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Abstract

Species inventories and biodiversity assessments are critical to conservation.

Yet cryptic species or recolonizing species can be challenging to detect. DNA

metabarcoding provides an alternative tool to identify species that can be diffi-

cult to observe during field surveys. We test the efficacy of DNA analysis to

identify burrowing petrel species in a rapidly changing landscape, on a remote

sub-Antarctic island following pest eradication. Discarded feathers and scats

provided high quality DNA for species identification, assisting in detection of

new species arrivals and new breeding sites across Macquarie Island. We high-

light how DNA metabarcoding informs species inventories and is a valuable

tool to complement seabird field surveys.
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1 | INTRODUCTION

Species diversity assessments are a key component of eco-
system monitoring (Duelli & Obrist, 2003), and under-
standing of species distributions is required for informed
conservation. Monitoring approaches vary across species,
landscapes, and habitats. The suite of available methods
has grown rapidly in recent years with technological
advancements increasing capacity and scope of biodiver-
sity surveys. Yet, despite emerging technologies, some
species remain difficult to detect due to their habitat and

behavior. Even with considerable prior knowledge
and sustained monitoring effort, they remain elusive
(e.g., Suryawanshi, Khanyari, Sharma, Lkhagvajav, &
Mishra, 2019). DNA metabarcoding provides a rapid
assessment tool to identify species presence (Pompanon
et al., 2012; Taberlet, Coissac, Pompanon, Brochmann, &
Willerslev, 2012), with feathers and scats providing non-
invasive DNA samples (Dalen, Götherström, & Ange-
rbjörn, 2004; Rudnick, Katzner, Bragin, & DeWoody,
2007). Here, we explore low-impact genetic sampling to
survey burrowing petrels on remote sub-Antarctic
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Macquarie Island where their numbers and possibly
diversity are expected to increase following vertebrate pest
eradication (Figure 1; DPIW, 2007). Our DNA

metabarcoding analysis of petrel scats and feathers helped
inform species inventories and highlights the value of
incorporating molecular methods into field surveys.

FIGURE 1 Sampling locations on Macquarie Island in 2017–2018 where burrowing petrel species identification was confirmed using

DNA from scats and feathers. NB: we could not distinguish between fulmar and fairy prion DNA in two samples
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2 | CASE STUDY

Petrels and shearwaters are one of the most threatened
groups of species globally (Dias et al., 2019). They face
multiple ongoing threats including predation pressure
from invasive species, fishery bycatch, and changing
environmental conditions (Dias et al., 2019; Rodríguez
et al., 2019). As a result, 42% are listed as threatened and
52% suffering population declines (IUCN, 2020;
Rodríguez et al., 2019). Understanding how species diver-
sity varies in response to threats or conservation actions
is important for monitoring programs and land man-
agers. However, petrels are particularly difficult to detect
because they are only present seasonally, only active at
colonies at night, are hidden in underground burrows by
day, and their colonies are fragile hampering survey
access (Rodríguez et al., 2019). We aimed to test the effi-
cacy of low-impact DNA analysis using high-throughput
sequencing to identify burrowing petrel species in a
changing island ecosystem, recently released from inva-
sive species predation pressure.

At least nine species of burrowing petrels have been
recorded breeding on Macquarie Island and its offshore
rock-stacks (Table 1, Brothers, 1984; Schulz, Robinson, &
Gales, 2005; DPIW, 2007). Burrowing petrels were more
abundant and widespread prior to the arrival of multiple
invasive species (Brothers, 1984). Only three species, Ant-
arctic prions (Pachyptila desolata), sooty shearwaters
(Ardenna grisea) and white-headed petrels (Pterodroma
lessonii) commonly bred on the main island in the pres-
ence of wekas (Gallirallus australis scotti), cats (Felis
catus), black rats (Rattus rattus), house mice (Mus
musculus), and European rabbits (Oryctolagus cuniculus),

while blue petrels (Halobaena caerulea), diving-petrels
(Pelecanoides spp.), fairy prions (Pachyptila turtur), and
Wilson's storm petrels (Oceanites oceanicus) were
restricted to offshore stacks free of invasives (Brothers,
1984; Brothers & Ledingham, 2008). Wekas were eradi-
cated in 1989 and cats in 2000 (Springer, 2016). Following
cat eradication, grey petrels (Procellaria cinerea) and soft-
plumaged petrels (Pterodroma mollis) were resighted
breeding on the main island (DPIW, 2007; Schulz et al.,
2005). In 2014, the remaining invasive vertebrates (rats,
mice, and rabbits) were eradicated (Springer, 2016). In
2017, extensive whole island field surveys were under-
taken to identify the presence and distribution of all
burrowing petrel species on Macquarie Island.

Scat and discarded feather samples were collected
from across Macquarie Island (222 scat and 108 feather
samples) between November 2017 and November 2018.
Samples were collected within seabird colonies during
ground searches and GPS coordinates were taken for
each sample collected (see Appendix S1 for further sam-
pling details). To evaluate which scat samples provided
sufficient bird DNA, the freshness of scat samples was
recorded as either “old” when a sample was dry and
compacted, or “recent” when a sample was wet as this
can affect the amplification success (McInnes et al.,
2017). The pigment of a subset of samples was also
recorded, as DNA-based diet studies have shown that all
white samples contain minimal prey DNA (Thalinger,
Oehm, Obwexer, & Traugott, 2017).

Details of the molecular methods are provided in
Appendix S1. Briefly, DNA was extracted from all sam-
ples and two short mitochondrial markers (COI and 16S)
were amplified using custom-designed burrowing petrel

TABLE 1 Burrowing petrel species detected using DNA analysis of scat and feather samples on Macquarie Island from November 2017

to November 2019

Common name Species
Feather
samples

Scat samples

Total
samplesRecent Old

Not
recorded

Species match Antarctic prion Pachyptila desolata 30 10 21 10 71

Blue petrel Halobaena caerulea 44 5 11 1 61

Fairy prion Pachyptila turtur 1 1 2

Grey petrel Procellaria cinerea 2 3 1 6

Soft-plumage petrel Pterodroma mollis 5 1 6

Sooty shearwater Ardenna grisea 21 24 1 46

White-headed
petrel

Pterodroma lessonii 3 18 33 4 58

Species
unconfirmed

Diving petrel Pelecanoides urinatrix/
georgicus

8 14 5 1 28

Fulmar prion Pachyptila crassirostris 2 2
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primers. Amplicons were pooled and sequenced on an
Ilumina Miseq and compared to reference databases to
provide species-level identifications. To assign species,
maximum likelihood trees were constructed using MEGA
X (Kumar, Stecher, Li, Knyaz, & Tamura, 2018) with rep-
resentative species sequences from field samples and ref-
erence sequences from the Barcode of Life Database
(BOLD). Using these data, we identify species presence
and mapped the locations where species were detected
with DNA metabarcoding.

3 | DNA VIABILITY OF
DEGRADED SAMPLES

Avian DNA was successfully amplified in 303 samples,
comprised of 209 scat samples (94% success) and 94 feather
samples (87% success). There was no significant difference
in the amplification success of feathers and scats for either
the CO1 marker (X2 = 0.331, p > .05), or the 16S marker
(X2 = 0.817, p > .05). Amplified bird DNA was obtained
from 91% of “old” scat samples (n = 123) and 100% of
“recent” samples (n = 79). For the subset of samples
where color was recorded, 86% of samples that were all
white (n = 30) amplified bird DNA compared to 100% of
samples with some pigment (n = 47). These white sam-
ples were also usually runnier and harder to collect.

Of the 303 samples where bird DNA was detected,
23 samples (19 scats and 4 feathers) were not burrowing
petrel species (e.g., kelp gull Larus dominicanus) and
were excluded from further analysis, giving a total of
280 burrowing petrel DNA samples. Although there was
no difference in amplification success of scat and feather
DNA, there was a difference in availability of each sam-
ple type for some species (Table 1).

4 | SPECIES DETECTION

We detected DNA from eight of the nine burrowing
petrel species previously recorded breeding on Macquarie
Island in the last 40 years (Table 1), including fairy prions
and diving petrels which are rarely detected (Brothers,
1984; Brothers & Bone, 2008). At sites where surveys
were restricted to daytime ground-searches (e.g., rock-sta-
cks) we detected additional species from DNA samples
such as soft-plumaged petrel and fairy prions that were
not otherwise recorded. Nocturnal spotlight surveys
detected the same or additional species to those detected
via DNA sampling. This highlights that DNA monitoring
is a useful addition where field surveys are constrained,
for example, limited to daylight or when field personnel
are inexperienced in spotlight surveys.

5 | SPECIES IDENTIFICATION
AND TAXONOMY

Our diving-petrel samples had a 100% match with online
reference sequences from South Georgia diving-petrels
(Pelecanoides georgicus). As there were only two base
pairs difference from common diving-petrel (P. urinatrix),
a separate gene region (Cytochrome B) was used to con-
firm this genetic result. This finding was of interest
because these birds had been identified from our field
surveys as common diving-petrels based upon morphol-
ogy, acoustics, phenology and habitat preference. Since
the taxonomy of the diving petrels and integration with
molecular data is an area of active research, we have
taken the approach of assigning these only to genus dur-
ing this study. We aim to investigate further as new
genetic information becomes available.

For prions, two samples matched fairy prion refer-
ence sequences, but a further two were intermediate
between fulmar prion (Pachyptila crassirostris) and fairy
prion reference sequences (Figure 2) and thus the pres-
ence of fulmar prions could not be ruled out.

Our study did not set out to investigate species prove-
nance and population structure, yet some interesting
outcomes emerged. Two sequences generated from white-
headed petrel samples were either an exact match, or one
base pair different, to a reference sequence from an Auck-
land Islands specimen. However, the Macquarie Island
sequences were only a 97% match with white-headed
petrel reference sequences from the Antipodes Islands
(Figure 2). The genetic difference detected between white-
headed petrels from Macquarie Island and the Antipodes
Islands matches previously reported morphological differ-
ences (Wood et al., 2017) and highlights the high level of
intra-species variability in this species. The South Georgia
diving-petrel samples mentioned above also belonged to a
distinctive mitochondrial lineage (>7% COI intraspecific
divergence) that has previously been reported in the
Atlantic, but not in Pacific or Indian sectors of the South-
ern Ocean (Figure 2). The sequences from Antarctic
prions, sooty shearwaters and grey petrels matched
respective reference sequences online and did not vary in
the Macquarie Island samples; however, faster evolving
gene regions could be used to further investigate these
species.

6 | BENEFITS OF MOLECULAR
METHODS IN CONSERVATION
PROGRAMS

The use of molecular methods assisted in the detection of
new species arrivals and new sites on a 12,900 ha island
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that is undergoing rapid change in response to vertebrate
pest eradication, and provided preliminary insights into
provenance of recolonizing populations. Both feathers
and scats provided high quality DNA for species identifi-
cation. Importantly our work called into question
established field identifications for one species. This study
also highlighted potential intra-specific genetic differences
between Macquarie Island populations and voucher speci-
mens previously collected on other sub-Antarctic islands.
Examining the population genetics of these species high-
lights the importance of range-wide conservation and can
provide insights into potential source populations that
may be driving population increases in response to verte-
brate pest eradication. Notably, these population-level dif-
ferences would never be detected through traditional field
surveys. Our results highlight the underutilized potential
of DNA metabarcoding as a valuable tool to complement
field surveys of seabirds.
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