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Fusarium crown rot (FCR), a chronic and severe disease caused by various Fusarium species,
is prevalent in semi-arid cropping regions worldwide. One of the major QTL conferring FCR
resistance was detected on chromosome arm 1HL (Qcrs.cpi-1H) in barley. To develop
markers that can be reliably used to incorporate the resistance locus into breeding
programs, we developed and assessed a near-isogenic line-derived population consisting of
1180 recombinant inbred lines targeting the locus. Using this population, we delineated
Qcrs.cpi-1H into an interval of 0.4 cM covering a physical length of about 487 kb. Six markers
co-segregating with this locus were generated. Co-linearity for genes located in this interval
between the genome of barley and those of either rice or Brachypodium distachyon is poor.
Three genes with non-synonymous variations between the resistant and susceptible lines
were identified within the interval. The results reported in this study not only provide
markers for integrating Qcrs.cpi-1H into breeding programs, but also form a solid foundation
for cloning the causal gene(s) underlying this locus.
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1. Introduction

Fusarium crown rot (FCR), caused by various species of
Fusarium, is a chronic disease for cereal production in arid
and semi-arid cropping regions worldwide [1,2]. Initial infec-
tion of FCR is characterized by brown lesions in the crown and
lower stem regions and inside leaf sheaths. Under moisture
stress, especially during the period between anthesis and
milky ripening, ‘whiteheads’ containing shrivelled or no
grains could occur in FCR infected fields. As a result, grain
yield and hence crop value can be significantly affected [1,3].
Significant yield losses due to this disease on wheat and
barley have been reported in many countries [4–7]. Incidence
and severity of FCR have been exacerbated in Australia in
recent years, likely due to the increase in the intensity of
cereal production for economic reasons and the wide adop-
tion of reduced tillage for moisture conservation [1]. Reduced
frequency of precipitation and increased temperature during
crop growth have also been identified as possible factors
contributing to the exacerbation of the disease [8].

Reducing inoculum load, including crop rotation and
stubble burning, has been the focus of management practices
for reducing FCR damage [9,10]. This is based on the belief that
physical contact of the stem base with infested stubble of the
preceding years facilitates the pathogen infection [11,12].
These practices, however, have serious limitations. Stubble
burning is not only a serious environmental concern but also
leads to loss of soil moisture and reducing beneficial soil
microbes. Crop rotation is not always practical as the FCR
pathogens can survive several years in stubble [11,12] and
growing less valuable crops may also lead to the loss of
income. With the wide adoption of precision farming, inter-
row sowing has also been recommended for minimizing yield
loss from the disease [13].

It was realized for a long time that growing resistant
varieties is a critical component in effectively managing FCR
[14]. Sources of resistance were identified, and numerous QTL
conferring FCR resistance has been detected in both barley
(Hordeum vulgare L.) and wheat (Triticum aestivum L.) [15].
However, QTL mapping can only provide limited resolution
[16] and, therefore, markers obtained from such studies
cannot be reliably used for marker-assisted selection. This is
mainly because that some undesirable traits also segregate
with the targeted trait in a given mapping population. Plant
height and growth rate have been found affecting FCR
assessment in both barley [17–22] and wheat [23,24]. Clearly,
segregations of these characteristics in a mapping population
would make accurate assessment of FCR severity difficult.

The phenotypic difference between the two lines of a near-
isogenic line (NIL) pair mainly depends on the difference
between their genomes at target locus. This unique feature of
NILs makes them highly effective in validating QTL conferring
various characteristics [25]. Combined with techniques that
can speed up life cycles [26–29], NILs can now be conveniently
and quickly obtained for different crop species. These
techniques have been used to develop NILs targeting loci
conferring FCR resistance in both wheat [30] and barley [31].
Importantly, a NIL-derived population can be conveniently
used to develop markers tightly linked with a given locus as,
different from those routinely used for QTL mapping, such
populations segregate mainly for the targeted locus under
investigation. These approaches have been used to investi-
gate an FCR resistance locus on chromosome arm 1HL. This
locus, termed as Qcrs.cpi-1H, was initially identified from a
landrace originated from Japan. Comparing to popular culti-
vars which are all susceptible to FCR, the Japanese landrace is
highly resistant to FCR pathogen inoculation [20]. Qcrs.cpi-1H
explained up to 33.4% of FCR severity variance [20]. NILs
targeting this QTL were generated and used to validate its
effects in different genetic backgrounds, and transcriptomic
differences between the resistant and susceptible lines for
three pairs of the NILs were investigated in a previous study
[32]. In the study reported here, we delineated the locus in a
refined interval and obtainedmarkers co-segregating with the
locus by generating and characterising a large NIL-derived
population. By analysing differentially expressed genes lo-
cated in the refined interval, a small number of candidate
genes underlying Qcrs.cpi-1H were also identified.
2. Materials and methods

2.1. Plant materials

A NIL-derived population consisting of 1180 lines was
generated and used in this study. This population was derived
from five different heterozygous F7 plants obtained in
generating the NILs (1H_NIL1) targeting this locus based on
themarkerWMC1E8 [32]. A single-seed-descent approach was
used to process the F7 heterozygous plants by five further
rounds of self-pollination using the fast-generation method
[27]. Seeds from each of the lines were then increased in large
pots and used for this study. The population was processed in
glasshouses at Queensland Bioscience Precinct in St Lucia,
Australia.

2.2. Preparation of inoculum and evaluation of FCR resistance

A highly aggressive F. pseudograminearum isolate CS3096,
collected in northern New South Wales, Australia [33], was
used to assess plant resistance to FCR. Preparation of
inoculum, inoculation of pathogen and assessment of disease
severity were performed according to the method described
by Li et al. [34]. In short, half strength potato dextrose agar
plates were used to prepare inoculum. Inoculated plates were
kept at room temperature for 12 days before scraping and
discarding the mycelium. The plates were then incubated for
another 7–12 days under a 12-h photoperiod light combina-
tion that consists of cool white and black fluorescent. Spores
were then collected and adjusted to spore suspension with
concentration at 1 × 106 spores mL−1. To maintain the activity
of spores, the suspension was kept in a −20 °C freezer and
used within two weeks. Before inoculation, Tween-20 was
added (0.1%, v/v) to the thawed spore suspension.

Seeds were germinated on water-saturated filter paper in
Petri dishes. After immersed in the spore suspension for
1 min, two three-day-old seedlings were planted into a 3 cm
square punnet containing sterilized “University of California
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mix C” (50% sand and 50% peat, v/v). The punnets were
randomly placed in a controlled environment facility (CEF).
The environmental settings for the CEF included 25/18 (±1) °C
day/night temperature, 65%/80% (±5)% day/night relative
humidity, and a 14-h photoperiod with 500 μmol m−2 s−1

photon flux density at the plant canopy level. We only
watered the inoculated seedlings when they began to wilt.

To confirm the location of the targeted locus and identify
markers flanking it, a subpopulation containing 88 of the NIL-
derived lines was assessed in three independent inoculation
trials. Each trial contained two replicates and 14 seedlings per
line were used in each of the replicates. Markers flanking the
targeted locus developed based on the subpopulation were
then used to identify recombinant lines from the whole NIL-
derived population. Five independent trials were conducted
on the recombinant lines identified. The resistant and
susceptible isolines of the NIL pair 1H_NIL1 were used as
positive and negative controls, respectively, in each inocula-
tion trial. FCR severity was assessed four weeks post
inoculation with a 0–5 scorings, where 0, no obvious symp-
tom; 1, obvious necrotic lesion on coleoptile or 1st leaf sheath;
2, the 1st leaf sheath and below subcrown internode partially
necrotic; 3, the 2nd leaf sheath and the below sub-crown
internode completely necrotic with clear reduction (but no
more than 50%) of plant/seedling height; 4, the 3rd leaf or leaf
sheath and the below sub-crown internode partially or
completely necrotic with severe (>50%) reduction in plant/
seedling height; 5, whole plant severely to completely necrotic
[34].

2.3. Phenotypic data analysis

Statistical analyses of all phenotypic data were performed
using the R programming language [35]. For each trial, the
following mixed-effect model was used: Yij = μ + ri + gj + wij,
where Yij is trait value on the jth genotype in the ith
replication, μ is general mean, ri is effect due to ith replication,
gj is effect due to the jth genotype, wij is error or genotype by
replication interaction; genotype and replication was treated
as a fixed and random effect, respectively. The disease scores
from all seedlings for each of the NIL-derived lines were
averaged to determine whether a given line is resistant (<2.5)
or susceptible (>2.5) to FCR infection.

2.4. Identification of the targeted interval and marker
development

The Qcrs.cpi-1H had been mapped into a physical interval of
~11 Mb in a previous study based on RNA-seq analysis against
several sets of the NILs targeting the locus [32]. Insertion/
deletion (InDel) and Kompetitive allele specific PCR (KASP)
markers targeting this interval were developed and used in
this study. The InDel variants were identified based on the
variants between the pseudomolecule of ‘Morex’ [36] and an
assembly of a wild barley (H. spontaneum L.) genotype
AWCS276 [37] using SSR-finder (https://github.com/
GouXiangJian/SSR_finder). For KASP markers, SNPs within
the interval were detected using RNA-seq sequence from
three of these NIL pairs [32] on CLC genomic workbench
platform V11.0 (CLC Bio, Aarhus, Denmark). All primers were
designed using the Primer-BLAST [38] and the primer
sequences are listed in Tables S1 and S2. MSTmap Online
[39] was used to build linkage maps with the following
parameters: grouping logarithm of the odds ratio (LOD)
criteria, single LG; population type, RIL10+; no mapping
missing threshold, 0%; no mapping distance threshold, 1
centiMorgan (cM); no mapping size threshold, 2; try to detect
genotyping errors, yes; and genetic mapping function,
Kosambi. The genetic linkage map was plotted using
MapDrawJZ (https://github.com/pinbo/MapDrawJZ), a modi-
fied version of MapDraw V2.1 [40].

2.5. DNA extraction and genotyping

Leaf tissue from each line of the NIL-derived population was
collected and vacuum dried for DNA extraction using the
CTAB protocol [41]. KASP assay were conducted using 384-
well set on the Vii 7 Real-Time PCR system (Applied
Biosystems, Foster City, California, USA) following the “KASP
genotyping trial kit user guide” (https://biosearch-cdn.
azureedge.net/assetsv6/KASP-genotyping-trial-manual.pdf)
and “Guide to running KASP genotyping reactions on the ABI
Viia7 instrument” (https://biosearch-cdn.azureedge.net/
assetsv6/running-KASP-on-ABI-Viia7.pdf). InDel makers were
assessed according to the method described by Zheng et al.
[42].

2.6. Identification of candidate genes, nonsynonymous SNPs
and collinearity analysis

Annotations of both high (HC) and low confidence (LC) genes
in the genomic interval defined by the two flanking markers
for the Qcrs.cpi-1H locus were extracted from the barley
archive in Ensembl Plants (http://plants.ensembl.org/
Hordeum_vulgare/Info/Index). SNPs contained in these genes
were identified using snpEff 4.3q [43]. The variant database
was built based on the international barley reference genome
of ‘Morex’ and its annotation file [36]. Orthologs for candidate
genes surrounding the 1HL locus in Brachypodium distachyon
and rice (Oryza sativa L.) were extracted using Ensembl Plant
BioMart [44].
3. Results

3.1. Validation of the chromosomal interval containing Qcrs.
cpi-1H based on analysing the subpopulation with 88 NIL-
derived lines

Based on results from the RNA-seq analysis [32], four InDel
markers targeting the interval were developed using the
sequence differences between the resistant and susceptible
NILs. Together with WMC1E8 (the marker initially used for
generating the NILs), the five markers all segregated in the
subpopulation (Fig. 1a). Linkage analysis showed that they
spanned a genetic distance of ~7.3 cM and covered a length of
~5.2 Mb in the barley reference genome of ‘Morex’. FCR
severity assessment of this subpopulation showed that all
lines fell into a binary pattern, i.e., their FCR severity scores
belonged to either the resistant or susceptible classes (Fig. S1).

https://github.com/GouXiangJian/SSR_finder
https://github.com/GouXiangJian/SSR_finder
https://github.com/pinbo/MapDrawJZ
https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-trial-manual.pdf
https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-trial-manual.pdf
https://biosearch-cdn.azureedge.net/assetsv6/running-KASP-on-ABI-Viia7.pdf
https://biosearch-cdn.azureedge.net/assetsv6/running-KASP-on-ABI-Viia7.pdf
http://plants.ensembl.org/Hordeum_vulgare/Info/Index
http://plants.ensembl.org/Hordeum_vulgare/Info/Index
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Fig. 1 – Genetic and physical maps surrounding the Fusarium crown rot resistance locus Qcrs.cpi-1H in barley. (a) The targeted
interval based on the assessment of a subpopulation consisting of 88 NIL-derived lines. (b) The high-density linkage map
surrounding Qcrs.cpi-1H based on the analysis of the whole population consisting of 1182 NIL-derived lines. Markers co-
segregating with the locus are in bold and placed in a box. (c) Physical positions of markers surrounding Qcrs.cpi-1H on the 1H
pseudomolecule of the ‘Morex’ genome.
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After analysing the marker profiles and the phenotypic data,
Qcrs.cpi-1H was mapped into a ~2.6 Mb interval flanked by
WMC1E8 and Sgs_5514 (Fig. 1a).

3.2. Fine mapping of the Qcrs.cpi-1H locus using the NIL-
derived population

WMC1E8 and Sgs_5514 were used to screen the whole NIL-
derived population containing 1180 lines. Twenty-five recom-
binant lines were identified between these two markers. FCR
assessments against these recombinants found that six of
them were FCR resistant and the other 19 susceptible (Fig. 2).
The difference in FCR severity between the two groups of
recombinants was highly significant (P < 0.01; Student's t-
test).

To construct a high-density map spanning the targeted
interval, 14 KASP markers and three InDel markers between
the two flanking markers were generated and assessed
against the 25 recombinant lines. Linkage analysis showed
that the FCR locus co-segregated with six of these markers
and it was placed at 0.2 cM proximal to Kgs_5503 and 0.2 cM
distal to Sgs_5508 (Figs. 1b, 2). The linkage order of themarkers
surrounding Qcrs.cpi-1H was identical with their relative
physical positions in the ‘Morex’ genome (Fig. 1b, c). Based
on the physical positions of its flanking markers, Kgs_5503
and Sgs_5508, Qcrs.cpi-1H was delimited to a ~487 kb genome
interval from 550.3 Mb to 550.8 Mb on the 1H pseudomolecule
of ‘Morex’.

3.3. Identification of candidate genes in the targeted region

Based on the ‘Morex’ genome, the targeted interval contained
13 high confidence (HC) and 15 low confidence (LC) genes
(Table S3). The LC genes were not taken into further
consideration due to lack of clear functional annotation.
Expression profiles and single nucleotide variants of the 13
HC genes were examined using RNA-seq data generated from
the three pairs of the NILs targeting Qcrs.cpi-1H [32]. Six of
these HC genes differentially expressed in at least one of the
NIL pairs were used (Fig. 3). SNPs between resistant and

Image of Fig. 1
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susceptible isolines were identified in five of the HC genes.
SNPs in three of the genes led to non-synonymous variations
(Fig. 3; Table S4). Two of these genes HORVU1Hr1G092310,
encoding a glucan endo-1,3-beta-glucosidase, and
HORVU1Hr1G092440, encoding a P-loop containing nucleoside
triphosphate hydrolases superfamily protein, carrying non-
synonymous SNPs were up-regulated in each of the NILs
following FCR inoculation. The third gene containing a non-
synonymous SNP, HORVU1Hr1G092550, encodes a receptor-
like kinase. This gene expressed consistently in all the NILs,
with or without FCR inoculation (Fig. 3).

3.4. Collinearity between the genes in the targeted interval and
those in Brachypodium and rice

Collinearity for genes located in the identified interval
containing the targeted locus Qcrs.cpi-1H was assessed with
their corresponding regions in the genomes of Brachypodium
and rice (Table 1; Fig. S2). This analysis found that gene
collinearity in this interval among these three species was
poor. Orthologs for only three of the 13 barley genes were
found in the corresponding interval in the Brachypodium
genome, and the orders of the genes were different between
the two genomes. Of the 10 genes in the Brachypodium
genome, orthologs for seven of them were not found in the
barley genome. Similarly, orthologs for only four of the 13
barley genes in the targeted interval were detected in the
corresponding region of the rice genome and the orders were
different between the two genomes. Orthologs for six of the 10
Table 1 – Candidate genes surrounding the Qcrs.cpi-1H locus
sativa.

Brachypodium distachyon Hordeum vulgare a Oryza sativa a

BRADI_2g15400v3

F-box
Os05g0583551 Hypot

HORVU1Hr1G092310 Gluca
HORVU1Hr1G092330 Sugar
HORVU1Hr1G092340 Os05g0584900 S-type
HORVU1Hr1G092350 Sulfat

BRADI_2g15405v3
HORVU1Hr1G092360 Os05g0583600 WRKY

Os05g0583950 Hypot

BRADI_2g15410v3

Os05g0584200 Late e
HORVU1Hr1G092370 Ycf68
HORVU1Hr1G092390 Cell w
HORVU1Hr1G092400 Cell w
HORVU1Hr1G092420 30S ri
HORVU1Hr1G092430 Unkn

Os05g0584750 Hypot
BRADI_2g15490v3 HORVU1Hr1G092440 Os05g0584600 P-loop

BRADI_2g15480v3
Simila

Os05g0584450 Hypot
BRADI_2g15471v3 Os05g0584400 Conse
BRADI_2g15460v3 Glyco
BRADI_2g15450v3 Glyco
BRADI_2g15440v3 Glyco

BRADI_2g15420v3
HORVU1Hr1G092540 Os05g0584300 Late e
HORVU1Hr1G092550 LRR re

a The barley genes were listed as their physical order on the 1H pseudom
were adjusted according to the positions of their orthologs in the barley
b Putative functions of the genes were retrieved from Ensembl Plants (ht
genes in the rice genomewere not found in the barley genome
(Table 1, Fig. S2). Of the Brachypodium and rice genes absent in
the barley genome, six were annotated with a wide range of
functions. Two of them were found in both genomes of
Brachypodium and rice, one encoding a late embryogenesis
abundant protein and the other with unknown functions
(Table 1).
4. Discussion

In this study, we developed and assessed a large NIL-derived
population that was constructed for a major FCR QTL Qcrs.cpi-
1H. Six markers co-segregated with this locus were developed
and the candidate genes were refined. These results should be
helpful not only in incorporating the resistance locus into
breeding programs but also in identifying the causal gene(s)
underlying the locus.

Reproducible and reliable phenotypic data are critical for
high quality mapping of any locus [45]. Previous studies have
repeatedly shown that several characteristics affect the
accurate assessment of FCR severity. This includes both
plant height [18,23,46] and flowering time [19,42]. For mini-
mizing the interference from the segregations of these non-
targeted characteristics in FCR assessment, a NIL-derived
population targeting the Qcrs.cpi-1H locus was developed and
used in the study reported here. As expected, FCR severities
among the lines of this large NIL-derived population were
easily categorized into ether a resistant or susceptible class,
and their orthologs in Brachypodium distachyon and Oryza

Putative functionb

family protein
hetical conserved gene
n endo-1,3-beta-glucosidase 13
transporter protein 7
anion channel SLAH2

e transporter 4;2
DNA-binding protein 27
hetical conserved gene
mbryogenesis abundant protein

all-associated hydrolase
all-associated hydrolase
bosomal protein S15, chloroplastic
own function
hetical protein
containing nucleoside triphosphate hydrolases superfamily protein
r to Dihydrodipicolinate synthase 1, chloroplast precursor
hetical gene
rved hypothetical protein
syl transferase
syl transferase
syl transferase
mbryogenesis abundant hydroxyproline-rich glycoprotein family
ceptor-like serine/threonine-protein kinase GSO2

olecule of ‘Morex’; positions of the Brachypodium and rice orthologs
genome.
tp://plants.ensembl.org/index.html).

http://plants.ensembl.org/index.html
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making it possible to accurately place the targeted locus in a
well-defined genomic interval.

Of the 13 HC genes located within the targeted interval
containing the FCR resistance locus Qcrs.cpi-1H, six were
detected in the transcriptomic data obtained in studying
genes responsive to FCR infection using three pairs of the NILs
targeting this locus [32]. It was identified that SNPs caused
nonsynonymous mutations between resistant and suscepti-
ble alleles in the three HC genes, and that these genes played
a key role in plant defence against pathogens. One of the
genes, HORVU1Hr1G092550, encodes a receptor-like kinase
(RLK) which has been identified in various immune systems of
plants [47]. RLK, usually located on either plasma or cytoplas-
mic membrane, is able to recognize elicitors generated by
pathogens and triggers downstream defence responses in the
plant to avirulent pathogens [48]. The second gene,
HORVU1Hr1G092310, encodes a glucan endo-1,3-beta-glucosi-
dase which is known to be involved in systemic acquired
resistance [49]. This enzyme plays an important role in seed
plant defence against pathogen attack through the degrada-
tion of fungal cell wall polysaccharides [50]. The third gene
HORVU1Hr1G092440 encodes a P-loop containing nucleoside
triphosphate hydrolase (P-loop NTPase) which is known to
negatively regulate the abiotic stress and plant defence
response in both rice and Arabidopsis [51,52].

Recently, an updated Morex genome assembly was re-
leased [53]. We analysed the collinearity of the candidate
genes between this new and the earlier versions. Most of the
LC genes disappeared in the new version. However, the two
versions showed a highly conserved collinearity for the HC
genes.

Clearly, the three genes with non-synonymous variations
between the resistant and the susceptible NILs must be
carefully examined in identifying gene(s) underlying FCR
resistance at the targeted locus. However, recent studies
show that non-classical NBS-LRR genes can also be responsi-
ble for resistance to a wide range of pathogens in plants
[54,55]. They include the Fhb1 gene conferring Fusarium head
blight (FHB) in wheat [56,57]. Results from previous studies
showed that Fusarium pathogens causing FHB can also lead to
FCR [1]. Similar to the situation for FHB [58], host resistance to
FCR is also not pathogen species-specific [23,46]. The common
aetiology between FHB and FCR raises the possibility that
resistance to the latter may also be conferred by non-classical
NBS-LRR genes.

It has become clear in recent studies that large numbers of
genes in a given species are ‘dispensable’, thus gene(s)
underlying the FCR resistance locus Qcrs.cpi-1H may not
necessarily be present in the genome of ‘Morex’ which is
highly susceptible to FCR. For example, the components of
dispensable genes are about 50% in maize (Zea mays L.) [59],
43% in rice [60]; 36% in bread wheat [61,62] and 38% in barley
[63]. To identify additional genes likely located in the targeted
interval, we analysed the corresponding genome regions in
both Brachypodium and rice. This analysis found that synteny
for the targeted genomic regions among the three species is
poor. Several of the genes in the ‘Morex’ genome were not
found in the orthologous regions of either Brachypodium or
rice, and the orders for the few shared orthologs are often
different.
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