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Abstract

and GW2-68 (ll, V and VI).

for different agro-ecological zones.

Background: China has diverse wheat varieties that adapt to very different environments divided into ten agro-
ecological zones. A better understanding of genomic differences and patterns of selection among agro-ecological
zones could provide useful information in selection of specific adaptive traits in breeding.

Results: We genotyped 438 wheat accessions from ten zones with kompetitive allele specific PCR (KASP) markers
specific to 47 cloned genes for grain yield, quality, adaptation and stress resistance. Phylogenetic trees and principle
component analysis revealed clear differences in winter and spring growth habits. Nucleotide diversity (m) and
ratio (7c./mucc) suggested that genetic diversity had increased during breeding, and that Chinese landraces (CL)
from Zones |-V contributed little to modern Chinese cultivars (MCC). 77 ratio and Fst identified 24 KASP markers with
53 strong selection signals specific to Zones | (9 signals), Il (12), Il (5), IV (5), V (6), and VI (6). Genes with clear
genetic differentiation and strong response to selection in at least three zones were leaf rust resistance gene Lr34 (|,
II, I and V), photoperiod sensitivity gene Ppd-DT (I, II, IIl, IV and V), vernalization gene Vrn-BT1 (V, VII, VIl and X),
quality-related gene G/lu-BT (I, Il and lll) and yield-related genes SusT-78 (I, I, lll, IV and IX), Sus2-2A (, II, lll, IV and VI)

Conclusions: This study examined selection of multiple genes in each zone, traced the distribution of important
genetic variations and provided useful information for ecological genomics and enlightening future breeding goals

Keywords: Bread wheat, Agro-ecological zones, Selection, KASP marker

Background

China is the largest wheat producer and consumer in
the world. The wheat-growing areas are somewhat arbi-
trarily divided into ten agro-ecological zones each having
varieties with different reactions to temperature, photo-
period, and biotic and abiotic stresses [1]. Autumn-sown
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varieties account for approximately 90% of the produc-
tion and area across Zones I (4% of the total production
area), II (60%), III (13%), IV (10%) and V (minor area of
production), whereas spring-sown wheats cover only 7%
of the total area across Zones VI, VII and VIII. Zones IX
and X have both autumn-sown and spring-sown wheats,
but spring-sown wheat in these areas represents only 3%
of the total wheat growing area in the country [2].
Currently, a number of genes have been identified and
cloned in wheat by positional or map-based cloning,
such as Rht-1 (3], Vrn-1 [4], Lr21 [5), Lr34 [6], Pm21 [7],
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and Fhb1 [8—10]. With advances in sequencing and bio-
informatic technologies, comparative genetics led to iso-
lation of several genes regulating grain quality and grain
size. The quality-related genes mainly included genes or
gene sets for polyphenol oxidase (PPO) [11], phytoene
synthase (PsyI) [12], zeta-carotene desaturase (Zdsl)
[13] and genes encoding high- and low-molecular-
weight glutenin subunits [14]. Genes for grain size and
grain weight included TaSus2-2B [15], TaCwi-Al [16],
TaCKX-DI1 [17], TaGW2-6A, 6B [18-20], TaSusl and
TaSus2 [15, 21], TaGASR-A1 [22], TaGS-DI1 [23, 24],
and TaTGW6 [25]. The most significant practical out-
come from cloning of these genes has been the deriv-
ation of functional markers that allow identification of
those genes/alleles in non-genotyped germplasm or in
genetic marker assisted breeding.

Functional markers derived from functional gene mo-
tifs and were completely linked to favorable alleles con-
ferring targeted traits [26]. Most importantly, functional
markers have the advantage over random DNA markers
in that they are not population-specific. To date, more
than 150 functional markers in wheat have been devel-
oped for over 100 cloned genes for adaptation, grain
yield, disease resistance, end-use quality, and tolerance
to biotic and abiotic stresses. Many of these markers
were subsequently converted into high-throughput
KKASP assays and were widely adopted in breeding pro-
grams [27-29]. Many markers have also been utilized to
reveal functions and interactions of alleles at loci such as
Vrn-Al, Rht-D1 and Ppd-B1 [30], to explore natural
variation at Wbm (bread-making quality), Glu-BI (tar-
geting the Bx7°F allele in particular) and Secl (1B.IR
translocation) in global wheat collections [31], and to
better understand genetic components of grain yield
[32]. A study of 1152 wheat accessions from Asia,
Europe, North America and the International Wheat
and Maize Center (CIMMYT) that were genotyped using
KKASP markers designed from 47 genes controlling grain
yield, quality, adaptation, and stress tolerance revealed
human selection on favorable alleles of multiple genes
[33]. These publications collectively demonstrated that
KKASP markers will be immensely useful for genomics
and breeding in wheat.

The past 70 years of wheat breeding in China has wit-
nessed tremendous progress in improvement of grain
yield, quality, stress resistance and adaptation. As differ-
ent agro-ecological zones cover a wide range of latitude
and prevailing climatic conditions ranging from high
rainfall to desert environments, many different combina-
tions of traits are required for climatic, agronomic and
dietary adaptation. A sound understanding of the genetic
variation and distribution of most alleles underlying that
variation in different zones could provide valuable infor-
mation for breeding programs not only in China, but
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also worldwide. In this study, 438 wheat accessions col-
lected from all wheat zones in China were genotyped
with 52 functional KASP markers related to grain yield,
quality, stress response, and adaptation. Comparisons of
the genetic variation between zones revealed patterns of
gene flow of key alleles and provided useful information
in regard to ecological genomics and suggested future
breeding goals for different zones.

Results
Population structure of Chinese wheat accessions from
the ten agro-ecological zones
Principle component analysis (PCA) divided the acces-
sions into two major subpopulations, namely, Chinese
landraces (CL) and modern Chinese cultivars (MCC)
(Fig. 1a, b). The mean values of Fst and gene flow be-
tween CL and MCC were 0.13 and 0.87, respectively
(Fig. 1c). Nucleotide diversity () showed that MCC
were more diverse than CL (Fig. 1d). Further, compared
to the CL, MCC during different decades had higher
levels of genetic diversity but lower gene flow (Fig. 1e, f).
Among those comparisons, the highest genetic diver-
gence (0.22) and the lowest gene introgression (0.88) oc-
curred in comparison of MCC in the 2000s with CL.
Comparing CL and MCC in different decades, Fst grad-
ually increased while gene flow decreased. Moreover,
more introgressions were observed (= 10.78) in the
1970s vs 1950s and 1960s, 1970s vs 1980s, and 1990s vs
2000s with the smallest Fst (< 0.02) (Fig. le, f), indicat-
ing that MCC in adjacent periods had the least Fst and
the largest gene flow, and MCC from one period pro-
vided the genetic basis for the following decade.
Population structure analysis of wheat accessions from
all zones was further carried out for each subpopulation
(Fig. 2). Grouping of CL accessions mainly corresponded
to the autumn-sown and spring-sown wheat zones, with
Zones I, II, III, IV and V being autumn-sown, and Zones
VI, VII VIII, IX and X spring-sown (Fig. 2a, b). Add-
itionally, Zone IX clustered with Zones VI and VIII with
relatively large genetic differences among them, but less
than those with all other zones. This classification was
not as obvious among MCC, but still revealed the separ-
ation of autumn and spring-sown wheat (Fig. 2¢, d). In
contrast to CL, Zones [, II, III, and IV were divided into
two subgroups, with Zones I and II clustering together
in MCC.

Genetic diversity and introgression across zones

Nucleotide diversity analysis (7 and 7cp/myicc) showed
that MCC had higher nucleotide diversity than landraces
in all zones expect Zone VI. The ¢y to mycc ratio of < 1
indicated increased nucleotide diversity due to breeding
and selection in each zone (Fig. 3a, b; Additional file 1).
Comparison between CL and MCC showed that genetic
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Fig. 1 Genetic analysis of 438 wheat accessions with 52 KASP markers. a, Ten agro-ecological zones of wheat-growing areas in China. The map
information is from the National Geomatics Center of China (http://www.ngcc.cn/ngcc/). b, PCA plot of all accessions based on the KASP markers.
Chinese landraces (CL) and modern Chinese cultivars (MCC) are shown in purple and orange, respectively. ¢, Genetic differentiation index (Fst)
and gene flow analysis between CL and MCC. d, Radar map of genetic diversity (77 value) of CL and MCC released in different decades. e, Heat
map of Fst between CL and MCC released in different decades. The deeper the color, the stronger the differentiation. f, Heat map of gene flow
between CL and MCC released in different decades. The deeper the color, the stronger the gene flow

divergence (Fst=0.07) was smallest in Zone X but that
zone had the highest introgression (3.23). Higher genetic
divergence (Fst<0.70) and lower genetic introgression
(gene flow > 0.26) were observed between CL and MCC in
Zones I-V; Zone II had the highest divergence (Fst = 0.34)
but lowest introgression (gene flow =0.54) (Fig. 3c, d;
Additional file 1). The phylogenetic tree also sug-
gested that CL made little contribution to MCC in
Zones I-V, whereas it made a significant contribution
to wheat breeding and selection in Zone X
(Additional file 2).

Comparing zones to each other, CL had greater gen-
etic divergence and less gene flow than the MCC (Fig. 4).
Within CL there were more frequent introgressions
(5.45) between Zones VII and VIII with the smallest Fst
(0.04), followed by Zones I and II (3.05 with Fst=0.08),

and VIII and X (3.31 with Fst=0.07). Fewer gene flow
events and larger Fst were observed for comparisons II
vs X, III vs VI, IX vs X, and V vs VI, VII, VIII, IX and X,
reflecting greater genetic divergence (gene flow < 0.60
and Fst>0.30). Among those comparisons, the largest
genetic divergence and the least gene introgressions
were for Zones V to X. Genetic introgression in CL
often occurring between adjacent zones was likely a con-
sequence of their arbitrary classification. For MCC there
was less genetic divergence and more frequent introgres-
sion among the ten zones (Fst < 0.20). II vs III, III vs IV,
and VII vs VIII and X showed more frequent introgres-
sions (>4.29) and smaller Fst (< 0.06). More frequent in-
trogressions across zones in MCC suggested that
modern breeding had broken through the separation to
some extent among agro-ecological zones.
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Fig. 2 Population structure analysis of ten wheat agro-ecological zones with 52 KASP markers. a, Phylogenetic tree of ten wheat agro-ecological
zones in Chinese landraces (CL), | to X represents each zone. b, PCA plot of ten wheat agro-ecological zones in CL, the solid dot means each
zone, and the color of dots are the same with that in Fig. 2a. ¢, Phylogenetic tree of ten wheat agro-ecological zones in modern Chinese cultivars
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Selection signals of key genes in all zones

Genetic differentiation (Fst and ¢y /mvcc) analysis by
comparison of CL with MCC indicating that Sus2-2A,
GW?2-6B, GASR-AI and Lr34 had undergone strong se-
lection (significant at a = 0.05) (Additional file 3). Similar
analyses for each zone identified 53 loci subjected to
strong selection (significant at o =0.05). In particular,
Zones 1L, I, V, VI, III and IV were under selection with
12, 9, 6, 6, 5 and 5 selective signatures, respectively,
compared to Zones VII, VIII, IX and X with 2, 2, 2 and
4 selection signals, respectively. These included some
well-known genes strongly selected in more than three
zones, including Lr34 (Zones 1, I, III and IV), Ppd-DI (I,
11, IIL, IV and V), Vrn-B1 (V, VII, VIII and X), Glu-BI (],
I and III), SusI-7B (I, 1L, III, IV and IX), Sus2-24 (I, II,
I, IV and VI) and GW2-6B (II, V and VI) (Fig. 5;
Additional file 4).

Allelic distribution of 47 loci across zones

Allelic frequencies of most of 47 loci took an uneven
distribution in ten agro-ecological wheat zones, obvi-
ously in both CL and MCC (Fig. 6; Additional files 5, 6).
For adaptation-related genes, the semi-dwarf alleles Rht-
B1b and Rht-D1b in all zones were rarely present in CL,
but reached 30% in MCC after the 1990s, with Zone II
having the highest frequency (11 accessions, 50%) carry-
ing Rht-D1b (Fig. 6b; Additional file 5). About 65% of
MCC and CL carried the winter type vrn-Bl allele in
Zones I-IV, whereas 81% had the spring type Vrn-Blb
allele in Zones VI-X. All accessions from Zone VI car-
ried Vrn-Blb (Additional files 3, 5). This distribution of
Vrn alleles corresponded to the typical growth habit of
accessions from each zone (Additional file 7). Among all
zones 71% of CL carried the photoperiod sensitive allele
Ppd-D1b, whereas 71% of MCC carried the contrasting
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photoperiod insensitive allele Ppd-Dla. A very high pro-
portion of MCC (95%) in Zones I-V carried Ppd-Dla
enabling earlier flowering (and maturity) under lower
temperatures in the autumn-sown zones (Fig. 6) where
double cropping is a common practice.

For stress resistance genes, 22% of MCC in all zones
carried the MFT-A1 functional marker associated with
sprouting resistance allele PHS", lower than the fre-
quency of 41% for CL with all 22 CL accessions from
Zone II carrying the resistance allele; only 14% of MCC
in Zone I, 9% in Zone IV, 18% in Zone V, 5% in Zone
VI and 14% in Zone VII carried that allele (Add-
itional file 6). Moreover, 55% of the CL carried the slow
rusting Lr34" allele across all zones, compared with only
15% for MCC (Fig. 6). This explained the relatively high
pre-harvest sprouting rates and possibly the wide occur-
rence of leaf rust in MCC in recent years. About 9% of
CL (20 accessions) and 5% of MCC (11 accessions) car-
ried the Fusarium head blight resistance allele FibI" in
all zones, with Zones III and IV having the largest

number (25 accessions). Predictably, the 1BL.1IRS trans-
location was not detected in CL across all zones but was
present at high frequency (89%) in MCC in Zones I-IV
(Fig. 6).

In regard to quality-related genes 45 and 19% of the
MCC carried the AxI or Ax2 alleles at the Glu-A1 locus
and the overexpression allele at Glu-B1, respectively,
much lower than for CL (83 and 53%). However, more
MCC carried the Glu-Dib allele (22%) than CL (5%)
(Additional files 5, 6). Moreover, 80% of MCC carried the
Pinb-D1b allele across all zones, compared with 6% for
CL. Among MCC carrying Pinb-D1b approximately 50%
had the allele in Zones I, II and VI (Additional files 5, 6).
In the case of Pds-BI 22% of the MCC carried allele b as-
sociated with lower yellow pigment content (YPC) com-
pared to 3% for the CL. Zone IV had the highest
frequency (41%) of Pds-B1b (Additional files 5, 6). The
general trend of MCC carrying larger numbers of quality-
related alleles was indicative of strong selection for quality
attributes.
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For grain morphology 57% of MCC carried haplotype
Hap-1 at the GW2-6B locus, much higher than CL (9%).
The difference was especially large in Zones II, V and VI
where 73, 77 and 82% of the MCC possessed this allele
compared to no CL in Zones II and V and 13% in Zone
VI (Fig. 6). This indicated that modern wheat breeding
selected for larger (wider) grain. For grain weight, an aver-
age 76% of MCC in Zones [, II, III, IV and VI carried the
Hap-A at the Sus2-2A locus, much higher than those in
CL with an average 5%. Other zones had relatively lower
percentages of accessions carrying this allele (5% for CL
and 20% for MCC), implying that the major wheat-
growing zones select for high grain weight (Fig. 6).

The number of fixed allelic variants (allele frequency >
95%) across all zones except Zone VI showed that the
CL had more fixed variations than the MCC
(Additional file 8a; Additional file 9). Further, a compari-
son of numbers of rare alleles (allele frequency <5%)
across all zones revealed more rare alleles in CL than
MCC in Zones I, IV, VI, VII, VIII and IX, in contract to
Zones V and X where MCC had a higher number of rare

alleles, whereas frequencies were similar in Zones II and
III, indicating a quantitative difference of rare alleles be-
tween CL and MCC across the ten agro-ecological zones
(Additional file 8b; Additional file 9).

Discussion

Different photoperiod and vernalization alleles for
different zones

Selection for high yield and increased adaptation to new
environments and multi-cropping systems is a common
practice in all wheat breeding programs. Breeding locally
adapted cultivars for different agro-ecological zones was
more important in the past and required selection of
specific adaptation alleles [34]. For example, the photo-
period insensitive allele Ppd-Dla was selected in MCC
zones with autumn-sowing and a shorter photoperiod.
However, this allele was not as frequent in genotypes
grown in the spring-sown zones. Another example is the
vernalization (Vrn) genes. Winter temperatures and
length of growing season largely determine the distribu-
tion of vernalization alleles. As average January
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temperatures gradually increased with progression from
Zones I to II, II to III, and III to IV, and the length of
the growth period decreased [1], and the frequency of
Vrn-B1 and Vrn-D1 alleles conferring spring type in-
creased (Additional file 6; Additional file 9). The vrn-Al

allele predominated in the autumn-sown zones, vrn-DI
was often found in spring wheat accessions in Zones II,
III and IV, and vrun-BI was frequent in the spring-sown
Zones VI, VII and VIII (Additional file 9). As reported
by Fu et al. [35] the distributions of day-length and
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vernalization alleles were largely determined by the se-
verity of the winter temperatures and length of the
growing season.

Introgression of favorable alleles increases genetic
diversity of MCC

Applying 52 KASP markers for 47 agriculturally import-
ant genes facilitated a better understanding the genetic
diversity in landraces and modern cultivars across differ-
ent wheat zones. Nucleotide diversity was generally
higher in MCC than CL in all zones except Zone VI
Gene flow analysis suggested that CL contributed little
to the MCC in the major wheat production Zones I-V,
consistent with previous studies showing that introduced
modern cultivars played a far more important role in
wheat production and breeding in China [33]. The
higher nucleotide diversity in MCC was attributed to
two causes. As the ultimate breeding goal was to in-
crease yield, the frequency of alleles conferring high
yield has been rising in modern cultivars as a result of
introduced germplasm and breeding [36], which in-
creases genetic diversity. One example was the allele
GW?2-6B (Hap-1) for which the average nucleotide diver-
sity was 0.16 in CL and 0.45 in MCC, and the average

frequency of Hap-1 for enhancing grain size increased
from 9 to 57% (Figs. 5, 6). The second reason was that
hybridization during plant breeding facilitates recombin-
ation and exchange of genetic materials, increasing gen-
etic diversity [37]. This increased genetic diversity
coincided with the early wheat breeding history in
China, when cultivars such as Abbondanza, St 2422/464,
Funo and Mentana from Italy were introduced and fre-
quently used in crossing programs. This was followed by
the introduction of germplasm with the 1BL/1RS trans-
location for superior grain yield and disease resistance
from Russia and Eastern Europe (Lovrin 10, Predgornaja
2 and Neuzucht) and spring and facultative wheat mate-
rials from CIMMYT. In Zones I-IV, 89% of the MCC
carried the 1BL/1RS translocation compared to none for
the landraces (Fig. 6). Therefore, elite introduced acces-
sions have broadened genetic diversity, advanced cultivar
improvement and increased yield and quality attributes
in Chinese wheat breeding [1].

Selection signals provide guidance for future wheat
breeding in all agro-ecological zones

The numbers of selection signals were much higher in
Zones I-VI than VII-X. This was likely due to the much
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larger production areas and more intensive breeding ef-
forts in those zones that account for 85% of production,
which is most intensive in the Yellow and Huai River
valley winter wheat zone (Zone II) with 43% of the
wheat area and 60% of production [38]. Selection during
domestication and breeding reshapes crop genomes
since the effort focused on pyramiding of potentially
beneficial alleles located in genic regions [39]. More fa-
vorable alleles gradually shifted from minor in terms of
frequency to major alleles in both the MCC and CL. For
example, alleles for high thousand grain weight, SusiI-
7A-Hap-H and Cwi-5D-Hap-C and alleles for flour color
Psy-Alb, Psy-Bla or b and Psy-Dla increased in fre-
quency in both CL and MCC (Additional files 5, 6).
These results corroborated previous findings that some
alleles for high thousand grain weight and whiteness of
flour had become fixed in breeding populations. Fre-
quencies of some other alleles beneficial to production
and customer preference, such as Glu-D1b, Pinb-D1b,
Pds-B1b, GW2-6B_Hap-1 and Sus2-2A_Hap-A have
been increasing in modern cultivars due to gradual accu-
mulation from selection in all ten zones (Fig. 6; Add-
itional file 6). However, a few disease resistance alleles
such as Lr68" and Yr15" were relatively rare in both CL
and MCC in all zones very likely because the former is
not highly effective and seems to be present mainly in
South Asian germplasm not widely assessed in China,
and Y715 is from Triticum dicoccoides and not yet widely
deployed. Both genes could be future breeding targets.

Cultivar improvement is usually accompanied by both
positive and negative effects [36]. In regard to gluten
strength, about 91% of CL in Zones I and II carried al-
leles Ax1 or Ax2* at the Glu-Al locus, far higher than
those in MCC with an average 40%. The frequency of
Bx7°F in the MCC were 5 and 14% in Zones I and II, re-
spectively, lower than in CL (68 and 45%) (Additional
files 5, 6). Future cultivar improvement could benefit
from targeted selection of these alleles. The frequency of
pre-harvest sprouting resistance allele of PHS at the
MFT-A1 locus was considerably lower in MCC (22%)
than CL (41%) across all zones, and was 100% for CL in
Zone II. This to some extent explains the reason for the
recent high occurrence of pre-harvest sprouting in
MCC.

Fusarium head blight or scab has increased in import-
ance in recent years, especially its spread from the more
traditional Yangtze River area and southern China to the
major production zones in the Yellow and Huai River
valley winter wheat zone [40]. Understanding the distri-
bution and putative donors of Fib1 in Chinese wheat ac-
cessions will facilitate the wider use of this gene and
thus contribute to better FHB resistance in China. Here,
about 9% of CL (20 accessions) and 5% of MCC (11 ac-
cessions) carried Fhbl" in all zones, with Zones III and
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IV having the largest number (25 accessions) (Fig. 6).
Chinese wheat breeders commenced research on FHB in
the 1950s. Sumai 3 and other cultivars with improved
FHB resistance were developed and widely applied in
production and breeding programs. Breeding for FHB
resistance is a long-term task, but the use of new tech-
nologies and resistance sources are likely to lead to im-
proved FHB resistance in new cultivars within the next
decade. Further, 55% of the CL carried the slow rusting
resistance gene Lr34 across ten zones, compared with
15% for MCC, frequencies that are consistent with the
results of Yang et al. [41] (Fig. 6). To conclude, this ana-
lysis of favorable alleles for important agronomic traits
in the different wheat zones provides a better under-
standing of the geographical distribution of key genes
nation-wide and will assist molecular breeding.

Methods

Plant materials and DNA extraction

The 438 wheat accessions included 22 Chinese landraces
(CL) and 22 modern Chinese cultivars (MCC) from each
of the ten zones except Zone IX from which 22 CL and
20 MCC were chosen (Fig. 1a; Additional file 7). All ac-
cessions were obtained from the Chinese Crop Germ-
plasm Resources Information System (http://www.cgris.
net/zhongzhidinggou/index.php). Genomic DNA was
extracted from young leaves of each accession using the
CTAB method [42].

KASP genotyping of functional genes

A total of 52 KASP markers for 47 cloned wheat genes
described previously were used in this study [27, 33, 43].
These genes were related to yield, quality, disease resist-
ance and adaptation in wheat. Briefly, KASP markers
were designed based on the diagnostic SNP markers fol-
lowing standard KASP guidelines. The allele-specific
primers used are listed in Additional file 10, and a com-
mon reverse primer was designed to ensure that total
amplicons were less than 120 bp. KASP assays were per-
formed in 384-well formats with 5.0 uL mixtures con-
taining 2.2 pL of 40ng/uL DNA, 2.5uL of 1 x KASP
V4.02 x Master mix (KBS-1016-017), 0.04 uL. Mg>",
0.056 pL of primer mixture, and 0.204 ddH,O. Ultrapure
water was used as the non-template control (NTC). PCR
cycles of KASP assay were: (1) 94°C for 15min; (2)
95°C for 20s; 65°C for 25s initially and the following
each cycle decreasing 1 °C for 10 cycles; (3) 95 °C for 10s;
56°C for 1min for 30cycles. QuantStudioTM7 Flex
(Applied Biosystems by Life Technologies) was used to
collect fluorescence signals for genotyping. Data were vi-
sualized and generated with QuantStudioTM Real-time
PCR Software v1.3 (Applied Biosystems by Life
Technologies).
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Population structure and phylogenetic analysis

Nei’s genetic distances were calculated based on data
from the KASP marker assays on all 438 accessions [44].
Neighbor joining (NJ) trees were constructed using
PowerMarker v3.25 [45] and visualized using MEGA5
[46]. Principal component analysis (PCA) was applied to
all accessions using Adegenet v2.0.1 in R [47].

Genetic differentiation and gene flow evaluation

Fixation indices (Fst) and genetic distances were calcu-
lated to evaluate population differentiation [48]. Nucleo-
tide diversity values of Tajima’s 7 and gene flow among
subpopulations from different zones were analyzed using
POPGENE software [49, 50]. To detect improvement-
related loci, selection signals were identified by changes in
allelic frequencies at polymorphic loci of target genes [51].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-020-02704-w.
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Additional file 3: Figure S2. Selective sweeps detected by
comparisons between Chinese landraces (CL) and modern Chinese
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markers detected by both Fst (@) and e /mycc (b) between CL and MCC.
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Additional file 9: Table S4. Frequencies of allelic variations of 47
polymorphic genes in Chinese landraces (CL) and modern Chinese
cultivars (MCC) in ten wheat agro-ecological zones.
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