is an alternative approach used when 
describing the uncertainty of a time series and the corresponding fuzzy entropy measurement 
has been proved to have great potential for avoiding the undesirable boundary effect (a sharp 
distinction of the boundary), compared to the other entropies, such as approximate entropy 
and sample entropy (Chen et al 2009); in the meantime, stronger relative consistency and less 
dependence on data length of the Fuzzy entropy further facilitate its application in evaluating 
the signal complexity (Li et al 2013b, Xie et al 2010). Therefore, the fuzzy entropy can 
effectively guarantee the estimated signal metrics to vary smoothly and continuously with 
similarity tolerance. Recently, fuzzy entropy has been widely applied to measure the 
complexity of both EEG and electromyogram (Cao et al 2018, Cao and Lin 2018, Masulli et 
al 2020), as well as investigating brain diseases, such as epileptic seizure (Cao et al 2020, 
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Xiang et al 2015), schizophrenia (Yang et al 2015), and Alzheimer's Disease (AD) (Simons et 
al 2018). For example, when using the network-based Takagi-Sugeno-Kanga fuzzy classifiers 
to identify the AD patients, related network metrics under eyes-closed and eyes-open 
conditions achieved relatively high accuracies of 97.3% and 94.78%, respectively (Yu et al 
2020).

However, most of the current approaches mainly focus on the amplitude stationarity of 
brain networks to measure the dynamics of the temporal network variability (Zalesky et al 
2014, Hindriks et al 2016) but neglect the inherent fluctuating network patterns that are 
remarkably helpful for reflecting how the brain network fluctuates over time. As illustrated 
previously, the corresponding network patterns, such as the network topological alterations, 
could promote the classification among different conditions (Moon et al 2020, Pena-Gomez et 
al 2018). For example, Shirer and colleagues used the whole-brain connectivity patterns to 
decode subject-driven cognitive states and achieved an accuracy of 84% (Shirer et al 2012), 
and when using network topological alterations to accomplish the fatigue classification, 
Dimitrakopoulos and colleagues also achieve high accuracy of 92% for driving and 97% for 
psychomotor vigilance task (Dimitrakopoulos et al 2018). Moreover, corresponding network 
complexity has also been proved to have great potential for indexing the flexible and robust 
network architectures and reflecting how the brain could respond to cognitive stimuli (Sun et 
al 2019). To effectively explore the mechanism underlying the cognitive process in the brain, 
exactly capturing the fluctuating network patterns, e.g., flexible and robust architectures, will 
play an important role and help reflect to which degree the brain can respond to the upcoming 
task. Therefore, contrary to the traditional methods that measure the amplitude stationarity 
(Zalesky et al 2014, Hindriks et al 2016), our current work mainly focused on exploring the 
fluctuating temporal patterns of the time-varying resting-state brain networks, to uncover the 
potential fuzzy evidence underlying the decision differences between different individuals.

Herein, we assumed that the fluctuating temporal variability in resting-state networks 
can be effectively captured by fuzzy entropy, and related variability metrics do closely relate 
to individual cognitive behaviors. To validate this approach, besides a simulation study, the 
proposed metric was further applied to the real dataset of decision-making that was collected 
from adolescents and adults when they responded to the unfair offers. As a high-level 
cognitive process, decision-making involves a wide range of complex behaviors (Cecchetto et 
al 2017, Preuss et al 2016) and is attributed to the functional interactions of those spatially 
separated but functionally linked brain regions (Si et al 2020a, Si et al 2019b). Understanding 
the neural substrates of decision-making helps establish effective artificial intelligence and 
brain-computer interface (BCI) as well, where the decision-making is of great importance for 
individuals (Long et al 2012, Li et al 2013c). The theories of (culture-specific) socialization 
(Hoffmann and Tee 2006, Marchetti et al 2019) and childhood development (Castelli et al 
2010, Castelli et al 2014, Guroglu et al 2009) demonstrate that the preference for fairness 
increases with age, and adolescents usually make relatively larger acceptances than the adults, 
as they preferred the outcome even under unfair conditions (Sutter 2007, Si et al 2020b).

Moreover, P300 has also been demonstrated to be attributed to the functional interactions 
of multiple regions in the brain, including the middle frontal gyrus, insula, and thalamus, etc 
(Li et al 2020, Bledowski et al 2004), and could effectively index various cognitive functions, 
such as attention allocations and working memory (Polich 2007). As one of the 
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electrophysiological biomarkers, P300 has been widely used to evaluate the subject’s capacity 
during tasks (Wang et al 2015a), as well as classify different individual groups (Turetsky et al 
2015). Uncovering related neural mechanism also helps deepen our understanding of P300 
and contributes to its future applications in multiple aspects, such as BCI and clinical 
diseases, etc. Following decision-making, to further validate the applicability of the fuzzy 
entropy in capturing the fluctuating temporal variability of resting-state networks, an 
independent P300 resting-state EEG dataset was also investigated by adopting the same 
analytical protocols.

2. Materials and methods

2.1. Fuzzy entropy of the dynamic networks

Fuzzy entropy can effectively evaluate signal complexity, especially for the short time series 
contaminated by noise (Chen et al 2009), and is insensitive to disturbance but sensitive to the 
fluctuations of related information content (Acharya et al 2015). A higher value of fuzzy 
entropy represents the larger temporal variability in time series.

Assuming there are N networks, the time series for each network edge can be termed as 
Xi (1 ≤ i ≤ N) whose value varies from 0 to 1, which is formed as follows;

                (1)( ) ( ) ( ){ } ( ), 1 ,..., 1 , 1, ..., 10
m u i u i u i m u i i N mX i = + + - - = - +

where Xi
m represents m consecutive u values (i.e., coherence value) at i-th network point, 

which is generalized by removing the baseline .( ) ( )
1-1

0 0

m
u i n i jm

j

-
å= +
=

Given r, calculating the similarity degree Dij
m between Xi

m and its neighboring vector 
Xj

m, which is formulized as follow;

                          (2) ,m m
ij ijD d r

where dij
m is the maximum absolute difference of the corresponding scalar components of Xi

m 
and Xj

m. For each vector Xi
m (i = 1, 2, …, N-m+1), by averaging all similarity degree, Dij

m, of 
its neighboring vectors Xj

m (i = 1, 2, …, N-m+1, and j ≠ i), we then get

                   (3)( ) ( )-11
1,

f
-
å= - -

= ¹
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FuzzEn(m, r) of the time series Xi (1 ≤ i ≤ N) as follow;

                 (4)( ) ( ) ( )1, lim ln lnj j +

® ¥
é ù= -ê úë û

m m

N
FuzzEn m r r r

which can be estimated by the statistic,

                   (5)( ) ( ) ( )1, , ln lnj j += -m mFuzzEn m r N r r

where m denotes the length of the compared window, r denotes the width of the boundary for 
similarity measurement, and N denotes the length of related time series to be analyzed. 
Particularly, large m guarantees a more detailed reconstruction of the dynamic process, but an 

Page 38 of 62AUTHOR SUBMITTED MANUSCRIPT - JNE-104420.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



overlarge m might lead to information loss (Pincus and Goldberger 1994). Just as proposed in 
the previous study (Chen et al 2007), m was determined to be 2. In the meantime, rather small 
r brings the noise, but too large r might also result in information loss, which is, therefore, set 
to 0.2 multiplied by the standard deviation of the time series in this study.

2.2. Validation on simulated data

To evaluate whether the proposed fuzzy entropy-based analysis could capture the fluctuating 
temporal variability in the dynamic resting-state networks, we first simulated the dynamic 
networks that varied across time scales, whose network edge strengths vary over time. To 
fulfill this aim, the MIX(p) with varying parameter p values (0 ≤ p ≤ 1) was used to formulate 
the network edges between two nodes (Pincus 1991, Pincus 1995), whose time series had 
varying complexity. The MIX(p) is a series of sampling processes for the stacking waves of 
sines and cosines at p = 0 or independent uniform random variables at p = 1. Meanwhile, to 
test if the proposed method was sensitive to the magnitude of the signal, the varying 
magnitudes were also simulated with another parameter i, as i was set as 0.1, 0.5, 1, 5, and 10. 
Herein, for each time point j in the simulated time series, we first defined the MIX(i)(p) as 
follow;

                     (6)     1   i
j j j j jj

MIX p i Z X Z Y H

where Xj represents the stochastic and deterministic signal formed by the sine and cosine 

signal, and , Yj represents a 
7 3 1 19sin sin cos cos 0.8

100 100 25 2050 6 500 6 1000 125
p p p p p pæ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷= ´ ´ + + ´ ´ + + ´ ´ + ´ ´ +ç ç ç ç÷ ÷ ÷ ÷÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø

j j j jX j

family of independent identically distributed real random variables, with uniform density in 
the interval [0, 0.3], Zj represents the random variable, where Zj = 1 with probability p, Zj = 0 
with probability 1 - p, and Hj represents a discrete step function.

As the p-value increases, the time process becomes intuitively more irregular, that is, a 
larger p denotes the higher complexity of the signal (i.e., the corresponding edge has more 
complicated patterns). In this study, we simulated a weighted network with 5 nodes (Fig. 3a), 
in which each edge had varied predefined complexity with the p-value being selected within a 
range of [0.1, 0.5]. With the predefined signal complexity determined by p, the five 
time-varying edges were simulated between pairs of nodes (nodes A and C, nodes B and D, 
nodes C and D, nodes C and E, and nodes D and E) in Fig. 3a.
In this study, apart from the fuzzy entropy, other traditional approaches, such as variance 
(Sakoglu et al 2010) and non-linear test statistic (Zalesky et al 2014), were also used to 
measure related fluctuating temporal complexity of these edges in our predefined 5-nodes 
network. Furthermore, to acquire a robust simulated result, the MIX(i)(p) and the estimation of 
fluctuating temporal complexity were repeated 1,000 times. Finally, the averaging across 
1000 times is used to evaluate and compare the capacity of different approaches in measuring 
the fluctuating temporal variability of the brain networks.

2.3. Validation on decision-making data

2.3.1. Participants. The experiment protocol was approved by the Institution Research Ethics Board 
of the University of Electronic Science and Technology of China (UESTC) and was conducted 
following the Declaration of Helsinki. Two independent groups of participants (i.e., postgraduate and 
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junior high school students) were recruited and paid for their efforts to take part in this study at 
UESTC. Before they joined our experiments, participants were told about the experimental details and 
then read and signed their names on the written informed consent. Eighteen postgraduate students (5 
females, age range of 21-24 years, and mean 23.45 years) from the UESTC and 22 junior high school 
students (10 females, age range of 14-16 years, and mean 14.59 years) from The Experimental High 
School Attached To UESTC were included in this study. None of the participants had a history of 
neurological or psychiatric disorders and were not currently using any psychoactive medications. All of 
them had normal or correct-to-normal visual acuity.

2.3.2. Experimental protocols. In the ultimatum game (UG) task, the participant acted as a 
responder who would decide to accept or reject an offer given by the proposer (i.e., the 
computer itself). If he or she accepted the offer, both players (i.e., responder and proposer) 
received the money according to the splits; in case of rejecting it, they would not earn 
anything. When playing with the computer game, participants were advised to play this game 
with another participant in a separate room. Experiments were performed in a quiet, dimly 
lightroom. Participants were first instructed to take a deep breath to adapt to the experimental 
environment. Before the UG task, 5 minutes of eyes-closed resting-state EEG datasets were 
recorded, which was followed by an 8.5 min UG task.

Fig. 1 illustrates the timeline of the UG task. In the UG task, the sum of splits was ¥ 10; 
meanwhile, three categories were included, i.e., the fair offer (¥ 5 vs. ¥ 5), moderately unfair 
offer (¥ 3 vs. ¥ 7), and extremely unfair offer (¥ 1 vs. ¥ 9). A total of 90 offers, 30 offers per 
condition, were included in the UG task. Each UG trial began with an 800 ms thin cross. 
Then, a screen with ¥ 10 appeared and lasted 500 ms, which was followed by a 1,000 ms 
black screen. Thereafter, a split offer was presented, at the same time, participants need to 
decide to reject ("3") or accept ("1") the offer by pressing the button on the standard 
keyboard. Followed by their choice, the feedback appeared to inform their received money on 
that trial, as well as the cumulative winnings of participants. The decision and feedback 
would keep 2,700 ms in total.

Fig. 1. The timeline of a UG task trial.

2.3.3. EEG recording. Participants were seated in an electrically shielded and light-attenuated 
room. The 64-channels resting-state EEG datasets were recorded by using the ASA-Lab 
Amplifier (ANT Neuro), and the 64 Ag/AgCl electrodes were positioned in compliance with 
the extended 10-20 international electrode system. During the data recording, the EEGs were 
digitized with a sampling rate of 500 Hz, and online bandpass filtered within the frequency 
range of [0.05 Hz, 70 Hz]. The electrodes of CPz and AFz served as the reference and ground, 
respectively. The electrooculogram was recorded from one channel located at the above side 
of the left eye to monitor eye movements. For all electrodes, the impedance was consistently 
below 5 KΩ throughout the experiment.
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2.3.4. Fuzzy entropy of resting-state EEG network. In fact, these decision-making datasets had 
been reported in our previous study (Si et al 2019b), since our present study focused on 
investigating the resting-state network variability, only the resting-state EEG datasets were 
used here. Although the potential mechanism of the decision-making differences had been 
explored in previous studies from the perspective of ERP and power spectra, etc (Villafaina et 
al 2019, Kim et al 2021), decision-making is proved to be attributed to the functional 
interactions of those spatially separated but functionally coupled regions (Si et al 2020a, Si et 
al 2019b). Moreover, related fluctuating temporal patterns in decision networks are still been 
left unveiled, although the corresponding network complexity has also been proved to help 
identify the temporal variability in network architecture and index how the brain responds to 
cognitive stimuli (Sun et al 2019, Zalesky et al 2014). Therefore, when exploring the 
potential mechanism underlying the decision-making, identifying the corresponding temporal 
variability in decision network architectures, e.g., flexible and robust network patterns, will be 
of great importance and also help index to which degree the brain could respond to the unfair 
conditions. The analytical protocols for exploring the brain variability in dynamic 
resting-state networks were first displayed in Fig. 2, and the detailed procedures were further 
depicted as follows.
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Fig. 2. Analytical protocols of the temporal variability in the resting-state EEG network. (a) 
Dynamic resting-state network construction, (b) The complexity of the dynamic resting-state 
network topologies, and (c) The temporal complexity of the dynamic resting-state network 
properties and Pearson’s correlation analysis between network properties complexity and UG 
task behaviors. DFC denotes dynamic functional connectivity.

Before exploring related brain variability in these time-varying resting-state networks, 
the resting-state EEG datasets were first preprocessed. Concretely, to remove the artifacts, the 
resting-state EEG datasets were first referenced to a neutral reference of Reference Electrode 
Standardization Technique (REST) (Dong et al 2017, Yao 2001), and then offline bandpass 
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filtered within the frequency range of [0.5 Hz, 30 Hz]. Thereafter, the independent component 
analysis (ICA) was adopted to remove residual artifacts (He et al 2005) that still contaminate 
EEG data by removing related artifact components.

The brain network is typically modeled by graph theory and includes a collection of 
nodes and edges. The EEG electrodes were considered as network nodes, and the 
synchronized strengths between pairwise electrodes estimated by coherence were set as 
network edges. Due to the effect of volume conduction, the nearby electrodes acquire similar 
contributions from cortical sources and thus capture a similar activity. In our present study, to 
reduce the effect of volume conduction, following the procedure in related studies (Qin et al 
2010, Huang et al 2017), 21 canonical electrodes (i.e., FP1/z/2, F7/3/z/4/8, T7/8, C3/z/4, 
P7/3/z/4/8, and O1/z/2) out of the 64 channels in the 10-20 system were used to construct the 
resting-state network. Theoretically, coherence can effectively measure the synchronized 
neuronal assembly at any given frequency bin f between pairwise signals, x(t) and y(t), and is 
usually formulated as,

                     (7)   
 

   

2
2

 
P fxy

C f R fxy xy P f P fxx yy

where Cxy(f) and Rxy(f) represent the estimated coherence value and the complex correlation 
coefficient between x(t) and y(t) at frequency bin f, respectively. At per frequency bin f, Pxy(f) 
represents the cross-spectrum between x(t) and y(t), Pxx(f) and Pyy(f) represent the 
auto-spectrum of x(t) and y(t), respectively. These measurements of spectral densities were 
calculated from the Fast Fourier Transform. For each frequency bin f, the Cxy(f) is calculated 
by squaring the magnitude of the complex correlation coefficient R between x(t) and y(t), 
which returns a real value within the range of [0, 1]. Since this study focused on the 
fluctuating variability of brain activity at rest, we thus concentrated on the alpha band ([8, 13] 
Hz) to construct the corresponding resting-state network.

In our present study, the time-resolved resting-state network was calculated by using a 
5-s sliding-window approach with an overlapping of 98% that can provide 100 ms temporal 
resolution for dynamic networks, which resulted in the time-varying networks varied across 
time scales. Based on the time-varying resting-state networks, a time series would be obtained 
for each network edge, and when the corresponding variability is calculated for each edge by 
the fuzzy entropy, the variability of network topology could be achieved, which can reflect 
how stable each network edge is (Fig. 2a). After the above procedure, each subject will have a 
network topology complexity and a network property complexity. For network topological 
complexity, it can reveal the distribution of spatial topological variability clearly, which can 
reflect the robust or flexible spatial pattern. Finally, by grand-averaging across subjects, the 
network topology complexity accounting for all subjects could be achieved (Fig. 2b).

Thereafter, a threshold strategy was used in identifying the fluctuating temporal patterns 
in resting-state networks; concretely, the 20% network edges with the largest and smallest 
fuzzy entropy were adopted to index the flexible and robust network architectures for both 
groups, respectively. However, when calculating related resting-state network properties, 
including nodal degree (ND), clustering coefficients (CC), global efficiency (GE), local efficiency 
(LE), and characteristic path length (CPL) (Rubinov and Sporns 2010), the fully-connected 
weighted adjacency matrices without any thresholding were used. Theoretically, the ND sums 
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all edge strengths connecting one network node and reflects the importance of this node in a given 
network, the CC and LE index the functional segregation of a given network and both reflect the 
capacity for specialized processing within densely interconnected regions, while the CPL and GE 
measure the functional integration and index the ability to rapidly combine specialized 
information from distributed regions. Here, based on the fully-connected weighted adjacency 
matrix per subject, let Cij be the synchronized strength between nodes i and j estimated by 
coherence, dij represents the shortest weighted path length, N represents the number of all nodes, 
and Θ represents the set of network nodes. The ND, CC, GE, LE, and CPL were then formulized 
as follows.

                               (8)å
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Since the small-worldness has been widely used in brain networks to investigate the 
human cognitive process (Bassett and Bullmore 2017), as well as measuring the capacity of 
stimuli modulation, such as acupuncture (Yu et al 2018), in our present study, the 
small-worldness is also adopted as one of the variability metrics to measure the resting-state 
brain networks. Theoretically, small-worldness is quantified by the CPL and CC and reflects 
the regional specialization and the information transfer efficiency in the brain. Before 
calculating the small-worldness, the CC and CPL of the constructed EEG networks (i.e., CCt 
and CPLt) are normalized by dividing by the value for the same variable calculated for a 
randomly rewired null model, which are then termed as γ and λ, respectively. Here, the CC 
and CPL of the random network (i.e., CCr and CPLr) are the averages of the values calculated 
from 1000 randomly rewired null models.

                              (13)= t

r

CC
CC



                              (14)= t
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

 Finally, the small-worldness, sw, is given by a ratio of the normalized CC, γ, to the 
normalized CPL, λ, as,

                             (15)sw 
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Herein, by using the brain connectivity toolbox (BCT), we quantitatively calculated the 
corresponding network properties for each dynamic network, resulting in the dynamic 
resting-state network properties (i.e., CC, CPL, GE, LE, and small-worldness) that varied 
across time. Then, the temporal variability of these parameters could also be quantitatively 
measured by the fuzzy entropy, which reflected the fluctuating complexity in the properties 
time series (Yu et al 2015, Thompson et al 2017) (Fig. 2a).

Although, the acceptance rate (AR) varies across subjects but relatively keeps stable 
intra-subject, and is thus used to characterize the individual task behavior during tasks (Wang 
et al 2017). Besides, the cumulative winning (CW) is also regarded as a direct measurement 
of task behavior during the UG task. We then obtained the AR of combining the extremely 
and moderately unfairness conditions, as well as the CW throughout the UG task.

As proved in previous studies, the corresponding resting-state brain network has great 
potential for facilitating the prediction of individual performance during the following tasks 
(Li et al 2013a, Zhou et al 2012), for example, when using related resting-state network 
properties to predict individual acceptance rate during the UG task, the predicted rates were 
also found to be significantly correlated with the actual rates (Si et al 2019a). In our present 
study, concerning the resting-state network properties complexity, the correlation analysis 
was further implemented to investigate any possible relationships between resting-state 
network properties complexity and individual decision behavior (AR and CW, Fig. 2c). To 
obtain the robust representative knowledge underlying the variability in decision-making 
between the two groups, the outliers were marked relying on the relationships between 
network property variability and task behaviors. In detail, participants with the 10% largest 
Malahanobis distances (Zhang et al 2015) to the data center were considered as the outliers 
and then excluded from the correlation analysis.

3. Results

3.1. Simulated network

In this simulation study, the complexity of each network edge measured by the fuzzy entropy 
was first displayed in Fig. 3b, which demonstrated a similar tendency with the predefined 
complexity per time series (Fig. 3a), for example, the edge D-E showed the largest 
complexity in both Fig. 3a and 3b. However, as shown in Figs. 3c and 3d, the other two 
methods inversely presented the largest complexity of edge A-C that had the smallest 
complexity in the current simulation, which unfortunately estimated the opposite tendency of 
the temporal complexity.

Moreover, the variance and non-linear test statistic were found to be indeed sensitive to 
the magnitude of the signal. Along with the increased magnitude, both methods estimated the 
increased signal complexity, which revealed MIX(10)(p) > MIX(5)(p) > MIX(1)(p) > MIX(0.5)(p) > 
MIX(0.1)(p) per complexity case (Fig. 3f and 3g). In contrast, the fuzzy entropy was not 
affected by the increased magnitude (Fig. 3e), as the same complexity was accurately 
estimated by the fuzzy entropy for all the five magnitude cases.
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Fig. 3. Simulated 5-nodes network with MIX(i)(p) (p = 0.1, 0.2, 0.3, 0.4, and 0.5) (a) and the 
estimated temporal complexity of the network edge by the fuzzy entropy (b), variance (c), and 
non-linear test statistic (d). In subfigures (b - d), the width of the solid line denotes the 
predefined or estimated temporal complexity of a given edge. Subfigures (e - g) denote the 
varied temporal complexity of the network edge estimated by the fuzzy entropy (e), variance 
(f), and non-linear test statistic (g) for all the five magnitude cases.

3.2. Variability in decision-making network topology

Figs. 4a and 4b display the 20% network edges with the largest (i.e., flexible) and smallest 
(i.e., robust) fuzzy entropy, respectively. Specifically, the flexible architectures of both 
postgraduate and junior high school students were consistently distributed at the bilateral 
temporal lobe (Fig. 4a), and the nodes were further printed with deep red color (i.e., high 
entropy) as shown in Fig. 4c. By contrast, for both groups, Fig. 4b illustrates a similarly 
robust architecture that seemed to be a resting-state default mode network (DMN), where the 
20% edges with the smallest fuzzy entropy linked the frontal and occipital lobe.
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Fig. 4. Scalp topologies with the 20% largest and smallest fuzzy entropy for both groups. (a) 
Flexible architecture, (b) Robust architecture, and (c) Nodal degree distribution. The first and 
second row denotes the postgraduate students and junior high school students, respectively. In 
subfigures (a, b), the size of each electrode is proportional to its binary degree in the 20% 
largest and smallest network, respectively.

3.3. The relationships between network variability and decision behaviors

Thereafter, for both flexible and robust resting-state network architectures displayed in Fig. 4, 
the weights of flexible and robust network edges were averaged separately to achieve the 
averaged flexible and robust variability metrics per student in both postgraduates and junior 
high school groups. Thereafter, the averaged flexible and robust variability metrics of both 
groups were statistically compared separately, and as displayed in Fig. 5, we found the 
flexible metrics of postgraduate students were significantly larger than that of junior high 
school students (p < 0.05), while the robust metrics between two groups were opposite to the 
flexible metrics (p < 0.05).
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Fig. 5. The differences in the flexible and robust network variability metrics between 
postgraduate students and junior high school students. The red-filled bars denote the junior 
high school students, the blue-filled bars denote the postgraduate students, and the symbol * 
denotes p < 0.05.

Meanwhile, based on these flexible and robust variability metrics per student, the 
classification of postgraduate students versus junior high school students was further 
performed by adopting the leave-one-out cross-validation (LOOCV) strategy (Zeng et al 
2012). Herein, considering m (m = 40 of both postgraduates and junior high school students) 
samples, in each LOOCV procedure, m-1 subjects were used to training the linear 
discriminant analysis (LDA) classifier, and the remaining 1 sample was used for testing until 
all subjects were served as testing for one time. After the LOOCV was finished, the 
corresponding classification accuracy would be then reported. Here, Fig. 6 displays the 
scatterplot of flexible and robust variability metrics, which indicated that these metrics could 
accurately classify both groups, and indeed, the LDA could achieve an accuracy of 92.50% 
when classifying these subjects by using the variability metrics proposed in this study.
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Fig. 6. The scatterplot of flexible and robust network variability metrics. The red-filled circles 
denote the junior high school students, the blue-filled triangles denote the postgraduates, and 
the grey-filled circles denote the falsely classified students.

Finally, the potential relationships between individual decision behaviors and network 
variability for postgraduate students and junior high school students were investigated, and 
the opposite tendencies of both variables between the two independent groups were displayed 
in Figs. 7 to 10. Concretely, for postgraduate students (Figs. 7 and 8), Fig. 7 showed that the 
individual decision AR was marginally significantly negative-correlated with the CC (r = 
-0.479, p = 0.060), GE (r = -0.489, p = 0.055), LE (r = -0.472, p = 0.065), CPL (r = -0.435, p 
= 0.092; CW:), and small-worldness (r = -0.529, p = 0.035). Concerning the CW displayed in 
Fig. 8, similar tendency was found, as the CW also illustrated the significantly negative 
relationship with the CC (r = -0.488, p = 0.055), GE (r = -0.542, p = 0.030), LE (r = -0.522, p 
= 0.038), CPL (r = -0.522, p = 0.038), and small-worldness (r = -0.610, p = 0.012).

Fig. 7. The relationship between resting-state network variability metrics and the acceptance 
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rate for postgraduate students. In each subfigure, the blue lines denote the fitted linear trend 
between two variables, the black and grey filled circles denote the included and outlier 
subjects, respectively.

Fig. 8. The relationships between resting-state network variability metrics and the cumulative 
winnings for postgraduate students. In each subfigure, the blue lines denote the fitted linear 
trend between two variables; the black- and grey-filled circles denote the included and outlier 
subjects, respectively.

By contrast, the corresponding relationships between resting-state network variability 
metrics and individual decision behaviors for the junior high school students were further 
displayed in Figs. 9 and 10. In detail, as illustrated in Fig. 9, the CC (r = 0.545, p = 0.013), 
GE (r = 0.419, p = 0.066), LE (r = 0.516, p = 0.020), CPL (r = 0.506, p = 0.023), and 
small-worldness (r = 0.512, p = 0.021) were found to be significantly and positively related to 
the decision AR in junior high school students. Concerning the CW in junior high school 
students, Fig. 10 eventually illustrated that the individual CW also showed the significantly 
positive relationships with the CC (r = 0.634, p = 0.003), GE (r = 0.500, p = 0.025), LE (r = 
0.603, p = 0.005), CPL (r = 0.587, p = 0.007), and small-worldness (r = 0.512, p = 0.021) of 
their resting-state network variability.
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Fig. 9. The relationship between resting-state network variability metrics and the acceptance 
rate for junior high school students. In each subfigure, the blue lines denote the fitted linear 
trend between two variables, the black and grey filled circles denote the included and outlier 
subjects, respectively.

Fig. 10. The relationships between resting-state network variability metrics and the 
cumulative winnings for junior high school students. In each subfigure, the blue lines denote 
the fitted linear trend between two variables; the black and grey filled circles denote the 
included and outlier subjects, respectively.

4. Discussion

When referring to the time-resolved function connectivity, the network connectivity fluctuates 
in a transient time interval (Hutchison et al 2013), and these fluctuations are further found to 
be related to the modularity of brain network architecture (Pedersen et al 2018, Lurie et al 
2018). Fluctuating temporal variability in network topology corresponds to the varied 
flexibility in the network architecture, and the flexibility of those edges is believed to 
effectively index the brain activity (Lurie et al 2018, Allen et al 2014). Meanwhile, the 
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corresponding temporal flexibility might be measured by the temporal complexity of 
time-varying functional connectivity in the brain (Pedersen et al 2018). The entropy is useful 
in addressing the randomness (irregularity) of a given system, and higher entropy always 
associates with higher randomness, as well as the larger complexity. In this study, we thereby 
used the fuzzy entropy (Chen et al 2007, Chen et al 2009) to evaluate the fluctuating temporal 
variability in time-varying resting-state networks and further investigated the possible 
relationship between the resting-state network variability and individual decision behaviors. 
In addition, to validate the applicability of fuzzy entropy in capturing the fluctuating temporal 
variability, we also recorded and further analyzed another independent resting-state EEG 
dataset before a P300 task by the independent amplifier (i.e., Symtop Instrument, Beijing, 
China), which also demonstrated the similar flexible and robust resting-state architecture (see 
APPENDIX).

Just as depicted above, during the simulation study, edge D-E was defined by MIX(p = 
0.5) and had the largest complexity; while edge A-C was defined by MIX(p = 0.1) and had the 
smallest complexity. Fig. 3 demonstrates that in contrast to the other approaches, such as the 
variance and non-linear test statistic based on the median, only the fuzzy entropy could 
accurately estimate the network edge complexity in a predefined 5-nodes network. In this 
study, the fuzzy entropy presented the precise complexity order of the five edges as edge D-E 
> edge C-E > edge C-D > edge B-D > edge A-C; nevertheless, the remaining approaches 
incorrectly identified the opposite tendency among the five edges. In fact, unlike fuzzy 
entropy, both methods are more concerned about capturing the fluctuation of signal 
magnitude (Dionisio et al 2007), while the fluctuating network pattern is more meaningful to 
uncover the neural basis of physiological signals. Under some specific situations, they will 
fail in describing the temporal complexity and even present the opposite tendency. On the 
contrary, fuzzy entropy is insensitive to the data magnitude (Fig. 3e) but depends more on the 
data distribution (Dionisio et al 2007), thus fuzzy entropy is more helpful to capture the 
dynamic fluctuations of network patterns. Therefore, we believed the simulation displayed in 
Fig. 3 effectively validated the applicability of fuzzy entropy in measuring the fluctuating 
temporal variability of the resting-state networks across time scales.

In essence, when the brain is at rest, along with participants’ closing their eyes, the brain 
functions in an interoceptive state consisting of the imagination and sensory activity (Marx et 
al 2003, Marx et al 2004), at the same time, the intrinsic connectivity synchronization that 
relates to somatosensory (Fox et al 1987) and auditory network increases. For both groups, a 
highly flexible network architecture consistently experienced denser connectivity in the 
bilateral temporal lobe (Fig. 4a), which reflected that these regions overlapped with that 
activated by the interoceptive state under the eye-closed resting state. In essence, previous 
studies have demonstrated that the DMN is the core and inherent network in the brain (Shen 
2015), and the dynamics of DMN may serve as the basis when switching between 
exteroceptive and interoceptive state (Wang et al 2015b). DMN relates to the individual 
internal process, self-generated thought, and mind wandering (Buckner and Vincent 2007, 
Anticevic et al 2012). In this study, for both groups, we consistently showed the DMN-like 
topology that indexes the robust network architecture, which was measured by fuzzy entropy 
(Fig. 4b). In essence, the flexibility in functional network connectivity closely relates to its 
complexity, an increase in edge flexibility corresponds to the higher signal complexity. An 
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interesting issue was that, although the network in a resting state indeed fluctuates in a 
transient time interval, we could still observe a steady DMN pattern connecting the frontal 
and occipital lobe. We assumed that this might be the reason why our previous study found a 
close relationship between the frontal-occipital long-range linkage and P300 (Li et al 2015), 
as well as other findings in related resting-state studies (Jann et al 2009, Prestel et al 2018).

Decision-making requires an effective evaluation of the current situation, which relies on 
effectively assessing external (i.e., monetary value) and internal factors (i.e., fairness) (Huerta 
and Kaas 1990). The decision-making in adults and adolescents is usually influenced by many 
factors including inhibitory control, learning, emotion, and social context (Gladwin et al 
2011, Rubia et al 2000), and distinctive decision behaviors between the two groups have been 
found in our previous study (Si et al 2020b). While time-resolved investigation allows the 
fine-grained evaluations of the relationship between functional connectivity and ongoing 
cognition (Pedersen et al 2018), such as decision-making. In our present study, based on the 
identified flexible and robust architectures displayed in Fig. 4, the statistics of flexible and 
robust variability metrics were first completed (Fig. 5), which showed significant differences 
between the postgraduate students and junior high school students (p < 0.05). And when using 
the flexible and robust variability metrics to classify the two groups, an accuracy of 92.50% 
could be achieved (Fig. 6), while if only the raw coherence metrics were used, no satisfying 
results would be obtained, which further validated the capacity of the proposed protocols in 
capturing the fluctuating temporal variability in resting-state networks, as well as identifying 
distinct groups.

Quantitatively, small-worldness reflects regional specialization and information transfer 
efficiency of a given network, the CC and LE are the aggregation of the node and reflect the 
capacity for specialized processing of the local region; by contrast, the CPL and GE denote 
the functional integration of multiple brain regions, and all of these parameters can effectively 
evaluate the efficiency related to the specific information processing in the brain (Cozzo et al 
2015). In this study, the temporal fuzzy entropy of these parameters (i.e., CC, GE, LE, CPL, 
and small-worldness) is thought to has the potential to quantitatively measure the local and 
global flexibility in the brain. As displayed in Figs. 7 to 10, what is interesting was the 
opposite decision-making behaviors between adolescents and adults under unfair conditions. 
In particular, in postgraduate students, we found the network variability parameters were 
negatively related to both AR and CW (Figs. 7 and 8), while the opposite relationships were 
found in junior high school students as these parameters were significantly positively related 
to individual AR and CW (Figs. 9 and 10). A small AR means an individual prefers fairness 
by rejecting the current unfair offer to punish the unfair behavior of the proposer (Yamagishi 
et al 2009), which thus leads to the lower task earning (i.e., smaller CW). In fact, the studies 
focusing on childhood development and socialization have primarily confirmed the increase 
of the preference for fairness from adolescence to adulthood (Marchetti et al 2019, Castelli et 
al 2014). Along with their growing up, the individuals' sociality increases and they are 
increasingly capable of using a multi-dimensional rule to deal with the current decision 
situation (van Duijvenvoorde et al 2010). Since this study was the first work to explore the 
potential relationships between resting-state brain network variability and individual decision 
behaviors, based on these considerations mentioned above, we believed that compared to 
those postgraduate students, junior high school students were more likely to accept the offer 
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given by the others, even those unfair ones, as they preferred current interests over fairness 
(Si et al 2020b). By contrast, the postgraduate students focused more on the intention and 
preferred the fairness (Peterburs et al 2017), if the unfairness occurs, they would like to reject 
the unfair offer in this situation. This might lead to a large AR in junior high school students 
but the high rejection rates in postgraduate students, as well as the opposite relationships 
between network variability and decision behaviors for both groups. 

One possible limitation of this study would be that although sparse electrodes could 
reduce the effect of volume conduction on EEG and related networks, theoretically, EEG 
source localization could eliminate the volume conduction effect by projecting scalp EEG 
back to the cortex. In the future, by performing the EEG source localization, we will further 
investigate the fluctuating temporal variability of brain networks on the cortical layer, to 
further uncover the neural basis of network variability and its relationships with human 
cognition.

5. Conclusion

In summary, our present study first validated the capacity of fuzzy entropy in quantitatively 
measuring the fluctuating temporal patterns of the time-varying resting-state brain networks. 
When applying in the decision-making and P300 EEG datasets, the corresponding inherent 
fluctuating temporal patterns of resting-state networks were effectively captured; in particular, 
the flexible and robust architectures of the brain at rest were identified and distributed at the 
bilateral temporal lobe and frontal/occipital lobe, respectively. Moreover, the corresponding 
variability metrics not only helped differentiate different groups but also closely related to the 
individual decision behaviors, which could facilitate our knowledge of the human cognitive 
process, such as decision-making.
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Appendix

Conventional approaches

In essence, the variance (also the standard-deviation) , as a straightforward method, has been 
used to measure the uncertainty of a given signal (Dionisio et al 2007), which is usually in the 
resting-state fMRI studies (Hindriks et al 2016, Sakoglu et al 2010). In addition, Zalesky and 
colleagues also used the univariate test statistic to measure the time-varying correlation 
coefficient fluctuations for pairwise regions (Zalesky et al 2014). In this study, to first 
validate the benefits of the fuzzy entropy, these two traditional methods i.e., the variance and 
non-linear test statistic, were also used to estimate the corresponding temporal complexity of 
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the simulated network edges, and the corresponding performance of the fuzzy entropy was 
then statistically compared with that of the two traditional methods. Here, the corresponding 
definitions of both methods were further depicted below.

Concerning the variance, V, for each of the five network edges is formulized as follow;

                    (A1)( )2
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1
1

m
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-
-

= å
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where p = p1, p2, …, pL denotes the time series of the simulated network edge, V denotes the 
variance of the time series, and μ denotes the mean of the signal.

For the non-linear test statistic, let m be the median of p and let n1, n2, …, nJ be the 
samples for which p crosses m. p then makes J-1 consecutive excursions from m. The length 
In and height Hn of the j-th excursion are defined as In = nj+1 – nj and 

, respectively. The non-linear test statistic (Zalesky et al 2014,  1 :    n i j jH max p m n i n

Hindriks et al 2016) is finally defined as,
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where α and β control the relative weighting of the length and height for each excursion. 
Meanwhile, following Zalesky and colleagues (Zalesky et al 2014), in this study, we then set 
α = 0.9 and β = 1.

Validation on resting-state P300 EEG

Aiming to validate its applicability, the independent group of resting-state EEG datasets 
recorded before an oddball P300 task (Li et al 2019) was further analyzed by applying the 
same analytical protocols.

After being preprocessed with the same analytical protocols, 19 healthy right-handed 
participants (6 females, age range of 20-41 years, and mean 29.37 years) were included in the 
following analysis. They had the normal or corrected-to-normal visual acuity, and none of 
them had histories of substance abuse, took the medication with deleterious effects on 
cognition, and had a neurological illness.

Their resting-state EEG datasets were recorded using the Symtop amplifier (Symtop 
Instrument, Beijing, China) and a 16-channel Ag/AgCl electrode cap (BrainMaster, Inc., 
Shenzhen, China), whose electrodes (Fp1/2, F3/4, C3/C4, P3/4, O1/2, F7/8, T3/4/5/6) were 
positioned according to the 10-20 international electrode system. Electrode AFz served as the 
reference. The predefined sampling rate is 1,000 Hz and the online bandpass filtering is 
0.05-100 Hz. The impedance per electrode was kept below 5 KΩ throughout the experiment.

Fig. A1 displays the network edges with the 20% largest (i.e., flexible, Fig. A1a) and 
20% smallest (i.e., robust, Fig. A1b) fuzzy entropy, respectively, as well as the corresponding 
nodal degree distribution (Fig. A1c). Coincided with the findings of the postgraduate students 
and junior high school students in the UG task, the flexible architectures were also distributed 
at the bilateral temporal lobe (Fig. A1a), whose electrodes were printed with deep red color in 
Fig. A1c. Meanwhile, Fig. A1b further illustrates a robust DMN-like architecture, which 
linked the frontal and occipital lobe (i.e., the electrodes with deep blue color in Fig. A1c).

Page 55 of 62 AUTHOR SUBMITTED MANUSCRIPT - JNE-104420.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fig. A1. Scalp topologies with the 20% largest and smallest fuzzy entropy for resting P300. 
(a) Flexible architecture, (b) Robust architecture, and (c) Nodal degree distribution. In 
subfigures (a, b), the size of each electrode is proportional to its binary degree in the 20% 
largest and smallest network, respectively.
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