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Reinforcement Learning from Hierarchical Critics
Zehong Cao, Member, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract—In this study, we investigate the use of global infor-
mation to speed up the learning process and increase the cumula-
tive rewards of reinforcement learning (RL) in competition tasks.
Within the framework of actor-critic RL, we introduce multiple
cooperative critics from two levels of a hierarchy and propose an
RL from hierarchical critics (RLHC) algorithm. In our approach,
each agent receives value information from local and global critics
regarding a competition task and accesses multiple cooperative
critics in a top-down hierarchy. Thus, each agent not only
receives low-level details but also considers coordination from
higher levels, thereby obtaining global information to improve
the training performance. Then, we test the proposed RLHC
algorithm against a benchmark algorithm, i.e., proximal policy
optimisation (PPO), under four experimental scenarios consisting
of tennis, soccer, banana collection, and crawler competitions
within the Unity environment. The results show that RLHC
outperforms the benchmark on these four competitive tasks.

Index Terms—Reinforcement Learning; Hierarchy; Critics;
Competition

I. INTRODUCTION

Many agent training studies concern reinforcement learning
(RL) techniques, which provide learning policies to achieve
cooperative or competitive tasks by maximising rewards
through interactions with the environment [1]. At each training
step, the agent perceives the state of the environment and takes
an action that leads the environment to transition into a new
state. In a competitive game with multiple players, such as
a zero-sum game between two agents, the minimax principle
is applied, in which each player tries to maximise its benefits
under the worst-case assumption that the opponent will always
endeavour to minimise that benefit. For example, the minimax-
Q algorithm [2] employs the minimax principle to compute
strategies and values for stage games and a temporal-difference
rule similar to Q-learning to propagate the values across state
transitions.

To achieve the goal of maximising rewards, an agent
always faces the “exploration-exploitation dilemma” in RL
when interacting with a complex environment, particularly
in tasks with multi-agent scenarios. The popular hierarchi-
cal RL framework decomposes a task into multiple levels
with hierarchies to exploit temporally extended actions to
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make decisions from a higher-dimensional perspective to
alleviate the sparse reward problem. To reach a target with
fast exploration, a general hierarchical RL sets the high-
level strategy to select sub-goals and the low-level strategy
to perform primitive operations to achieve these sub-goals.
For complex competition environments with multiple agents,
such as StarCraft II micromanagement tasks, [3] proposed
a joint value-based method based on Q-learning, QMIX,
to coordinate between the centralised and decentralised off-
policies for discrete actions. Furthermore, [4] presented an
adaptation of actor-critic methods that combines value-based
methods in the critic and policy gradient methods in the actor.
Following the above, [5] recently proposed a new actor-critic
method called counterfactual multi-agent (COMA) on-policy
gradients that uses a centralised critic to estimate the Q value
and decentralised actors to optimise the agents’ policies for
discrete actions without consideration of the continuous action
spaces.

Furthermore, according to a recent review of state-of-the-
art RL studies with a hierarchical actor-critic (HAC), most
existing methods provide an approach for breaking down
tasks that is divided into two strategies. The first strategy is
“hindsight experience replay”, which helps agents learn goal-
based policies more quickly when sparse reward functions are
used. References [6], [7] used hindsight action transitions to
help agents understand the sub-goal state achieved in hindsight
instead of the original sub-goal state and generate valuable
hindsight goals that can be accomplished by an agent in
the short term. The second strategy is feudal RL [8], [9],
which separates knowledge into meta-policies and inter-option
policies and generates explicit sub-goals in a latent space to en-
courage exploration. Specifically, it employs the manager and
worker modules for hierarchical RL. The manager sets abstract
goals, which are conveyed to and enacted by the worker, who
generates primitive actions at each environmental tick. The
feudal network structure has been extended to cooperative RL
[10], in which the manager learns to communicate sub-goals
to multiple workers. Indeed, the ability to extract sub-goals
from the manager allows the feudal network to dramatically
outperform a potent baseline agent on tasks. In addition, this
hierarchical policy structure in RL has been developed for real-
world scenarios, such as off-policy correction (HIRO) [11]
and mutual information maximisation (adInfoHRL) [12], to
improve the sample efficiency in robot movement control.

However, the above two HAC strategies focus only on fast
exploration, as agents can learn short policies at each level
of the hierarchy, which indicates a policy that allows the
agent to learn tasks more quickly by breaking the problem
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down into short sequences of actions, and neither considers
the improvement of “exploitation performance”. Hence, the
previous hierarchical RL studies have ignored the critical fact
that giving an agent access to multiple cooperative critics
might speed up the learning process and increase the rewards
in competitive tasks. In particular, it is frequently the case that
high-level agents agree to be assigned different observations
that work in combination with low-level agents to benefit hier-
archical cooperation. Inspired by the feudal network structure
with the manager and worker modules, this new structure may
provide low-level agent access to multiple cooperative critics
by the measurement of different-level observation spaces along
with the maximum value function.

Thus, in this study, we introduce multiple cooperative critics
from two levels of the hierarchy and propose an RL from
hierarchical critics (RLHC) algorithm. If we can obtain a good
value function that allows selecting the action with the highest
value in this state, then naturally this strategy is better. The
main contributions of our proposed approach are as follows:
• An agent receives information from both local and global

critics regarding a competitive task.
• The agent receives not only low-level details but also

global information to consider coordination from higher
levels to increase the exploitation performance.

• We define multiple cooperative critics in a top-to-bottom
hierarchy, called RLHC. We assume that RLHC is a
potential generalised RL and is thus more suitable for
speeding up training and improving exploitation learning
for agents. These benefits could potentially be obtained
when using any type of hierarchical RL algorithm.

The remainder of this paper is organised as follows. In
Section 2, we introduce the RL background for developing the
multiple cooperative critic framework in the agent-competition
domain. Section 3 describes the baseline and proposes the
RLHC algorithm. Section 4 presents four experimental designs
based on competitive tennis, soccer, banana collection, and
crawler tasks with observation settings within the Unity envi-
ronment. Section 5 reports the training performance results of
the benchmark algorithm and the proposed RLHC algorithm.
Finally, we summarise the paper in Section 6.

II. PRELIMINARIES

A. Revisiting RL

In a standard RL framework [13], an agent interacts with
the external environment over a number of time steps. Here, s
is the set of all possible states, and a is the set of all possible
actions. At each time step t, the agent in state st perceives
the observation information Ot from the environment, takes
an action at, and receives feedback from the reward source
Rt. Then, the agent transitions to a new state st+1, and the
reward Rt+1 associated with the transition (st, at, st+1) is
determined. The agent can choose an action from the last state
visited. The goal of an RL agent is to collect the maximum
possible reward with minimal delay.

Next, we revisit the primary components of the learning
process: the Markov decision process (MDP) and the policy
gradient.

In the MDP, a state st is a Markov state if and only if

P[st+1|st] = P[st+1|s1, ..., st]. (1)

The future state is independent and unrelated to the past states.
The state transition matrix P is defined to present the transition
probabilities from all states s to all subsequent states s′:

Pss′ = P[st+1 = s′|st = s]. (2)

A Markov reward process is a tuple < s, a, P,R, γ >, where
s is a finite set of states, a is a finite set of actions, and γ is
a discount factor, γ ∈ [0, 1].

• P is a state transition probability matrix from Equation
(2):

P ass′ = P[st+1 = s′|st = s, at = a]. (3)

• In addition, r is a reward function that represents the
expected reward after the transition from P :

ras = E[rt+1|st = s, at = a]. (4)

The return Rt, defined as the sum of future discounted
rewards, is

Rt =

∞∑
k=0

γkrt+k+1. (5)

To estimate “how good” it is to be in a given state, the state
value function of the reward Vπ(s) is defined as the expected
return starting with state s under policy π:

Vπ(s) = E[Rt|st = s, π], (6)

where policy π is as follows:

π(a|s) = P[at = a|st = s].

It is useful to define the action value of the reward function
Qπ(s, a):

Qπ(s, a) = E[Rt|st = s, at = a, π]. (7)

Following the introduction of the value function, we can
generate a gradient-ascent-based RL, called the policy gra-
dient. As a gradient ascent strategy, this approach models and
optimises the policy directly. The policy is usually modelled by
a parameterised function with respect to θ, with πθ(s, a). The
value of the reward function depends on this policy and various
other algorithms, such as REINFORCE (Monte Carlo policy
gradient) [14], the deep deterministic policy gradient (DDPG)
[15], and the asynchronous advantage actor-critic (A3C) [16].
Proximal policy optimisation (PPO) [17] can be applied to
optimise θ to acquire the greatest reward.

The fundamental reward function is defined as follows:

J(θ) = Eπθ[πθ(s, a)Qπθ (s, a)], (8)

and then, the gradient is computed:

5θ J(θ) = Eπθ[5θlogπθ(s, a)Qπθ (s, a)]. (9)
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B. Actor-critic

The actor-critic strategy aims to take advantage of the
best characteristics from both value-based and policy-based
approaches while eliminating all their drawbacks and underlies
recent modern RL methods from A3C to PPO. To under-
stand the learning strategies, the value function can facilitate
policy updates, such as by reducing gradient changes in the
original strategy gradient, which is what actor-critic methods
do. Specifically, actor-critic methods consist of two models
that can optionally share parameters: (a) a critic updates the
value function parameters w, which could be an action-value
function Qw(s, a) or a state value function Vw(s); (b) the actor
updates the policy parameters θ for πθ(s, a) in the direction
suggested by the critic.

1) Asynchronous Advantage Actor-critic (A3C) : The A3C
structure [16] can be applied to a variety of continuous motor
control tasks and learn general game exploration strategies
purely from observations. A3C maintains a policy (πθ(st, at))
and an estimate of the value function (V (st; θw)). Thread-
specific parameters are synchronised with the global parame-
ters: θ′ = θ and w′ = w. This variant of actor criticism can
operate in the forward view and uses the same mix of n-step
returns to update both the policy and the value function.

The update reward function can be written as follows:

5θ′ J(θ′) = 5θ′ logπθ′(st, at)Â(st, at; θ, θw), (10)

where Â is an estimate of the advantage function given by

Â(st, at; θ, θw) =

k−1∑
i=0

γirt+i + γkV (st+k; θ)− V (st; θw),

(11)
in which k varies from state to state and has an upper bound
tmax.

The parameters θ (of the policy) and θw (of the value
function) are shared even when they are shown to be separate
for generality. For example, a convolutional neural network
has one softmax output for the policy πθ(st, at) and one linear
output for the value function V (st; θw), and all its non-output
layers are shared.

2) Proximal Policy Optimisation (PPO) : PPO [17] repre-
sents a new family of policy gradient methods for RL that
alternate between sampling data through interactions with the
environment and optimising a surrogate objective function
using stochastic gradient ascent. PPO imposes a constraint by
forcing r(θ′) to remain within a small interval of approxi-
mately 1, that is, [1− ε, 1 + ε], where ε is a hyper-parameter.
The function clip(r(θ′), 1− ε, 1 + ε) clips the ratio to within
[1− ε, 1 + ε].

The objective function measures the total advantage over
the state visitation distribution and actions:

J(θ′) = E[r(θ′)Âθ(s, a)], (12)

where r(θ′) = πθ′(s, a)/πθ(s, a) represents the probability
ratio between the new and old policies.

To approximately maximise each iteration, the “surrogate”
objective function is as follows:

J(θ′) = E[min(r(θ′))Âθ(s, a), clip(r(θ), 1−ε, 1+ε)Âθ(s, a)].
(13)

III. METHOD

To propagate the critics in the hierarchies, we propose
RLHC, which considers multiple cooperative critics in two
levels of the hierarchy. RLHC aims to speed up the learning
process and increase the cumulative rewards, which it achieves
by having each agent receive information from both local and
global critics. The novelty of this study is that it supports the
concept that considering information from multiple critics at
different levels is beneficial for training in a hierarchical RL
framework. The assumption is that a higher-level critic will be
beneficial for an agent who was previously able to use only the
critic in its surrounding layer. Thus, we address the modified
advantage achieved by the maximum function in a union set
based on the baseline, i.e., the benchmark PPO algorithm.

A. Baseline: the Benchmark PPO

PPO performs comparably to or better than other state-of-
the-art RL methods and became the benchmark RL algorithm
at OpenAI 1 and Unity 2 due to its ease of use and good
performance. Here, we use PPO both as a baseline to validate
the experiments and as a starting point to develop the novel
RLHC algorithm.

B. Learning in Multi-critics

To apply PPO to the problem of agents with variable
attention to more than one critic, we consider the argument
for resolving the multiple-critic learning problem. For each
critic i, the corresponding advantage function is Aθi(si, a),
generated from the state value function V i(si, θ), depending
on the different scale observations O (expressed as the state s)
and the network parameter θ. Consistent with existing work,
the advantage function is extended from the value function
and measures the value of the agent’s actions.

For multiple critics (e.g., two critics, i = 2), we work with
the argument of the minimum objective function to find the
minimum advantage of choosing a specific action instead of
following the current policy. The argument of the minimum
objective function can be written as follows:

argmin(5J(θ′)) = argmin(E[5r(θ′)Âθ(s, a)]). (14)

To achieve a minimised Âθ(s, a), we need to maximise the
current state value function V (s; θ) extracted from Equation
(11), which can be written as

min[Â(s, a)]→ max[V (s; θ)]. (15)

In other words, we seek the set V̂i
θ

of the given argument
of objective function J(θ′) for which the value of the given
expression attains its maximum value. Because the maximum

1https://openai.com/blog/openai-baselines-ppo
2https://github.com/Unity-Technologies/ml-

agents/blob/master/docs/Training-PPO.md



4

V̂ (s, θ) indicates that action a is a better choice than the
current policy π(θ), we measure the advantage achieved by
collecting individual V̂ i(s, θ) and choosing the maximum
V̂ (s, θ). The corresponding updated value function can be
written as follows:

V̂ (s, θ) = max

m⋃
i=2

V̂ i(s, θ), (16)

where m is the total number of critics.
If we consider the n time-step intervals of multiple critics,

then m in Equation (16) can be replaced with ht, where ht =
ht+kT , in which ht = m, k = 2, 3, 4, ..., and T is a time
period with n time steps; otherwise, ht = 2.

C. RLHC

Because the environmental state is too complicated, we
assume that the agent can obtain only the partial environmental
state, which we term partial observability. By introducing a
manager that can observe more environmental states, we can
develop an RLHC framework to speed up the learning process
and achieve more cumulative rewards. In terms of propagating
the critics in the hierarchies, we are the first to develop an RL
strategy from hierarchical critics that allows a worker agent
i to receive information from multiple critics computed both
locally and globally. The manager is responsible for collecting
the broader observations and estimating the corresponding
global critic, which it sends to the worker agent. To clarify
our proposed algorithm, we present the pseudo-code of our
proposed RLHC below.

Here, we apply the RLHC algorithm in PPO. Successful
RLHC model training requires tuning of the trained hyper-
parameters, which enables obtaining an output of the training
process that contains the optimised policy. This investigation
allows criticism from the manager to improve the training
performance.

Furthermore, in Fig. 1, we present a simplified version of
the RLHC algorithm constructed using a two-level hierarchy
for one worker agent with a manager. The local and global
critics are implemented by the maximum function illustrated in
the “Learning in Multi-critics” section. For the modified state
value function we propose, the manager and worker share the
actors, but they provide different critics from the two layers
(which we consider hierarchical), which correspond to the
arrows and the maximum function in Fig. 1. The manager
receives the shared action space from the worker but provides
only high-level criticism to the worker. This strategy allows
us not only to estimate the value of multiple critics from
different levels but also to use weighted approaches to fuse
critics from different layers or to optimise the temporal scaling
of critics in separate layers. For simplicity, the experiments in
the following section generally involve two-level hierarchies,
such as a multi-agent hierarchy with up to 2 managers and 6
worker agents for competition.

Algorithm 1 RLHC

1: Define the observation environment for each worker agent
i → Oiw and manager → Om

2: Initialise → the state of each worker agent swi0 , the state
of the manager sm0 and the policy parameter θ0

3: Initialise → the critic networks of manager Âm0 and each
worker Âwi0 and the actor network for each worker πwi0

to determine action a
4: for Iteration = 1, 2, ... do
5: for Actor = 1, 2, ..., i do
6: Run policy πθ in the environment for T ∈ t time

steps
7: Use θ′ to interact with the environment to collect
st, at and compute the advantage function Âθt

8: Minimise the gradient of the objective function
5J(θ′)

9: → measure the probability ratio r(θ′) between new
and old policies

10: → find the maximum current value function V̂ θt to
achieve the minimum advantage function Âθt selected from
the advantage estimate of worker agent i or the manager

argmin5J (θ′) =

E[min[(5wr (θ′)Ât
θ
(swit , at),5mr (θ′)Ât

θ
(smt , at)]

→ max[V (swit ; θ), V (smt ; θ)]

11: Choose the maximum value:

V̂ θt = max
⋃
i=1

(V (swit ; θ), V (smt ; θ))

12: Use the maximum value V̂ θt to calculate the ad-
vantage estimates Âθ1,..., ÂθT

13: end for
14: Optimise the “surrogate” objective function from PPO
15: Update θ′ → θ
16: end for

Figure 1. The RLHC algorithm
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IV. EXPERIMENT

We applied our proposed RLHC algorithm to four scenarios
in which up to 6 agents compete. We empirically show the
success of our RLHC compared with the benchmark PPO
method in competitive scenarios such as tennis, soccer, banana
collection, and crawling.

To be consistent with RLHC as addressed in Section III,
in the application stage, we also included two types of ob-
servations (agent/worker Ow and manager Om): the worker
can observe only the local environmental state sw, while the
manager can observe the global environmental state sm. We
have released codes for both the model and the environments
on GitHub 3 for replication purposes.

A. Unity Platform for RL

Because many existing platforms (e.g., OpenAI Gym) lack
the ability to flexibly configure a simulation for multiple
agents, the simulation environment becomes a black box from
the perspective of the learning system. The Unity platform,
a new open-source toolkit, has been developed for creating
and interacting with simulation environments. Specifically, the
Unity machine learning agent toolkit (ML-Agents Toolkit)
[18] is an open-source Unity plug-in that enables games and
simulations to serve as environments for training multiple
intelligent agents. The toolkit supports dynamic multi-agent
interaction, and agents can be trained using RL through a
straightforward Python API.

B. Scenario 1: Tennis Competition

Figure 2. 2 vs. 2 tennis competition in Unity
In this game, agents control rackets to bounce a ball over

a net. We constructed a new training environment in Unity
under 2-2 worker and 1-1 manager settings (a doubles-tennis
scenario), as shown in Fig. 2. In Table I (Part 1), the goal,
agent reward function, and behaviour parameters, including the
action and observation spaces, are set up for the tennis agents.
Note that we set extended local individual observations, where
the low-level agents (racket workers) can also access the
distance and velocity difference between teammates to avoid
duplicate policies and actions. The manager observations in-
clude additional variables, such as the distance between the
ball and the racket and information gained from the worker
agent’s observations. In other words, we set two sub-types of
observations with and without teammate communication in-
formation, which represent 1) agent/worker observation with-
out teammate communication O1

w and manager observation

3https://github.com/czh513/RL-Hierarchical-Critics

without teammate communication O1
m and 2) agent/worker

observation with teammate communication O2
w and manager

observation without teammate communication O2
m, as shown

in Table I (Part 1).

C. Scenario 2: Soccer Competition

Figure 3. 2 vs. 2 soccer competition in Unity
This scenario involves 4 agents competing in a simplified

soccer game in Unity. Fig. 3 shows the environment, where 4
agents compete in a 2 vs. 2 soccer game. This game has two
types of players, offensive and defensive, which need to be
controlled differently. We use “multi-brain training” in Unity
because each team contains one striker agent and one goalie
agent, and each is trained using separate reward functions;
thus, each type has its own observation and action spaces. As
presented in Table I (Part 2), the goals, agent reward function,
and behaviour parameters, including the action and observation
spaces, are set up for the soccer agents.

D. Scenario 3: Banana Collection Competition

Figure 4. 3 vs. 3 banana collection competition in Unity
In this competition, 6 agents compete in a banana collection

game in Unity. Fig. 4 shows the environment, where 6 agents
compete in a 3 vs. 3 banana collection game. As presented
in Table I (Part 3), the goals, agent reward function, and
behaviour parameters, including the action and observation
spaces, are set up for the banana collection agents.

E. Scenario 4: Crawler Competition

This competition involves 2 agents competing in a simpli-
fied fighting game in Unity. Fig. 5 shows the environment,
where 2 agents compete in a 1 vs. 1 crawler game. As
presented in Table I (Part 4), the goals, agent reward function,
and behaviour parameters, including the action and observation
spaces, are set up for the crawler agents.
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Figure 5. 1 vs. 1 crawler competition in Unity

F. Training Settings and Metrics

1) Training Settings: The hyper-parameters for the RL used
for training are specified in Table II, which provides the ini-
tialisation settings that we used to interact with four different
competition scenarios. Specifically, the batch size and buffer
size represent the number of experiences that occur during
each gradient descent iteration and the number of experiences
to collect before updating the policy model, respectively. Beta
controls the strength of entropy regularisation, and epsilon
influences how rapidly the policy can evolve during training.
Gamma and lambda indicate the reward discount rate for
the generalised advantage estimator and the regularisation
parameter, respectively. A random seed is used to ensure that
the results are reproducible.

2) Training Metrics: We saved some statistics during the
learning session and viewed them using a TensorFlow utility
named TensorBoard. Here, we measure four metrics to assess
the training performance. Specifically, Cumulative Reward
indicates the mean cumulative episode reward accrued by
all agents interacting with the environment. Reward Statistics
compare the performance of each RL algorithm (PPO vs.
RLHC) under different conditions. We first collected the
cumulative reward values of the final 10K time steps, as this
period is generally considered to yield the best cumulative
reward with convergence. Then, we used the independent T-
test for statistical analysis and plotted the distribution of the
kernel density estimation (KDE) to estimate the probability
density function of the final cumulative rewards and set
p < 0.01 as the minimum significant level.

V. RESULTS

We provide here the training performances of the RLHC
algorithm and the baseline benchmark algorithm (PPO). PPO
uses an independent local critic for each agent and does
not share information, thus rendering the environment non-
stationary from a single-agent perspective. However, our
RLHC includes a semi-centralised critic, which it obtains by
hierarchically assigning a critic to estimate the updated value
function; this can be beneficial for independent learners, which
are known to struggle in hierarchically cooperative settings.

The following findings show that RLHC is both more
efficient and more general than PPO; consequently, we choose
four example scenarios for use with up to 6-player tennis,
soccer, banana collection and crawler competitions. We set the
smoothing parameter = 0.8 in TensorBoard, which is used as

the exponential moving average to reduce the variations in the
values for better presentation.

A. Tennis Competition

For the tennis competition (the doubles scenario), we use
both the type 1 observation space (without teammate com-
munication) and type 2 observation space (with teammate
communication) for training purposes. As shown in Table
I (Part 1), we set 2 observation space categories, worker
and manager, consisting of the type 1 observation space and
type 2 observation space, which are denoted as Ob1 and
Ob2, respectively. We explore whether the type 2 observation
space, which adds the extended observations, is beneficial in
achieving a higher reward. We also compare the performance
metrics of RLHC and the benchmark PPO in terms of both
types of observation space.

As shown in Fig. 6-A, considering the type 1 observation
space, RLHC achieves a higher cumulative reward (mean ±
standard deviation) with short training steps than achieved
by PPO. Furthermore, as shown in Fig. 6-B, for the type 2
observation space, which adds the extended observations, the
cumulative reward (mean ± standard deviation) achieved by
PPO further increases compared with RLHC without extended
observations, indicating that the extended observations that
consider teammate relationships are significant in the training
process. Additionally, we include the extended observations in
RLHC and PPO to compare their training performances. The
metrics and cumulative reward show that our RLHC performs
better than PPO, and we find that the cumulative rewards of
PPO and RLHC in the final training period have significant
differences (p < 0.001) in both types of observation space,
indicating that our RLHC achieves a significant improvement
in the training process of the tennis scenario.

Figure 6. The training metrics for the tennis competition

B. Soccer Competition

For the soccer competition, we set the observation spaces
for the worker and the manager to assess a different view,
as shown in Table I (Part 2). During the training stage, we
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Part 1: Settings of the Tennis Competition Scenario
Setting Description
Objective Agents cannot miss the ball or let the ball fall outside the court area during the event when striking the ball

over the net into the opponents’ court.
Reward +0.1 when the ball is hit over the net. -0.1 when agents miss the ball or the ball falls outside the tennis court.
Action Space Movement forward or away from the net and jumping (3 variables).

Observation Space Description

Type 1:
Without team-
mate communi-
cation

Agent/Worker Observation
Space O1

w
Position and velocity information of the ball and racket (8 variables).

Manager Observation
Space O1

m
Position and velocity information of the ball and racket and the distance between the ball and
racket (10 variables).

Type 2:
With teammate
communication

Agent/Worker Observation
Space O2

w
Position and velocity information of the ball and racket and the distance and velocity difference
between teammates (12 variables).

Manager Observation
Space O2

m
Position and velocity information of the ball and racket, the distance between the ball and
racket, and the distance and velocity difference between teammates (14 variables).

Part 2: Settings of the Soccer Competition Scenario
Setting Description
Objective Striker agents need to calculate a method to kick the ball into the opponent’s goal. Goalie agents need to learn

to defend against the opponent and to avoid the ball being kicked into their own goal.
Reward Striker: +1 when the ball enters the opponent’s goal, -0.1 when the ball enters the team’s own goal. Goalie: -1

when the ball enters the team’s own goal, +0.1 when the ball enters the opponent’s goal.
Action Space Striker: Forward, backward, rotation, and sideways movement (6 variables). Goalie: Forward, backward, and

sideways movement (4 variables).
Agent/Worker Observation
Space Ow

Seven types of object detection, with distance information covering a 180 degree view (112 variables).

Manager Observation
Space Om

Eight types of object detection, with distance information covering a 270 degree view (200 variables).

Part 3: Settings of the Banana Collection Competition Scenario
Setting Description
Objective Agents must learn to collect as many healthy bananas as possible while avoiding toxic bananas.
Reward +1 when an agent collects a yellow healthy banana. -1 when an agent collects a purple toxic banana.
Action Space 4 branches of action – movement branch: forward or backward; side-motion

branch: left or right; rotation branch: rotate left or rotate right; laser branch:
emit a laser (42 variables).

Agent/Worker Observation
Space Ow

Velocity of agents and the ray-based angle information of the objects in front of each agent: 7 raycast angles with 7 measurements
for each angle (53 variables).

Manager Observation
Space Om

Velocity and distance of agents, with the ray-based angle information of the objects in front of the agents: 7 raycast angles
with 8 measurements for each angle (60 variables).

Part 4: Settings of the Crawler Competition Scenario
Setting Description
Objective Agent must learn to maintain their body balance and not touch the ground and to fight against the opponent

to make the challenger lose their balance.
Reward +1 if opponent’s body touches the ground. -1 if agent’s body touches the ground. +0.03 times the body velocity

towards the opponent’s direction. +0.01 times the body direction alignment with the opponent’s direction.
Action Space Rotation of joints (20 variables).
Agent/Worker Observation
Space Ow

Position, rotation, velocity, and angular velocity of each limb, plus the acceleration and angular acceleration
of the body (117 variables).

Manager Observation
Space Om

Position, rotation, velocity, distance, and angular velocity of each limb, plus the acceleration and angular
acceleration of the body (119 variables).

TABLE I: Settings of the four competition scenarios

Tennis Soccer Collection Crawler Tennis Soccer Collection Crawler
Parameter Value Value Value Value Parameter Value Value Value Value
batch size 1024 128 512 128 beta 0.005 0.01 0.01 0.01
buffer size 10240 2000 6000 5000 epsilon 0.2 0.2 0.2 0.2
gamma 0.99 0.99 0.99 0.99 hidden units 128 256 256 256
lambda 0.95 0.95 0.95 0.95 learning rate 0.0003 0.001 0.0005 0.001
max steps 200 K 500 K 200 K 200 K memory size 256 256 256 256
random seed 5 5 5 5 num. epochs 3 3 3 3
num. layers 2 2 2 2 time horizon 64 128 128 128
sequence len. 64 64 64 64 summary freq. 1000 2000 2000 2000

TABLE II: Training parameter settings
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trained two brains: one brain with a negative reward for the ball
entering their goal and another brain with a positive reward for
the ball entering the opponent’s goal. Because the mean reward
is the inverse between the striker and goalie and alternates
during training, we demonstrate only the training metrics for
the striker agent, as shown in Fig. 7. The corresponding
training metrics for the goalie agent are simply the opposite
of those for the striker agent.

In terms of the striker’s performance, Fig. 7 shows that
the cumulative reward (mean ± standard deviation) of PPO
increased around the starting points and then decreased af-
ter 500K training steps, suggesting that this trial does not
have a reliable learning process. However, our RLHC can
achieve a positive result with higher cumulative rewards than
those of PPO. Moreover, the cumulative rewards of PPO and
RLHC in the final training period show significant differences
(p < 0.001), suggesting that our RLHC achieves a significant
improvement in the training process of the soccer scenario.

Figure 7. The striker’s training metrics for the soccer
competition

C. Banana Collection Competition

For the banana collection competition, we set the obser-
vation spaces for the worker and the manager to obtain a
different perspective, as shown in Table I (Part 3), i.e., a multi-
agent environment where agents compete to collect bananas.
We expect that the two teams’ agents can learn to collect as
many healthy yellow bananas as possible while avoiding toxic
purple bananas.

In terms of each team’s performance, Fig. 8 shows that the
cumulative rewards (mean ± standard deviation) of PPO and

Figure 8. The training metrics for the banana
collection competition

the proposed RLHC stably increase over the whole 200K
training steps. However, our RLHC can achieve higher cumu-
lative rewards than those of PPO, and the cumulative rewards
of PPO and RLHC in the final training period show significant
differences (p < 0.001), suggesting that our RLHC achieves a
significant improvement in the training process of the banana
collection scenario.

D. Crawler Competition

For the crawler competition, we set the observation spaces
for the worker and the manager to obtain additional insight, as
shown in Table I (Part 4). Each agent is created with 4 arms
and 4 forearms and requires body movement to fight against
an opponent without falling.

Fig. 9 shows the high cumulative reward (mean ± standard
deviation) of PPO around the starting points relative to that
of the proposed RLHC. After 200K training steps, our RLHC
can achieve higher cumulative rewards and a rapidly rising
curve compared with those of PPO. Moreover, the cumulative
rewards of PPO and RLHC in the final training period show
significant differences (p < 0.001), suggesting that our RLHC
achieves a significant improvement in the training process of
the crawler scenario.

Figure 9. The training metrics for the crawler
competition

VI. CONCLUSIONS

In this study, we developed an RLHC algorithm to con-
sider global information to speed up the learning process
and increase the cumulative rewards. In RLHC, the agent is
allowed to receive information from both local and global
critics in competitive tasks. We tested the proposed RLHC on
four tasks, i.e., a 2-player crawler competition, 4-player tennis
and soccer, and a 6-player banana collection competition, in
the Unity environment by comparing its results with those
of the benchmark PPO algorithm. The results showed that
our proposed RLHC outperforms the non-hierarchical critic
baseline PPO on agent-competition tasks. The novelty of this
study is that it offers a proof of concept indicating that the
consideration of multiple critics from different levels can be
beneficial for training in a hierarchical RL framework. We
selected a simple scenario as evidence, and the preliminary
outcomes showed that improved performance can be achieved
by considering the criticism of higher-level critics.
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