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Abstract
The present paper explores the use of Gaussian process-
unscented Kalman filter (GP-UKF) algorithm for position esti-
mation of underwater vehicles. GP-UKF has a number of 
advantages over parametric unscented Kalman filters (UKFs) 
and Bayesian filters, such as improved tracking quality and 
graceful degradation with the increase of model uncertainty. 
The advantage of Gaussian process (GP) over parametric 
models is that GP considers noise and uncertainty in model 
identification. These qualities are highly desired for underwa-
ter vehicles as the number and quality of sensors available for 
position estimation are limited. The application of non-parametric 
models on navigation for underwater vehicles can lead to 
faster deployment of the platform, reduced costs and better 
performance than parametric methodologies. In the present 
study, a REMUS 100 parametric model was employed for the 
generation of data and internal model in the calculation to 
compare the performance of an ideal UKF against GP-UKF 
for position estimation. GP-UKF demonstrated better perfor-
mance and robustness in the estimation of vehicle position 
and state correction compared to the ideal UKF.

Keywords: Unscented Kalman filter, GP-UKF, Gaussian pro-
cess, underwater vehicles

Acronymn list:
ADCP	 acoustic doppler current profiler
AUV	 autonomous underwater vehicles
CFD	 computational fluid dynamics
DVL	 doppler velocity log
DVS	 doppler velocity sonar
EKF	 extended Kalman filter
EnKF	 ensemble Kalman filter
FKF	 fuzzy Kalman filter 
GP	 Gaussian process
GP-UKF	 Gaussian process-unscented Kalman filter
GPS	 global positioning system
LOS	 line-of-sight 
NARX	� non-linear autoregressive network with exoge-

nous input

PID	 photoionisation detector
RMSE	 root-mean-square error
RPM	 revolutions per minute
SI	 system identification 
UKF	 unscented Kalman filter

1. Introduction
Development of accurate and robust navigation 
technologies is essential for achieving high perfor-
mances in underwater environments. As the need 
for complex missions increases, there is a growing 
demand for highly accurate localisation of under-
water vehicles for navigation and data collection 
purposes. In comparison to ground and air vehicles, 
localisation via the global positioning system (GPS) 
is rarely available under water. Therefore, navigation 
strategies that are more robust and independent 
from GPS are needed.

Strategies for navigation of underwater vehicles 
are to integrate the vehicle velocity from an accel-
erometer, gyroscope or water speed sensor to obtain 
a new position estimate (Dunlap and Shufeldt, 
1969). If a water speed sensor is employed, the 
position at speeds below 0.3 m/s cannot be estab-
lished, as the sensor is not capable of measuring it. 
In the case of inertial navigation systems, the accel-
eration is integrated twice with respect to time 
(Kuritsky and Goldstein, 1990); the double integral 
generates drift in the position result. This generated 
drift can be corrected using complementary sensors 
such as doppler velocity sonar (DVS), and acoustic 
doppler current profiler (ADCP), together with algo-
rithms such as extended Kalman filter (EKF) and 
unscented Kalman filter (UKF).

In 1960, a Kalman filter was introduced as an 
optimal solution for state estimation from a linear 
system using a prediction of a physical model *  Contact author. Email address: wilmer.arizaramirez@utas.edu.au
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(Kalman, 1960). As most systems are non-linear, the 
Kalman filter was modified to be used with a non-
linear system by multiple techniques generating 
alteration as UKF and EKF. In the case of underwater 
vehicles, these techniques and their variations are 
the most popular. Armstrong et al. (2010) show that 
apart from the system, the EKF learn a calibration 
bias for the magnetic heading. However, applica-
tions that employ EKF have produced more robust 
and accurate results compared to the UKF (Allotta 
et al., 2016a; Allotta et al., 2016b; Vio et al., 2016).

Despite the positive results from UKF applica-
tions for underwater vehicles, the UKF can neverthe-
less demonstrate poor performance, as its predictive 
variances can be too small if the sigma points are not 
placed in the correct locations. Deficient predictive 
variance will produce observations with heavy weight 
in the measurement update, which causes the UKF 
to fit the noise (Turner and Rasmussen, 2010). 

Other filters proposed for underwater vehicles 
are the ensemble Kalman filter (EnKF), fuzzy 
Kalman filter (FKF) and particle filter. The EnKFs 
represent the distribution of the system state using 
a random sample, called an ensemble, and replace 
the covariance matrix with the sample covariance 
computed from the ensemble (Mandel, 2009). An 
FKF is a combination of a fuzzy set with the Kalman 
filter; the fuzzy set is a mathematical technique to 
define inaccuracies and generate better estimation 
than other Kalman filters (Loebis et al., 2003). 

Ngatini et al. (2017) compare the EnKF and FKF 
for underwater vehicles and show that the FKF 
exhibits better results than the EnKF. The particle 
filter uses a different approach to the EKF by imple-
menting Bayesian filtering. It makes an approxima-
tion of the posterior by using a finite number of 
particles that represent points in the solution space. 
Each particle is assigned a weight, and the weighted 
sample points correspond to the solution of the 
posterior of the particle state. These particles are 
propagated according to the dynamics of the poste-
rior, and the weight is modified based on support 
from the likelihood. The advantage of particle filters 
is that they do not require a state error Gaussian 
approximation. Despite research to increase the 
particle filter speeds (Telles da Silva Vale et al., 2015), 
the computational cost of running such algorithms 
is too high for an underwater vehicle’s internal 
computers.

The principal disadvantage of these filters is that 
their performance depends on the accuracy of the 
model. The calculation of coefficients from math-
ematical models for underwater vehicles is a com-
plex task that requires a series of experiments 
(Bishop and Parkinson, 1970), or computational 
fluid dynamics (CFD) simulations (Zhang et al., 2010). 

The quantity of data required is extended if such 
calculation or simulations are done within com-
mercial vehicles, which are modular and reconfig-
urable. The calculation of coefficients is complex, as 
some coefficients are highly sensitive, and an incor-
rect calculation can reduce the fidelity of the pre-
dicted vehicle motion (Sen, 2000).

A solution to avoid the calculation of coefficients 
for a mathematical model is to use non-parametric 
methods. Ko et al. (2007) introduced the Gaussian 
process-unscented Kalman filter (GP-UKF), a mod-
ification of the standard UKF with the replacement 
of parametric models of state, and measurement by 
non-parametric models obtained from a series of 
experimental tests. The non-parametric models 
give a future state prediction and measurement, 
and the covariance matrices Q of process and R of 
measurement noises. The non-parametric model 
learns over a series of real experiments; it therefore 
includes more non-linearities than other common 
methods to characterise the true signal over a series 
of noisy samples, via the integrated smoothing 
function of the Gaussian process (GP).

The present paper outlines research into the capa-
bility of GP-UKF to predict and correct the meas-
ured states of an underwater vehicle. The required 
sample frequency and minimum training data pro-
portion for the GP-UKF is also presented. A Simulink 
model of a REMUS 100 was used to produce the 
training data required for the non-parametric system 
identification and test the navigation algorithm. An 
ideal UKF and root-mean-square error (RMSE) were 
employed as comparison measures.

2. Underwater vehicle mathematical model
Fossen (1994) showed that the non-linear dynamic 
equations of motion of an underwater vehicle can 
be expressed in vector notation. This is defined by 
a state vector comprising the vector v of velocities 
on the body frame of the form [u, v, w, p, q, r]T, and 
the vector h of position in the earth-fixed frame 
(Fig 1) of the form [x, y, z, f, q, y]T, such that:

Mv + C v v + D v v + g =� ( ) ( ) ( )η τ � (1)

Fig 1: Underwater vehicle reference frames, vehicle frame is 
at centre of buoyancy
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with the kinematic equation:

�h h= J v( ) � (2)

where h is vector of position and orientation of the 
vehicle in the earth-fixed frame; v is vector of linear 
and angular vehicle velocities in body fixed frame; 
v̇ is vector of linear and angular vehicle accelera-
tions in body fixed frame; M is matrix of inertial 
terms; C(v) is matrix of Coriolis and centripetal 
terms; D(v) is matrix consisting of damping or drag 
terms; g(h) is vector of restoring forces and 
moments owing to gravity and buoyancy; t is vector 
of control and external forces; J(h) is rotation 
matrix that converts velocities in a body-fixed frame 
v to an Earth-fixed frame velocity h.

Equation 1 can be expanded into a more gen-
eral equation of motion (Gertler and Hagen, 1967; 
Prestero, 2001). This expansion is a system of six 
equations with 73 hydrodynamic coefficients.

3. UKF
Table 1 shows the basic structure of the UKF that 
estimates the states of a dynamic system based on a 
series of observations and internal model. If xk is 
the state of the system, uk is the control input and zk 
is the observation at time k, it can be assumed that 
the dynamic system evolves according to a state 
transition function, f(⋅), and an observation func-
tion, h(⋅), such that:

x x u

y x
k k k k

k k k

f

h

= ( )+
= ( )+

− −1 1, ε

δ � (3)

where ek is additive with zero-mean Gaussian noise 
with covariance Q k, and dk is the additive observa-
tion noise with covariance Rk. The functions f(⋅) 
and h(⋅) are non-linear, even when the estimate of 
the state Xk–1 is Gaussian; the estimate after passing 
the states through the transition function f(⋅) is no 
longer Gaussian. To estimate posteriors over the 
state space model, the UKF requires a stochastic 
approximation known as the unscented transform 

(Uhlmann, 1995). The unscented transform works 
by calculating a set of sigma points that are trans-
formed through the non-linear functions and their 
respective Gaussian distribution.

4. Regression with GPs
A GP is a non-parametric tool capable of learning 
regression functions from discrete training data. 
Benefits of GPs include model flexibility, and the 
abilities to provide uncertainty estimates and learn 
noise and smoothness parameters from training 
data (Rasmussen, 2004). A GP represents the poste-
rior distributions over functions based on training 
data (Ebden, 2008). It assumes that the data is 
derived from a noisy process of the form:

y fi i= +( )x e � (4)

where e is a zero-mean additive Gaussian noise with 
variance sn

2. A test input x*, conditioned in a set of 
data áx, yñ will produce a Gaussian distribution with 
mean:

y x n* *
-, ( , )[ ( , ) ]X, y K X X K X X I y= +  s2 1

� (5)

and variance:

cov( ) , , [ ( , )

] ,
* * * *

-
*

y k x x x X

X xn

= ( )− ( )
+ ( )

k K X X

I k

 

 s2 1 � (6)

where k(x*, x*) is the evaluation of the kernel with 
respect to the test point x*; k(x*, X) is a vector 
defined by kernel values between x* and the train-
ing inputs; K(X, X) is the square kernel matrix of 
the training input values. 

The prediction uncertainty captured by the vari-
ance depends on the process noise and the correla-
tion between the test input and training data. The 
kernel function selection is governed by application; 
the most widely used is the squared exponential, or 
Gaussian kernel, which is considered a universal 
kernel: 

k x x
x x

SE( , ) exp
( )′ = −
− ′







s2

2

22�
� (7)

where s2 controls the average distance of the func-
tion away from its mean. The length scale, l, deter-
mines the twist length in the function.

There are two principal methods for learning 
the hyperparameters Q, which are Bayesian model 
interference and marginal likelihood. Bayesian 
inference assumes that prior data of the unknown 
function to be mapped is known. A posterior distri-
bution over the function is refined by incorporation 
of observations. The marginal likelihood method is 
based on the aspect that some hyperparameters are 

Table 1: UKF algorithm

UKF ˆ , , , , ( ), ( )| |x P u z f hk k k k k k− − − − − ⋅ ⋅( )1 1 1 1 1

ñPrediction

1	 : ˆ , ˆ , , , ( )| | | |x P UT x P u fk k k k k k k k k− − − − − − −← ⋅( )1 1 1 1 1 1 1

2	 : Pk|k–1 ¬ Pk|k–1 + Q
ñCorrection

3	 : ˆ , , ˆ , , ( )| | |z S C UT x P hk k k k k k k k− − −← ⋅( )1 1 1

4	 : S S C S z zk k k k k k k← + −( )−
−

1
1ˆ |

5	 : ˆ ˆ ( ˆ| | |x x C S z zk k k k k k k k k← +−
−

−1
1

1− )
6	 : P P C S Ck k k k k k k

T
| |← +−

−
1

1

end
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more noticeable in their effect over the posterior 
distribution. Over this base the posterior distribu-
tion of hyperparameters can be described with a 
unimodal, narrow Gaussian distribution (Rasmussen, 
2004).

The learning of GPs’ hyperparameters Q is nor-
mally achieved by maximisation of the marginal like-
lihood. The marginal likelihood can be expressed as:

p eN

T

y
K

y K y
| x,Q( )=

( )

− −1

2 2
1
2

1
2

1

p
� (8)

where N is the number of input learning data points 
and y is a vector of learning output data of the form 
[y1; y2;…yN]. To reduce the calculation complexity, 
it is preferred to use the logarithmical marginal 
likelihood obtained by the application of logarithmic 
properties to equation 8: 

L Q( )=− ( )− − ( )−1
2

1
2 2

21log logK y K yT N
p � (9)

To find a solution for the maximisation of log-
likelihood multiples, methods of optimisation can 
be applied, e.g. particle swarm optimisation, genetic 
algorithms or gradient descent. For deterministic 
optimisation methods, the computation of likelihood 
of partial derivatives with respect to each hyperpa-
rameter is needed. According to Williams and 
Rasmussen (2006), log-likelihood derivatives for 
each hyperparameter can be calculated by:

∂ ( )

∂
=−

∂
∂











+
∂
∂

−

− −

L Q
Q Q

Q

i i

T

i

trace
1
2

1
2

1

1 1

K
K

y K
K

K
� (10)

5. GP-UKF
The objective of the GP-UKF is to replace the inter-
nal parametric model f used for state calculation 
and observation model h with a non-parametric 
model generated by GPs, and to use the respective 
variance for the calculation of Qk and Rk. The pro-
cess noise covariance is obtained from the predic-
tive GP uncertainty at the previous mean sigma 
point and used for the calculation of the sigma 
points. The sigma points are passed through the 
GP observation model, and the observation error 
covariance is obtained from the observation GP.

Table 2 shows the basic structure of the GP-UKF 
algorithm. The incorporation of GP regression 
allows GP-UKFs to learn their models and noise 
processes from training data. The noise models of 
the filter automatically adapt to the system states 
depending on the density of training data around 

the current state. Consequently, if the calculation is 
outside the identified region, the GP-UKF pro-
duces higher uncertainty estimates, reflecting the 
higher uncertainty in the underlying process 
model.

6. Test set-up and results
A simulation model of a REMUS 100 (Fig 2), based 
on the work of Prestero (2001) and Hall and Anstee 
(2011), was developed in the MATLAB/Simulink 
software environment and employed to produce 
data for test and training of the GP. A block dia-
gram of the REMUS 100 model is shown in Fig 2. A 
path-following controller (Xiang et al., 2017) com-
posed of a line-of-sight (LOS) law that pursues a 
point P(t) and three robust photoionisation detector 
(PID) controllers, produces the signals for revolu-
tions per minute (RPM), elevator force and rudder 
force required to control the vehicle. The control-
lers employ the corrupted measurement to calcu-
late the required forces. A sample frequency of 5 Hz 
was used to capture data, and a sub-sample of 40 % 
of the data was taken randomly for the training. 
The training data has more points at the start of the 
trajectory, and the quantity of points reduces over 
time. Fig 3 shows the selected data for training 
compared to the simulation data.

The virtual sensors employed were a 3-axis gyro-
scope, 3-axis accelerometer, compass and doppler 
velocity log (DVL) unit; the measurement results 
produce the vector [u,v,w,p,q,r,Z,q,y,j]. Each sen-
sor was simulated by a model comprising an addi-
tive noise source and digitalisation of the 
measurement through a 12-bit ADCP. A helix move-
ment was employed to capture 800. The AUV was 
accelerated from an initial velocity of 0.5 m/s to 1.4 
m/s. Fig 4 shows the recorded command signals 
for 800 s. The noise in the depth sensor required a 
hard response by the integral parts of the PID, 
causing the vehicle to converge onto the desired 
path. A total of 20 simulations were carried out to 

Table 2: GP-UKF algorithm

GP UKF x P u z GP f GP h− − ⋅ − ⋅( )− − − − −ˆ , , , , ( ), ( )| |k k k k k k1 1 1 1 1

ñPrediction

1	 : ˆ , , ˆ , , , ( )| | | |x P Q x P u GP fk k k k k k k k k kUT− − − − − − −← − ⋅( )1 1 1 1 1 1 1

2	 : Pk|k–1 ¬ Pk|k–1 + Qk

ñCorrection
3	 : ˆ , , , ˆ , , ( )| | |z S C R GPk k k k k k k k kUT x P h− − −← − ⋅( )1 1 1

4	 : Sk ¬ Sk + Rk

5	 : ˆ ˆ ( ˆ| | |x x C S z z )k k k k k k k k k← +−
−

−1
1

1−

6	 : P P C S Ck k k k k k k
T

| |← +−
−

1
1

end
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Fig 2: REMUS 100 simulation model; Xv,Yv,Zv are the vehicle position

capture data. The first set of data was employed for 
the creation of the non-parametric GP model.

The state vector was defined as the combination 
of vehicle speeds and vehicle position h = 
[u,v,w,p,q,r,X,Y,Z,q,y,j]. A UKF was also imple-
mented as an evaluation measure; the filter uses 
the original REMUS 100 model from which the 
data was captured to allow comparison of the GP-
UKF to an ideal UKF when all parameters from the 
vehicle are known. The GP-UKF and UKF were 
required to estimate the x and y states from the 
vehicle. The algorithms of Deisenroth et al. (2009) 
were employed with minor modification to the GP 
to allow a non-linear autoregressive network with 
exogenous input (NARX) structure to be utilised 
for system identification (SI). The modification 
included the assembly of the input vector for learn-
ing as Xd = [h,ui], where h is the state vector and ui 
is the command signal. The output vector is formed 
from the delay vector Y d = Xd(k − 1,k − 2).

Fig 5 shows the comparison between the meas-
ured data of the real vehicle state, UKF and GP-
UKF. The GP-UKF is equally capable of correcting 
the measurement state of the vehicle, as the posi-
tioning of the sigma points is estimated from the 
GP’s dynamic model. The predicted position states 
(Figs 6 and 7) from the GP-UKF x and y have a 
higher similarity to the vehicle’s real position; 
although the GP employs data corrupted by noise, 
it has learned to predict over this data.

The comparison of the vehicle position estima-
tions and real position is shown in Fig 8. The UKF 
shows a drift in the calculation of x and y over time. 
In comparison to the UKF, the GP-UKF demon-
strates better performance in the prediction of the 
vehicle position for both the horizon of the train-
ing data from the GP, and the decay outside the 

Fig 3: Training and evaluation data

Fig 4: Helix test input signals to control surfaces

Fig 5: Surge speed comparison between corrupted measure 
data, real position, UKF and GP-UKF
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Fig 6: Predicted position state x comparison between UKF 
and GP-UKF
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training horizon. Although the error increases out-
side the training horizon, this is corrected by the 
filter in the return to the training horizon.

Tables 3 and 4 summarise the measurement of 
the mean RMSE between the real vehicle states 
and the correction from the UKF and the GP-UKF 
for the 20 simulations. The results confirm that the 
GP-UKF can perform as reliably as an ideal UKF, 
and in some cases it can overperform the ideal 
UKF. Table 4 shows the average measurement for 
correction and prediction. In the case of predic-
tion, the GP-UKF can forecast vehicle position with 
higher precision than an ideal UKF, as the inclu-
sion of the noise function and smooth prediction 
of the GP supports the ability of the UKF to predict 
position.

7. Conclusion
The present research demonstrates that the GP-
UKF is a promising approach for state estimation in 
applications where accurate parametric model is 

not available. The GP-UKF shows similar perfor-
mance compared to an ideal UKF in the prediction 
and correction of the vehicle states for the helix 
movement test case. The average RMSE (as shown 
in Table 4) for prediction and correction shows 
that non-parametric models can be employed as 
prediction models inside the Kalman filter as the 
UKF for autonomous underwater vehicles (AUVs).

The GP-UKF demonstrates better performance 
in the prediction of states than the UKF. The 
smoothing kernel of the GP facilitated a smooth 
transition between the prediction points and better 
placement of sigma points. The tuning complexity 
in the implementation of a non-linear Kalman fil-
ter is reduced dramatically, as the user is not 
required to produce the covariance matrices for the 
process and measure noise model. The GP-UKF can 
be converted to an important tool for underwater 
vehicles, especially in cases where high non-linearities 
are expected, such as in operations near surface or 
near another object, or during specialised missions. 
Another advantage of GP-UKF is that it can be 
used even when no GPS signal is available, which is 
essential for correction in traditional Kalman filters. 
An underwater vehicle can switch between filters as 
the availability of data is reduced.

The principal disadvantage of GP models is their 
computational cost during training. Nonetheless, 
research has shown that this cost can be reduced by 
using sparse GP models, thus allowing the use of 

Fig 7: Predicted position state y comparison between UKF 
and GP-UKF
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Fig 8: Comparison of position estimation between real state, 
UKF and GP-UKF
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Table 3: Mean RMSE and standard deviation results from UKF and GP-UKF per state for 20 runs

u(m/s) v(m/s) w(m/s) p(rad/s) q(rad/s) r(rad/s)

UKF 0.0014 0.0015 0.0005 0.0023 0.0013 0.0031
s-UKF 0.0003 0.0021 0.0008 0.0078 0.0035 0.0121
GP-UKF 0.0158 0.0369 0.0154 0.0569 0.0601 0,1813
s-GP-UKF 0.0387 0.0069 0.0033 0.0123 0.0130 0,0347

X(m) Y(m) Z(m) f(rad) q(rad) y(rad)

UKF 2.4237 1.2695 0.0017 0.0006 0.0012 0.0013
s-UKF 14.6908 8.5834 0.0019 0.0020 0.0016 0.0988
GP-UKF 2.0541 1.3894 0.0281 0.0235 0.0297 0.1095
s-GP-UKF 11.1893 9.9445 0.1889 0.0047 0.0052 0.3848

Table 4: Mean RMSE results from UKF and GP-UKF for 
correction and prediction

RMSE Value

RMSE-UKF correction 0.0028
RMSE-GP-UKF correction 0.086
RMSE-UKF prediction 2.91
RMSE-GP-UKF prediction 2.86
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more complex models or configurations. Further 
work is currently ongoing to prepare an AUV for a 
series of experiments to train its GP-based, non-
parametric model. Once trained and verified, the 
vehicle will be deployed to assess the performance 
of the GP-UKF outside a controlled environment.
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